新人教课标版高中数学必修1《函数的表示法》教案设计
人教版高中数学必修第一册函数的表示方法教案(一)

函数的表示方法(一)三维目标一、知识与技能1.能熟练掌握函数的三种不同表示.2.了解函数不同表示法的优缺点.3.了解分段函数及其表示.4.会求某些函数的解析式.二、过程与方法1.自主学习,了解函数表示形式的多样性和转化方法.2.探究与活动,明白何时的函数用何种方法表示适宜.3.增强动态意识、通过观察、对比、分析,发展辩证思维能力.三、情感态度与价值观培养学生重要数学思想方法——数形结合与分类讨论思想方法,激发学生学习的热情.教学重点函数的三种不同表示的相互间转化.教学难点函数的解析式的表示,理解和表示分段函数.教具准备多媒体课件、投影仪、打印好的材料.教学过程一、创设情景,引入新课师:在前面的课中,我们已经初步研究函数的概念和表示方法.今天我们再专门研究函数的表示方法.〔板书:函数的表示方法〕师:请考察下面三个函数:投影胶片1〔或多媒体制作镜头1〕:估计人口数量变化趋势是我们制定一系列相关政策的依据.从人口统计年鉴中可以查得我国从1949年至1999年人口数据资料如表所示,你能根据这个表说出我国人口的变化情况吗?师:该题是用的什么方法来表示函数的?生:这是一份表格.师:这位同学说得很好.这种用列表来表示两个变量之间函数关系的方法称为列表法.投影胶片2〔或多媒体制作镜头2〕:一物体从静止开始下落,下落的距离y〔m〕与下落时间x〔s〕之间近似地满足关系式y=4.9x2.假设一物体下落2 s,你能求出它下落的距离吗?师:这种用等式来表示两个变量之间函数关系的方法称为解析式法.这个等式通常叫做函数的解析表达式,简称解析式.投影胶片3〔或多媒体制作镜头3〕:y4x上图为某市一天24请问:〔1〕上午6时的气温约是多少?全天的最高、最低气温分别是多少?〔2〕在什么时刻,气温为0℃?师:这个问题我们用图象表示了时刻与气温的关系,这种用图象表示两个变量之间函数关系的方法称为图象法.二、讲解新课1.函数的表示法〔1〕解析法解析法,就是用数学表达式表示两个变量之间的对应关系,这个数学表达式叫做函数的解析式,简称为解析式,如S=60t2,S=2πrl,y=ax+b,y=ax2+bx+c〔a≠0〕等等,都是用解析式法表示的函数关系.解析法有两个优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段所研究的主要是能够用解析式表示的函数.〔2〕图象法图象法,就是用图象表示两个变量之间的对应关系.图象法的优点是直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质.图象法在生产和生活中有许多应用,如企业生产图,股市走势图等.〔3〕列表法列表法,就是列出表格来表示两个变量之间的对应关系.列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,表格法在实际生产和生活中也有广泛应用.如银行利率表、列车时刻表等.2.例题讲解[例1] 教科书P22例3.本例介绍了一个可以用三种表示方法来表示的函数.通过这个例子可以达到以下目的:〔1〕让学生体会到三种表示方法各自的优点.并且,本例后的“思考〞为学生比较三种表示方法提供了机会,教学时教师应注意不要让学生错过这个机会.对于“所有的函数是否能用解析法表示〞,学生比较难以回答,教学时不妨先举一些例子启发学生,然后再由学生试着举一些例子.〔2〕使学生看到函数的图象可以是一些离散的点,这与学生以前接触到的一次函数、二次函数的图象是连续的曲线有很大的差别,教学时要考虑到学生的认知基础,强调y=5x〔x∈R〕是连续的直线,但y=5x〔x∈{1,2,3,4,5}〕却是5个离散的点,由此又让学生看到,函数概念中,对应关系、定义域、值域是一个整体.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.本例边框中的问题“判断一个图形是不是函数图象的依据是什么?〞,应在组织学生讨论后获得结论“平行于y轴的直线〔或y轴〕与图形至多一个交点〞.[例2] 教科书P23例4.本例利用表格给出了四个函数,它们分别表示王伟、X 城、赵磊的各次考试成绩及各次考试的班级平均分.由表格区分三位同学的成绩高低不直观,所以教科书选择了图象法表示.教学时要培养学生根据实际需要选择恰当的函数表示法的能力.要注意的是,图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,并且让三个函数的图象具有整体性,以方便比较.教学时应引导学生观察图象,学习如何从图象上获取有用信息,为分析每位同学的学习情况提供依据.[例3] 教科书P 24例5.本例的主要目的有两个:一是让学生进一步体会数形结合在理解函数中的重要作用,二是为介绍分段函数作准备.[例4] 教科书P 24例6. 本例的主要目的有以下几点:〔1〕让学生尝试用数学表达式去表达实际问题; 〔2〕学习分段函数及其表示;〔3〕注意在数学模型中全面反映问题的实际意义;〔4〕让学生根据这个例题的边框要求,自行设计任意两站之间的票价表以方便售票员与乘客,体会在不同情境中使用恰当的函数表示法.由上述例3和例4归纳出分段函数的概念如下: 2.分段函数有些函数在它的定义域中,对于自变量x 的不同取值X 围,对应关系不同,这样的函数通常称为分段函数.实际生活中,出租车的计费、电信资费、个人所得税额等均是分段函数. [例5] 求以下函数的解析式:〔1〕f 〔x 〕是二次函数,且f 〔0〕=2,f 〔x +1〕-f 〔x 〕=x -1,求f 〔x 〕; 〔2〕f 〔x +1〕=x +2x ,求f 〔x 〕,f 〔x +1〕,f 〔x 2〕;〔3〕f 〔x x 1+〕=221xx ++x 1,求f 〔x 〕; 〔4〕3f 〔x 〕+2f 〔-x 〕=x +3,求f 〔x 〕. 方法引导:〔1〕由f 〔x 〕是二次函数,所以可设f 〔x 〕=ax 2+bx +c 〔a ≠0〕设法求出a 、b 、c 即可.〔2〕假设能将x +2x 适当变形,用x +1的式子表示就好办了.〔3〕视xx 1+为一整体不妨设为t ,然后用t 表示x ,代入原表达式求解. 〔4〕x 、-x 同时使得f 〔x 〕有意义,用-x 代x 建立关于f 〔x 〕、f 〔-x 〕的两个方程就好了. 解:〔1〕设f 〔x 〕=ax 2+bx +c 〔a ≠0〕,由f 〔0〕=2,得c =2.由f 〔x +1〕-f 〔x 〕=x -1,得恒等式2ax +a +b =x -1,得a =21,b =-23.故所求函数的表达式为f 〔x 〕=21x 2-23x +2. 〔2〕∵f 〔x +1〕=x +2x =〔x 〕2+2x +1-1=〔x +1〕2-1, 又∵x ≥0,x +1≥1, ∴f 〔x 〕=x 2-1〔x ≥1〕.〔3〕设x x 1+=t ,那么x =11-t ,t ≠1. 那么f 〔t 〕=f 〔x x 1+〕=221x x ++x 1=1+21x+x 1=1+〔t -1〕2+〔t -1〕=t 2-t +1. ∴f 〔x 〕=x 2-x +1〔x ≠1〕.〔4〕∵3f 〔x 〕+2f 〔-x 〕=x +3, ① x 用-x 代得3f 〔-x 〕+2f 〔x 〕=-x +3. ②解①②得f 〔x 〕=x +53. 方法技巧:求函数解析式常见的题型有: 〔1〕解析式类型的,如本例〔1〕,一般用待定系数法,对于二次函数问题要注意一般式〔y =ax 2+bx +c 〔a ≠0〕〕,顶点式〔y =a 〔x -h 〕2+k 〕和标根式〔y =a 〔x -x 1〕〔x -x 2〕〕的选择.〔2〕f [g 〔x 〕]求f 〔x 〕型问题方法一是用配凑法;方法二是用换元法.如本例〔2〕、〔3〕.〔3〕函数方程问题,需建立关于f 〔x 〕的方程组,如本例〔4〕.假设函数方程中同时出现f 〔x 〕、f 〔x1〕,那么一般x 用x1代之,构造另一方程. 特别要指出的是,求函数解析式均应严格考虑函数的定义域. 三、课堂练习教科书P 27练习题1,2,3.答案:1.y =x 25002x -〔0<x <50),图象如下.140012001000800600400200102030405060O x y2.〔1〕题与D 图,〔2〕题与A 图,〔3〕题与B 图吻合得最好,剩下与C 图相符的一件事可能为:我出发后感到时间较紧,所以加速前进,后来发现时间还很充裕,于是放慢了速度. 3.x四、课堂小结1.本节学习的数学知识:函数的表示法、分段函数、函数解析式的求法. 2.本节学习的数学方法:定义法、换元法、待定系数法、数形结合与分类讨论的思想方法.五、布置作业板书设计1.2.2 函数的表示法〔1〕1.函数的表示法〔1〕解析法〔2〕图象法〔3〕列表法例1例2例3例42.分段函数例5课堂练习课堂小结。
人教版高中数学必修一《函数的表示法》教案设计

1.2.2函数的表示法一、教材分析教材从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.教材将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.二、三维目标1.知识与技能(1)理解函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,掌握简单的分段函数及应用.2.过程与方法:学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情态与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法.三、教学重点:函数的三种表示方法,映射的概念.四﹑教学难点:分段函数的概念,分段函数的表示及其图象.五﹑教学策略:通过实例分析比较三种函数表示法的特点,分析比较映射与函数的区别与联系.六﹑教学准备教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率七﹑教学环节1、课堂导入⑴.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是Сднемрождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.⑵.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).2、课堂讲授⑴提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:①解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.②图象法:以自变量x 的取值为横坐标,对应的函数值y 为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.③列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.⑵明确三种方法各自的特点?解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域.列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值、图像法的特点是:能直观形象地表示出函数的变化情况. 总结为下表:⑶例题讲解:例3.1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素. 解:这个函数的定义域是数集{1,2,3,4,5}, 用解析法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1例4.2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势. 解:把“成绩”y 看成“测试序号”x 的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大; 赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高. 例5.1.画出函数y=|x|的图象. 分析:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y=⎩⎨⎧<≥0.x x,-0,x x,所以,函数y=|x|的图象如图1-2-2-10所示.图1-2-2-10解法二:画函数y=x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y=x 的图象位于x 轴上方的部分合起来得函数y=|x|的图象如图1-2-2-10所示.归纳总结:带有绝对值问题的处理方法…………………………去掉绝对值符号. 例6.某市“招手即停”公共汽车的票价按下列规则制定: (1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.解:设里程为x 千米时,票价为y 元,根据题意得x∈(0,20]. 由空调汽车票价制定的规定,可得到以下函数解析式:图1-2-2-13y=⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<≤<.2015,5,1510,4,105,3,50,2x x x x根据这个函数解析式,可画出函数图象,如图1-2-2-13所示. 归纳总结分段函数:① 研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象. ② 分段函数是一个函数.③ 定义域是各段自变量求值的并集,写定义域时区间端点需不重不漏. ④ 值域是各段函数值的并集.⑤ 最大值是各段最大值的最大者,最小值是各段最小值的最小者,求最值时先分段求,再比较.⑥ 求分段函数的函数值时,关键是看自变量的取值属于哪一段,就用哪一段的解析式.⑷映射的概念①.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).②.先看几个例子,两个集合A 、B 的元素之间的一些对应关系: (ⅰ)开平方; (ⅱ)求正弦; (ⅲ)求平方; (ⅳ)乘以2.归纳引出映射概念:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.记作“f :A →B ” 说明:(1)这两个集合有先后顺序,A 到B 的映射与B 到A 的映射是截然不同的,其中f 表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思. 例7.下列哪些对应是从集合A 到集合B 的映射?(1)A={|P P 是数轴上的点},B=R ,对应关系f :数轴上的点与它所代表的实数对应; (2)A={|P P 是平面直角坐标中的点},}{(,)|,,B x y x R y R =∈∈对应关系f :平面直角坐标系中的点与它的坐标对应;(3)A={三角形},B={|},x x 是圆对应关系f :每一个三角形都对应它的内切圆; (4)A={|x x 是新华中学的班级},}{|,B x x =是新华中学的学生对应关系f :每一个班级都对应班里的学生.解:⑴⑵⑶中的对应f : A →B 是从集合A 到集合B 的一个映射,⑷中的对应f : A →B 不是从集合A 到集合B 的一个映射.课堂练习:1.如图为一分段函数的图象,则该函数的定义域为__________,值域为__________.解析:由图象可知,第一段的定义域为[-1,0),值域为[0,1); 第二段的定义域为[0,2],值域为[-1,0].因此该分段函数的定义域为[-1,0)[0,2]=[-1,2],值域为[0,1)[-1,0]=[-1,1).答案:[-1,2] [-1,1)2.已知函数f (x )=2000x x x ⎧>⎨≤⎩,,,,求f (2),f (-3)的值.解:∵2>0,∴f (2)=22=4.∵-3≤0,∴f (-3)=0. 3.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x ).(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析: (1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9,∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1, f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. 【探究提升】求下列函数解析式.(1)已知2f ⎝ ⎛⎭⎪⎫1x +f (x )=x (x ≠0),求f (x );(2)已知f (x )+2f (-x )=x 2+2x ,求f (x ).解析: (1)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,将原式中的x 与1x互换,得f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.于是得关于f (x )的方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).(2)∵f (x )+2f (-x )=x 2+2x ,将x 换成-x ,得f (-x )+2f (x )=x 2-2x ,∴将以上两式消去f (-x ),得3f (x )=x 2-6x ,∴f (x )=13x 2-2x .3﹑课堂活动:1.教师引导学生完成三种函数表示法的比较,并且归纳它们的优缺点. 2.教师引导学生完成教材例3﹑例4﹑例5﹑例6. 4﹑课堂小结:①分段函数的表示,求值等问题. ②表示函数的三种方法,映射的概念.5﹑作业布置:课本P 28 习题1.2(A 组) 第7题 (B 组)第3题 四、板书设计函数及其表示1.2.2函数的表示法一﹑教材分析二﹑三维目标三﹑教学重点四﹑教学难点五﹑教学策略六﹑教学准备七﹑教学环节九﹑教学反思:1.通过5个例题让学生体会三种表示函数的方法,掌握分段函数及其的概念.2.通过例5例6逐步培养学生分类讨论的数学思想,通过例4培养学生分析问题的能力.。
人教版高一数学函数的表示法教案

① “求平方”
②
③
④
(3)图中的图象所表示的函数的解析式为( )
A. B.
C. D.
4、已知函数 ,若 ,求 的值
作业:书P24习题A7-10
(3)题图
课后
反思
重 点
难 点
函数的三种表示方法,分段函数的概念
怎样根据不同的需要选择恰当的方法表示函数?分段函数的概念及其图象
教 学
用 具
教 学
主 线
教 学 过 程
一、基础知识回顾:
1、请同学们叙述一下函数的概念________________________。
2、根据预习的情况完成下列各题:
(1)用_________________________来表示函数的方法叫解析式法;
课时教案
年月日 第周 星 期
执教人
学 科
数学
高中年级班
课 题
(1)函数的表示法
课 型
新授课
教 学
目 标
(1)明确函数的三种表示方法
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数
(3)通过具体实例,了解简单的分段函数,并能简单应用
(4)培养学生数形结合的思想,提高利用数学知识分析和解决实际问题的能力
用_________________________来表示函数的方法叫图像法;
用_________________________来表示函数的方法叫列表法。
(2)比较一下这三种函数表示法的优缺点:
函数表示法
特 点
解析式法
图像法
列表法
(3)分段函数就是_________________________________________
人教课标版高中数学必修一《函数的表示(第1课时)》教案-新版

1.2.2函数的表示(第1课时)一、教学目标(一)核心素养通过本节课,让学生了解函数表示的必要性及多样性,丰富学生对函数的认识,帮助理解抽象函数的函数概念.在数学运算、建模过程中初步体会数形结合这一重要数学方法。
(二)学习目标1.了解函数的三种表示方法及各自的优点与不足,在实际情景中,会根据不同的需要选择恰当的方法表示函数.2.理解映射的概念,了解其与函数的区别,并能判断某些对应关系是否是映射.3.会画简单函数的图像,能根据要求求函数的解析式.(三)学习重点1.函数的三种表示法,根据具体问题选择合适的方法表示函数.2.了解映射的概念及其表示.3.会画简单函数图像,能根据要求求函数解析式.(四)学习难点1.根据具体问题选择合适的方法表示函数.2.函数解析式的求法.二、教学设计(一)课前设计1.预习任务(1)填空:通过初中的学习我们应该知道函数的表示方法有_解析法、图像法、列表法___. (2)映射:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应A:”f→:为从集合A到集合B的一个映射.记作“BBAf→2.预习自测(1)函数的表示法中,能够直观反应函数变化情况的是图像法;可以不需计算直接看出函数值的是列表法;可以通过计算得出任一自变量对应的函数值的是解析法。
(2)下列对应:f A B→,不是从集合A到B映射的有___①②__① {},0,:;A R B x R x f x x ==∈>→ ②*,,:1;A N B N f x x ==→- ③{}20,,:.A x R x B R f x x =∈>=→ (二)课堂设计 1.知识回顾(1)函数的概念,函数的三要素。
(定义域、对应法则、值域) (2)初中画函数图像的方法是描点法,步骤是:列表、描点、连线. 2.问题探究探究一 函数的表示法●活动① 对比提炼三种表示法的优缺点我们在初中已经接触过函数的三种表示法:解析法、图像法和列表法。
《函数的表示法》(第1课时)教学设计

函数的表示法(第1课时)教学设计一、内容和内容解析1.内容函数的表示法.2.内容解析在“对应关系”说的基础上建立了函数概念之后,随即而来的任务就是研究函数本身.而函数的呈现形式就是“函数的表示”问题.学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所必须的,而且是加深理解函数概念,以及向学生渗透数形结合方法的过程.函数的表示法是在已有函数概念的基础上进行学习的,是对函数知识的深化.这部分内容也是函数内容的重要基础.本节的主要内容是在初中已经接触过函数的三种表示法——解析法、列表法和图象法的基础上,明确三种表示法各自的优点及适用对象;通过函数y=|x|引出分段函数的概念,并通过具体实例(例6)熟悉分段函数概念,掌握研究分段函数的一般思想和方法.基于以上分析,确定本节课的教学重点:使学生面对数学问题时,会根据不同的需要选择恰当的方法(解析法、列表法、图象法)表示函数;掌握分段函数概念.二、目标和目标解析1.目标(1)了解解析法、列表法、图象法各自的优点及适用对象;使学生面对数学问题时,会根据不同的需要选择恰当的方法表示函数.(2)了解分段函数的概念,明确分段函数是一个函数,掌握研究分段函数的一般思想和方法.2.目标解析达成上述目标的标志是:(1)学生通过教科书第67页例4,以及之前的学习经验,能自主总结出解析法、列表法、图象法各自的特点;能举出具体实例说明三种表示法的适用情况.(2)学生能理解绝对值函数向分段函数的转化过程,通过具体实例体会分段函数是一个函数而不是几个函数.三、教学问题诊断分析学生在初中学习函数概念时,接触过函数的三种表示法:解析法、列表法、图象法,但是对其并没有深入研究.尤其是在高中阶段“对应关系”说意义下重新建立了函数概念的基础上,函数的三种表示法又有怎样的特点呢?这就是本节课第一个教学问题.针对这一问题,教科书引入了一个实际问题,其本质为离散的一次函数模型,此问题三种表示法均适用,进而可直观地比较出三种表示法各自的特点.而后可根据不同表示法各自的适用范围,选择恰当的方法表示函数.三种表示法各自的特点清楚了,那么它们在研究具体函数问题时,是如何起到相应的作用的呢?于是教科书中举出了绝对值函数的例子(例5),从而引出了高中阶段非常重要的、实际问题中广泛应用的一类函数——分段函数.这是本节课第二个教学问题.通过例5、例6的学习,可让学生体会解析法、图象法在处理连续函数问题时的威力,同时也体现出研究函数的一个非常重要思想——数形结合.正所谓“数缺形时少直观,形少数时难入微”,数形结合研究函数是贯穿整个高中的思想方法.四、教学支持条件分析在研究绝对值函数(分段函数,例5)和最大值函数(例6)的过程中,可借助图形计算器、几何画板、Geogebra等技术工具画出函数图象,观察得出结论,体现信息技术在数学教学和学习过程中的辅助探究与检验作用.五、教学过程设计引导语:我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1,2.列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4.图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3.这三种方法是常用的函数表示法.(一)函数的表示法问题1:某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.(1)你能用函数的三种表示法分别表示函数y=f(x)吗?(2)比较函数的三种表示法,它们各自的特点是什么?(3)所有函数都能用解析法表示吗?列表法与图象法呢?请你举出实例加以说明.师生活动:教师给出问题(1)后,让每位学生自己写出函数表达式、列表格、画图象,注意再次强调“研究函数,先看定义域”.之后让同桌互相核对结果,尤其注意函数图象是否为五个离散的点.然后出示问题(2),小组讨论,总结归纳三种表示法各自的优点,最后与教师一起总结出结论(可用PPT展示):出示问题(3),找学生代表回答,例如可回答:不是,3.1.1的问题3、问题4就不能用解析法表示;3.1.1的问题1不能用列表法表示;3.1.1的问题4不能用图象法表示.答案均可从教科书中找到,如果学生理解了3.1.1的知识,回答此问题并不困难.设计意图:问题(1)是让学生回忆并熟悉三种表示法的具体呈现过程,并再次强调定义域的决定作用;问题(2)是为了让学生总结归纳三种表示法各自的优点,明确特征,方可合理运用;问题(3)是突出三种方法各自的局限性,从而在处理实际问题挑选方法时合理回避不需要的表示法.问题2:(教科书第69页练习1)如图,把直截面半径为25 cm的圆形木头锯成矩形木料,如果矩形的一边长为x(单位:cm),面积为y(单位:cm2),你能把y表示为x的函数吗?师生活动:学生阅读题目后,自主从三种表示法中选择恰当可行的方法解决此问题. 之后教师可利用多媒体手段将答案进行呈现,与其他同学一起点评结果.设计意图:考察学生对三种表示法的特点的理解与把握,以及在实际问题中选择恰当的表示法解决问题的能力.(二)分段函数问题3:(1)你了解函数y=|x|吗?(2)你会画函数y=|x|的图象吗?师生活动:教师出示问题(1),先让学生独立思考,之后可引导学生对不熟悉的绝对值函数y=|x|进行变形,去掉绝对值,转化成熟悉的一次函数,然后规范写法,写成分段函数形式.之后出示问题(2),学生即可很自然地画出相应图象.最后教师引入分段函数概念,强调分段函数是一个函数,而不是几个函数,并介绍其普遍性与应用价值;并总结思路:绝对值函数可转化为分段函数进行研究;对于分段函数的图象,只需分别画出每段的函数图象,并注意端点的开闭即可.教科书中对分段函数给出的是描述性定义,学生只需能判断什么样的函数是分段函数即可,不必纠结于分段函数的确切定义.追问:(教科书第69页练习2)有了问题3的基础,你会画函数y=|x-2|的图象吗?教师让学生自主研究,然后利用多媒体手段将典型作答图象投到屏幕上,叫同学回答解题过程,寻找问题所在,纠正错误,落实正确解题思路.对于中上等水平的班级,可根据时间情况,适当借助图形计算器、几何画板、Geogebra等技术工具,设计参数a,制作动态演示课件,介绍函数y=|x-a|的图象变化情况.设计意图:问题(1)是让学生从解析式入手,转化成熟悉的函数,为问题(2)解决画函数图象问题做铺垫,体现了转化与化归思想;问题(2)则是考查学生对图象法表示函数的掌握程度.追问是对问题3举一反三,考查学生的理解、掌握程度.师生活动:给学生充分画图的时间,有初中的基础,学生基本都可画出图3.1-4,然后对最大值函数M(x)做适当解读:当x每取一个值时,f(x)与g (x)各有唯一一个函数值与之对应,而M(x)对应的则是两个函数值中的较大者,由函数定义可知,M(x)是x的函数.当最大值函数解释清楚后,学生可很自然地对图3.1-4进行处理,得到图3.1-5所示的函数M(x)的图象;利用图象和解方程知识,学生一般可顺利求出M(x)的解析式.追问:你能用其他方法求出M(x)的解析式吗?先小组讨论,然后找有想法的同学分享思路,最终达成共识.设计意图:问题4是训练学生同时研究两个函数的能力,以及对新概念的分析理解能力,感受分段函数的另一种构造方式及其图象和解析式的求法,加深对分段函数的理解与运用.追问是引导学生从不同的角度分析问题,解决问题,进一步加深对分段函数的理解.问题5:(教科书第69页练习3)给定函数f(x)=-x+1, g(x)=(x-a)2,x ∈R(1)你能画出函数f(x),g(x)的图象吗?师生活动:学生自主完成练习,然后找代表分享思路与结果.有了问题4的铺垫,学生对最小值函数的理解应比较到位,解决此问题会相对顺利.设计意图:创设熟悉的情境,提出类似的问题,对学生的知识与解题技能进行再巩固.(三)课堂小结、布置作业教师引导学生回顾本节课的学习内容,并引导学生回答下列问题:(1)函数的三种表示法分别是什么?其各自的特点是什么?(2)什么样的函数称为分段函数?分段函数是几个函数还是一个函数?(3)如何画分段函数的图象?师生活动:教师出示问题后,先由学生思考后再进行全班交流,最后教师再进行总结。
函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
最新人教版高一数学必修1第一章《函数的表示法》教案1
《函数的表示法》教案1
教学目标:
1.明确函数的三种表示方法;会根据不同实际情境选择合适的方法表示函数.
2.学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.让学生感受到学习函数表示的必要性,渗透数形结合思想方法.
教学重点难点:
重点:函数的三种表示方法.
难点:根据不同的需要选择恰当的方法表示函数.
教法与学法:
1.教学方法:
(1)实例教学,让学生感悟到知识的生成.
(2)层层设问启发引导学生发现规律,总结规律.
(3)让学生在教师指导下通过动手实践自主探究解决问题.
2.学习指导:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.教学过程:
【创设情境导入新课】
【作法总结,变式演练】
【思维拓展,课堂交流】
【归纳小结,课堂延展】 y
d
教学设计说明
1.教材地位分析:
学习函数的表示,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题.而且是加深理解函数概念的过程,同时基于高中阶段所接触的许多函数均可用几种不同的方式表示.因而使得学习函数的表示也同时向学生渗透数形结合的方法的重要过程.2.学生现实分析:
学生在初中已经学习了函数的基本概念和函数的两种表示方法――解析法和图象法(建立在一次函数和二次函数基础上).进入高中之后,又学习了函数的定义.本节课在此基础上
进一步学习函数的三种表示法.鉴于学生的应用能力不强,缺乏从生活实际抽象出数学问题的意识,在教学中以日常生活为背景抽象出函数的三种表示法,并应用于生活实际,将实际生活中的函数表示法互相转换,使问题具体化、数学化.。
人教版高中数学必修一教学案-函数及其表示方法
人教版高中数学必修一教学案年级:高二上课次数:学员姓名:辅导科目:数学学科教师:课题课型授课日期及时段函数及其表示方法□预习课□同步课■复习课□习题课教学内容函数及其表示方法【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。
2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a<x<b}=(a,b);{x|a≤x≤b}=[a,b];{x|a<x≤b}=(a,b];{x|a≤x<b}=[a,b);{x|x≤b}=(-∞,b];{x|a≤x}=[a,+∞).要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a 叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。
高中数学函数的表示法(一)全册精品教案新人教A版必修
1.2.3 函数的表示法(一)(一)教学目标1.知识与技能(1)了解函数的三种 8868iu 示法的各自优点,掌握用三种不同形式表示函数.(2)提高在不同情境中用不同形式表示函数的能力.2.过程与方法通过示例的分析和求解,明确函数三种不同表示法的优点,从而培养学生恰当选用函数的表示形式表示函数的能力.3.情感、态度与价值观在恰当应用不同形式表示函数的过程,感受数与形结合的动态美,体会应用辨证思维的乐趣.(二)教学重点与难点重点:选用恰当形式表示函数;难点:体会函数三种表示形式的优点.(三)教学方法尝试指导与合作交流相结合,通过示例的探究,使学生感知“三种形式”的各自优点. 从而培养学生恰当选用不同形式表示不同情境下的函数的能力.(四)教学过程教学环节教学内容师生互动设计意图1.回顾函数的有关概念.2.函数的表示方法.师:函数的概念中的关键词是什么?解析式:用数学表达式表示两个变量之将新、旧知复习回顾间的对应关系.生:集合 A 中任何一个元素在 B 中都 识有机整引入课题 图象法:用图象表示两个变量之间的对应关系.有唯一元素与之对应.合师生:共同回顾函数三种表示形式.列表法:列出表格来表示两个变量之间的对应关系.例 1 某种笔记本的单价是 5 元, 师:同一函数用三种形式表示,它们买 x (x∈{1, 2, 3, 4, 5})个笔记本需 各自有何特点.要 y 元. 试用函数的三种表示法表示函 师生合作总结三种形式的特点即优数 y = f (x).点.解析:这个函数的定义域是数集 师:举例说明在我们的日常生活中用 通过范例{1,2,3,4,5}.三种形式表示的函数分析体会用解析法可将函数 y = f (x)表示 生:(1)年级日誌表——列表法;(2) 三种表示为工厂生产图——图象法;(3)银行利 法的优点,示例剖析y = 5x, x∈{1, 2, 3, 4, 5}. 率表——列表法;(4)医务室的各年 感知不是用列表法可将函数 y = f (x)表示 级身高统计图——不是图象法.所有函数为一元一次函数 图象—图象法均能用三笔记本数一元二次函数 解析式—解析法种形式表x1 2 3 4 5 反比例函数示.钱数 y 5 10 15 20 25 师:是否所有函数均能用三种方法表用图象法可将函数 y = f (x)表示 示呢?自示例 2为下图.生:例 2 不方便使用解析法表示.例 2 解析:从表中可以知道每 位同学在每次测试中的成绩,但不 太容易分析每位同学的成绩变化情 况. 如果将“成绩”与“测试序号” 之间的关系用函数图象表示出来, 如下图,那么就能比较直观地看到 成绩变化的情况. 这对我们的分析 很有帮助.知识总结:①解析法的优点:(1)简明,全面地概括了变量间的关系;(2)通过解析式能求出任意一个自变量的值所对应的函数值.②图象法的优点:直观形象地表示 从上图我们看到,王伟同学的数学学自变量的变化,相应的函数值变化的趋 习成绩始终高于班级平均水平,学习势,有利于通过图象来研究函数的某些 情况比较稳定而且成绩优秀. 张城性质.同学的数学成绩不稳定,总是在班级③列表法的优点:不需计算便可以 平均水平上下波动,而且波动幅度较直接看出自变量的值相对应的函数 大. 赵磊同学的数学学习成绩低于值.班级平均水平,但他的成绩曲线呈上例 2 下表是某校高一(1)班三 升趋势,表明他的数学成绩在稳步提名同学在高一学年度六次数学测试的 高.成绩及班级平均分表.第第第第第第成绩测试 1 序号 次2 次3 次4 次5 次6 次师生合作总结三种方法的优点.王姓名 伟 98 87 91 92 88 95张 城 90 76 88 75 86 80赵 磊 68 65 73 72 75 82班级平均 88.2 78.3 85.4 80.3 75.7 82.6分请你对这三位同学在高一学年度的数学学习情况做一个分析.例 3 画出函数 y = |x|的图象.能力提升例 4 某中学高一年级学生李鹏, 师生合作、讨论、探究函数的图象法 (表示法的对某蔬菜基地的收益作了调查,该蔬菜 与解析法的互相转化途径,并能利用 转化及函基地种植西红柿,由历年市场行情得 图象求值域.数图象的知,从 2 月 1 日起的 300 天内,西红柿 例 3 解:由绝对值的概念,我们 应用) 培应用举例市场销售与上市时间的关系用图一的 一条折线表示;西红柿的种植成本与上有yx, x,x 0, x 0.养形与数 的转化能市时间的关系用图二的抛物线段表示, 所以,函数 y = |x|的图象如图 力和数形试解答下列问题.所示.结合思想应用意识.(注:市场售价和种植成本的单位:元/102kg,时间单位:天)(1)写出图一表示的市场售价间接函数关系 P = f (t). 写出图二表示 例 4 解:(1)由图一可得市场售的种植成本与时间的函数关系式 Q = g 价间接函数关系为,(t). (2)认定市场售价减去种植成本f(t)=300 2t t, 300,(0 t 200) (200 t 300)为纯收益,问何时上市的西红柿纯收益 由图二可得种植成本间接函数最大?关系式为g (t) = 1 (t – 150)2 + 100,200(0≤t≤300) (2)设 t 时刻的纯收益为 h (t),则由题意得: h (t) = f (t) – g (t).即 h (t) =1 200t21 2t175 2, (0t200) 1t2 2 t 1025 , (200 t 300) 200 7 2当 0 ≤ t ≤ 200 时 , 得 h (t)= 1 (t – 50)2 + 100.200∴当 t = 50 时,h(t)取得在 t ∈[0,200]上的最大值 100;当 200<t≤300 时,得 h (t)= 1 (t – 350)2 + 100.200∴当 t = 300 时,h (t)取得在t∈(200, 300]上的最大值 87.5.综上所述由 100>87.5 可知,h(t)在 t∈[0, 300]上可以取得最大值是 100,此时 t = 50,即从 2月 1 日开始的第 50 天时,上市的西红柿收益最大.映射的定义:设 A,B 是两个非空 师:讲授映射的定义.了解映射形成映射 的集合,如果按某一个确定的对应关系 生:由映射观点定义函数.的含义.的概念 f,使对于集合 A 中的任意一个元素 x, 师生合作解答例 5.通过例题在集合 B 中都有惟一确定的元素 y 与之 例 5 解析:(1)按照建立数轴的方 分析加深对应,那么就称对应 f:A→B 为从集合 法可知,数轴上的任意一个点,都有 映射概念A 到集合 B 的一个映射.惟一的实数与之对应,所以这个对应 的理解.例 5 以下给出的对应是不是从集 f:A→B 是从集合 A 到 B 的一个映射.合 A 到 B 的映射?(2)按照建立平面直角坐标系的(1)集合 A = {P | P 是数轴上的 方法可知,平面直角坐标系中的任意点},集合 B = R,对应关系 f:数轴上 一个点,都有惟一的一个实数对与之的点与它所代表的实数对应;对应,所以这个对应 f:A→B 是从集(2)集合 A = {P | P 是平面直角 合 A 到 B 的一个映射.坐标系中的点,集合 B = {(x | y) | x (3)由于每一个三角形只有一个∈R,y∈R},对应关系 f:平面直角坐 内切圆与之对应,所以这个对应 f:标系中的点与它的坐标对应;A→B 是从集合 A 到 B 的一个映射.(3)集合 A = {x | x 是三角形}, (4)新华中学的每一个班级里的集合 B = {x | x 是圆},对应关系 f: 学生都不止一个,即与一个班级对应每一个三角形都对应它的内切圆; 的学生不止一个,所以这个对应 f:(4)集合 A = {x | x 是新华中学 A→B 不是从集合 A 到 B 的一上映射.的班级},集合 B = {x | x 是新华中学的学生},对应关系 f:每一个班级都对应班里的学生.1.函数的表示法:解析式、图象归纳 总结法、列表法.反思总结2.解析式与图象法能进行相互转提升对函化.师生合作完成数表示的3.优点:解析式简明、全面、实 学生回顾总结,老师引导点评、阐述. 理解与掌用、图象法和列表法直观、直接、方便握函数与映射的关系:函数是实数集到实数集的特殊映射.课后作业1.2 第三课时习案学生独立完成巩固知识, 提升能力备选例题例 1 下图中可作为函数 y = f (x)的图象是( D )例 2 函数 y x | x | 的图象为下图中的( C ) x例 3 作出下列函数的图象:(1)y = |x – 1| + 2 |x – 2|;(2)y = |x2 – 4x + 3|.5 3x (x 1),【解析】(1)y = |x – 1| + 2 |x – 2| = 3 x (1 x 2),3x 5 (x 2).函数的图象如图(1)所示.(2)y=|x2–4x+3|= x 2 x 4x 3 2 4x 3(x 1, 或x 3), 图象如图(2)所示 (1 x 3).图(1)例 4 已知 y = f (x)的图象如右图所示,求 f (x).【解析】f(x)x 1, x,(x 0), (0 x 1).图(2)。
人教新课标高中数学B版必修一《2.1.2函数的表示方法》教学设计(表格式)
③掌握函数的一些基本表示法(列表法、图象法、解析法);
④会根据不同实际情境选择合适的方法表示函数,;
⑤树立应用数形结合的思想,了解简单的分段函数,并能简单应用,培养学生应用函数的图象解决问题的能力;
2.过程与方法目标:
①通过学习例一,学生从具体实例中总结三种表示法的优缺点,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。
本节内容蕴含了数形结合的方法,教学时应让学生体会函数三种表示法的优点。
根据本节内容的特点,教学过程中要注重培养观察、分析能力,让学生感受数学在日常生活中作用,养成学以致用的习惯.
二、教学目标
按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:
1.知识与技能目标:
①通过对问题情境的引入,引发学生学习和探索新知识的欲望,感受数学在实际生活中的运用;
6.布置作业
课本:P23练习1、2、3
设计意图:
1巩固所学的内容;
2对所学内容的检测,反馈及补充.
五、教学策略选择与信息技术设置问题情境一:问候语“你好”表达方式有哪些;
2.设置问题情境二:展示2018高考录取控制分数线、战狼收视率;
3.设置问题情境三:学习例1;
学生活动:学生回答问题,思考,总结旧知识
设计意图:为以后牛刀小试中练习题及接受新知识做好准备.
问题引入
师生活动:1.2018年河北省普通高校招生文史理工类录取控制分数线采用列表法给出
2.战狼收视率采用图象法
设计意图:函数表示法和我们息息相关,在日常生活中经常用到;通过战狼适时进行爱国教育.
2.新课讲解
③通过三种函数表示法优缺点的分析,培养学生认真分析、探索的学习态度;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:§1.2.2函数的表示法(一)
教学目的:(1)明确函数的三种表示方法;
(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;
(3)通过具体实例,了解简单的分段函数,并能简单应用;
(4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识.
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
教学过程:
一、引入课题
1.复习:函数的概念;
2.常用的函数表示法及各自的优点:
(1)解析法;
(2)图象法;
(3)列表法.
二、新课教学
(一)典型例题
例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .
分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.
解:(略)
注意:
○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;
○2解析法:必须注明函数的定义域;
○3图象法:是否连线;
○4列表法:选取的自变量要有代表性,应能反映定义域的特征.
巩固练习:
课本P27练习第1题
例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:
第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95
张城90 76 88 75 86 80
赵磊68 65 73 72 75 82
班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析.
分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?
解:(略)
注意:
○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变
化特点;
○
2 本例能否用解析法?为什么? 巩固练习:
课本P 27练习第2题
例3.画出函数y = | x | .
解:(略)
巩固练习:课本P 27练习第3题
拓展练习:
任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系.
课本P 27练习第3题
例4.某市“招手即停”公共汽车的票价按下列规则制定:
(1)5公里以内(含5公里),票价2元;
(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
分析:本例是一个实际问题,有具体的实际意义.该公共汽车招手就停,所以行车里程可以不取整数.
解:设票价为y 元,里程为x 公里,同根据题意,自变量x 的取值范围是(0,20]. 由“招手即停”公共汽车票价制定的规则,可得到以下函数解析式:
⎪⎪⎩⎪⎪⎨⎧=54
32y
20
151********≤<≤<≤<≤<x x x x 根据这个函数解析式,可画出函数图象,图略。
注意:
○
1 本例具有实际背景,所以解题时应考虑其实际意义; ○
2 本题可否用列表法表示函数,如果可以,应怎样列表? 实践与拓展:
请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)
说明:象上面两例中的函数,称为分段函数.
注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
三、归纳小结,强化思想
理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.
四、作业布置
课题:§1.2.2函数的表示法(二)
教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;
(2)结合简单的对应图示,了解一一映射的概念.
教学重点:映射的概念.
教学难点:映射的概念.
教学过程:
一、引入课题
复习初中已经遇到过的对应:
1.对于任何一个实数a,数轴上都有唯一的点P和它对应;
2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;
3.对于任意一个三角形,都有唯一确定的面积和它对应;
4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;
5.函数的概念.
二、新课教学
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”
弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)(板书课题).
2.先看几个例子,两个集合A、B的元素之间的一些对应关系
(1)开平方;
(2)求正弦
(3)求平方;
(4)乘以2;
3.什么叫做映射?
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射(mapping).
记作“f:A→B”
说明:
(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.
(2)“都有唯一”什么意思?
包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
4.例题分析:下列哪些对应是从集合A到集合B的映射?
(1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;
(3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)A={x | x是新华中学的班级},B={x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
思考:
将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f:B→A是从集合B到集合A的映射吗?5.完成课本练习
三、作业布置
补充习题。