三角形、四边形中的动点问题

合集下载

三角形、四边形中动点问题

三角形、四边形中动点问题

§1. 三角形、四边形中的动点问题【解题思路与方法】1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;2.化动为静 (由一般到特殊),以静制动;3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);5.注重分类讨论,通过分别画图与分离图形使问题简单化;6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).◆典例解析一、三角形中的动点问题例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),(1)如图1,当t 为何值时,△PBC 是直角三角形?(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?BCPA QDBCPAQDBCPA已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。

例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?如图(1)△ABC 为等边三角形,动点D 在边CA 上,动点P 边BC 上,若这两点分别从C 、B 点同时出发,以相同的速度由C 向A 和由B 向C 运动,连接AP ,BD 交于点Q ,两点运动过程中AP=BD 。

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。

过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。

1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。

2) 四边形MNQP的面积为S,运动时间为t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。

函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。

动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。

设运动的时间为t 秒。

1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。

3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。

3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。

动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。

中考几何-动态试题解法(解析版)

中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。

3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。

4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。

二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。

3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。

4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。

三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。

四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)四边形中的动点问题1、如图,把矩形ABCD沿 EF翻折,点B恰好落在AD边的B'处,若AE= 2, DE= 6,Z EFB= 60°, 则矩形ABCD勺面积是 _____________________2、如图,在四边形ABCD中对角线ACL BD 垂足为0,点E, F, G, H分别为边AD AB, BC CD 的中点•若AC= 8, BD= 6,则四边形EFGH的面积为3、如图,正方形ABCD勺边长为4,点P在DC 边上,且DP= 1,点Q是AC上一动点,则D® PQ 的最小值为 _____________________4、如图,在Rt△ ABC中,/ B= 90°,AC= 60 cm Z A= 60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D, E 运动的时间是t s(0 < t < 15) •过点D作DF 丄BC于点F,连接DE EF.(1)求证:AE= DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△ DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm射线AG// BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF当EF经过AC边的中点D时,(1)求证:△ ADE^A CDF:6、在菱形ABCD中,/ B=60°,点E在射线BC上运动,/ EAF=60,点F在射线CD上(1)当点E在线段BC上时(如图1)( 1)求证:EC+CF=A; (2) 当点E在BC的延长线上时(如图2),线段EC CFAB有怎样的相等关系?写出你的猜想,不需证明图1 027、如图,在菱形ABC[中, AB=2 / DAB=60 , 点E 是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N 连接MD AN(1)求证:四边形AMDI是平行四边形;(2)填空:①当AM的值为时,四边形AMD是矩形;②当AM的值为时,四边形AMD是菱形.D8 如图,△ ABC中,点0是边AC上一个动点,过0作直线MN BC 设MN交/ BCA的平分线于点E, 交/ BCA 的外角平分线于点F.(1)探究:线段0E与OF的数量关系并加以证明;(2)当点0运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形?(3)当点0在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABC[中, / ABC=60 , AB=8 过线段BD上的一个动点P (不与B、D重合)分别向直线AB AD作垂线,垂足分别为E、F.(1)BD的长是______ ;(2)连接PC当PE+PF+P(取得最小值时,此时PB的长是_______10、如图,/ MON=9°,矩形ABCD勺顶点A B 分别在边OM ON上,当B在边ON上运动时,A随之在OMk运动,矩形ABCD勺形状保持不变,其中AB=2 BC=1运动过程中,点D到点O的最大距离为 __________________ .11、如图,已知矩形ABCD AD=4 CD=10 P是AB上一动点,M N E分别是PD PC CD的中点.(1)求证:四边形PMEI是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEf有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm AC=16cm AC BD相交于点0,若E, F 是AC上两动点,分别从A, C两点以相同的速度向C、A 运动,其速度为0.5cm/s。

初中数学动点问题大全

初中数学动点问题大全

初中数学动点问题大全动点问题一直是中考热点题型,近几年考察探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数值、线段或面积的最值问题等,下面就此问题的常见题型作简单介绍。

题型一动点形成的面积问题1.面积公式:三角形面积用12S ah =来表示,利用未知数的代数式来表示底和高。

2.面积比等于相似比的平方:面积无法用底和高表示时,利用相似三角形的面积比等于相似比的平方来求解,只需要知道相似比和另一个三角形面积即可表示。

3.相似三角形:当面积公式和面积比等于相似比的平方不能有效解题时,利用相似三角形的比例关系求解。

角度1:利用公式法解决动点面积问题例题1:在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点30A (,)和23B (,).过点A 的直线与y 轴的负半轴相交于点C ,且1tan 3CAO ∠=.(1)求这条抛物线的表达式及对称轴;(2)连接AB 、BC ,求ABC ∠的正切值;(3)若点D 在x 轴下方的对称轴上,当ABC ADC S S ∆∆=时,求点D 的坐标.变式1:如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线O 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且//AB x 轴,//AC y 轴.(1)当点P 横坐标为6,求直线AO 的表达式;(2)联结BO ,当AB BO =时,求点A 坐标;(3)联结BP 、CP ,试猜想:ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP ACP S S ∆∆的值;如果变化,请说明理由.O x y (备用图)O xy解析:(1)∵反比例函数12y x=的图像经过横坐标为6的点P ,∴点P 的坐标为(6,2).设直线AO 的表达式为y kx =(0k ≠).将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,得4x =.∴B 坐标为(4,3).∵AB =BO ,∴224(40)(30)a -=-+-9a =.∴点A 坐标为(9,3).(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.∵点C 坐标为(a ,12a ).∴6CEO S ∆=,同理6BDO S ∆=,∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.同理ACP ACO S AP S AO ∆∆=.∴1ABP ACP S S ∆∆=.即当a 变化时,ABP ACPS S ∆∆的值不变,且恒为1变式2:如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作//PM BC 交射线AC 于点M ,联结CP ,若CPM ∆的面积为2,则请求出点P 的坐标;解析:(1)设这条抛物线的解析式为2(0)y ax bx c a =++≠它的顶点坐标为16(1,)3(2)过点P 作PH AC ⊥,垂足为H .∵P 点在x 轴的正半轴上,∴设0P x (,).∵A )0,1(-,∴1PA x =+.∵在Rt AOC ∆中,222OA OC AC +=;又∵14OA OC ==,∴17AC =90sin 117PH PH PHA CAO AP x ∠=︒∴∠===+ 17PH =//BP CM PM BC AB AC ∴= ;300B P x (,),(,)1点P 在点B 的左侧时,3BP x =-,∴3417x -=17(3)4x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)12217x -=解得110x .P =∴(,)2点P 在点B 的右侧时,3BP x =-,∴3417x -=17(3)x CM -=∵2PCM S =△∴122CM PH ⋅⋅=,∴17(3)122417x -=解得11x =+,21x =-(不合题意,舍去)∴P(1+0).综上所述,P 的坐标为(1,0)或(1+0)角度2:利用面积比等于相似比的平方解决动点面积问题例题2:如图,已知在梯形ABCD 中,//AD BC ,5AB DC ==,4AD =.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且//ME DN ,//MF AN ,联结EF .(1)如图1,如果//EF BC ,求EF 的长;(2)如果四边形MENF 的面积是ADN ∆的面积的38,求AM 的长;解析:(1)∵AD //BC ,EF //BC ,∴EF //A D .又∵ME //DN ,∴四边形EF DM 是平行四边形.∴EF =DM .同理可证,EF =AM .∴AM =DM .∵AD =4,∴122EF AM AD ===.(2)∵38ADN MENF S S ∆=四边形,∴58AME DMF ADN S S S ∆∆∆+=.即得58AME DMF ADN ADN S S S S ∆∆∆∆+=.∵ME //DN ,∴△AME ∽△AN D .∴22AME ADN S AM S AD∆∆=.同理可证,△DM F ∽△DN A .即得22DMF ADN S DM S AD ∆∆=.设AM =x ,则4DM AD AM x =-=-.∴22(4)516168x x -+=.即得2430x x -+=.解得11x =,23x =.∴AM 的长为1或3.A B CD M N EF (图1)AB C D M N E F变式3:已知直线1l 、2l ,12//l l ,点A 是1l 上的点,B 、C 是2l 上的点,AC BC ⊥,60ABC ∠=︒,4AB =,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合.(1)如图1,当点'D 落在直线1l 上时,求DB 的长;(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .①如图2,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;②若DON ∆的面积为323时,求AE 的长.解析:变式4:如图1,在梯形ABCD 中,//AD BC ,对角线BC AC ⊥,4AD =cm ,︒=∠45D ,3=BC cm .(1)求B ∠cos 的值;(2)点E 为BC 延长线上的动点,点F 在线段CD 上(点F 与点C 不重合),且满足ADE AFC ∠=∠,如图2,设x BE =,y DF =,求y 关于x 的函数解析式,并写出函数的定义域;(3)点E 为射线BC 上的动点,点F 在射线CD 上,仍然满足ADE AFC ∠=∠,当AFD ∆的面积为2cm 2时,求BE 的长.解析:(1)∵//AD BC ,∴ACB DAC ∠=∠.∵AC BC ⊥,∴90ACB ∠=︒.∴90DAC ∠=︒.∵45D ∠=︒,∴45ACD ∠=︒.∴AD AC =.∵4AD =,∴4AC =.∵3=BC ,∴5AB ==.∴3cos 5BC B AB ∠==.(2)∵//AD BC ,∴ADF DCE ∠=∠.∵AFC FDA FAD ∠=∠+∠,ADE FDA EDC ∠=∠+∠,又AFC ADE ∠=∠,∴FAD EDC ∠=∠.∴ADF DCE ∆~∆.∴AD DF DC CE =.在Rt ADC ∆中,222AC AD DC +=,又4==AC AD ,∴24=DC .∵x BE =,∴3-=x CE .y DF =,∴3244-=x y .22322-=x y .定义域为113<<x .(3)当点E 在BC 的延长线上,由(2)可得:ADF DCE ∆~∆,∴2(DC AD S S DCE ADF =∆∆.∵2AFD S ∆=,4=AD ,24=DC ,∴4=∆DCE S .∵AC CE S DCE ⨯⨯=∆21,∴44)3(21=⨯-⨯BE ,∴5BE =.当点E 在线段BC 上,同理可得:44)3(21=⨯-⨯BE .∴1BE =.所以BE 的长为5或1.角度3:利用锐角三角比法解决动点面积问题例题3:已知在平面直角坐标系xoy (如图)中,抛物线212y x bx c =++经过点(4,0)A 、点(0,4)C -,点B 与点A 关于这条抛物线的对称轴对称;(1)用配方法求这条抛物线的顶点坐标;(2)联结AC 、BC ,求ACB ∠的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为(0)m m >,过点P 作y 轴的垂线PQ ,垂足为Q ,如果QPO BCO ∠=∠,求m 的值;解析:变式5:已知在平面直角坐标系xoy 中,抛物线2(0)y ax bx c a =++>与x 轴相交于(1,0),(3,0)A B -两点,对称轴l 与x 轴相交于点C ,顶点为点D ,且ADC ∠的正切值为12.(1)求顶点D 的坐标;(2)求抛物线的表达式;(3)F 点是抛物线上的一点,且位于第一象限,联结AF ,若FAC ADC ∠=∠,求F 点的坐标.解析:(1)∵抛物线与x 轴相交于()1,0A -,()3,0B 两点,∴对称轴l :直线1x =,2AC =∵90ACD ∠=︒,1tan 2ADC ∠=,∴4CD =,∵0a >,∴()1,4D -(2)设()214y a x =--将1,0x y =-=代入上式,得,1a =所以,这条抛物线的表达为223y x x =--(3)过点F 作FH x ⊥轴,垂足为点H设()2,23F x x x --,∵FAC ADC ∠=∠,∴tan tan FAC ADC ∠=∠,∵1tan 2ADC ∠=,∴1tan 2FH FAC AH ∠==∵223FH x x =--,1AH x =+,∴223112x x x --=+解得172x =,21x =-(舍),∴79,24F ⎛⎫ ⎪⎝⎭巩固1:如图,在直角坐标系xOy 中,抛物线c ax ax y +-=22与x 轴的正半轴相交于点A 、与y 轴的正半轴相交于点B ,它的对称轴与x 轴相交于点C ,且OBC OAB ∠=∠,3AC =.(1)求此抛物线的表达式;(2)如果点D 在此抛物线上,DF OA ⊥,垂足为F ,DF 与线段AB 相交于点G ,且2:3:=∆∆AFG ADG S S ,求点D 的坐标.解析:(1)∵抛物线c ax ax y +-=22的对称轴为直线12=--=a a x ,∴OC =1,OA =OC +AC =4,∴点A (4,0).∵∠OBC =∠OAB ,∴tan ∠OAB =tan ∠OBC ,∴OBOC OA OB =,∴OB OB 14=,∴OB =2,∴点B (0,2),∴⎩⎨⎧+-==,8160,2c a a c ∴⎪⎩⎪⎨⎧=-=.2,41c a ∴此抛物线的表达式为221412++-=x x y .(2)由2:3:=∆∆AFG ADG S S 得DG :FG =3:2,DF :FG =5:2,设m OF =,得m AF -=4,221412++-=m m DF ,由FG //OB ,得OA AF OB FG =,∴24m FG -=,∴2:524:)22141(2=-++-m m m ,∴01272=+-m m ,∴4,321==m m (不符合题意,舍去),∴点D 的坐标是(3,45)巩固2:如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD DAF ∆∆∽;(2)若1BC =,设CD x =,AF y =;①求y 关于x 的函数解析式及定义域;②当x 为何值时,79BEF BCD S S ∆∆=?(1)证明:∵ABC ∆与BDE ∆都是等边三角形,∴60A C BDE ∠=∠=∠=︒A C BO yx∵ADF BDE C DBC ∠+∠=∠+∠,∴ADF DBC ∠=∠,∴BCD ∆∽DAF∆(2)∵BCD ∆∽DAF ∆,∴BC CD AD AF=∵1BC =,设CD x =,AF y =,∴11x x y=-,∴()201y x x x =-<<(3)解法一:∵ABC ∆与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∴BE BF BC BD=,∵BE BD =,1BC =,∴2BE BF =∵EBF ∆∽CBD ∆,79BEF BCD S S ∆∆=,∴2279BEF BCD S BE S BC ∆∆==,∴279BE BF ==,∴29AF =∴229x x -=,解得1221,33x x ==,∴当13x =或23时,79BEF BCD S S ∆∆=解法二:∵△ABC 与BDE ∆都是等边三角形,∴60E C ∠=∠=︒,60EBD CBA ∠=∠=︒,∴EBF CBD∠=∠∴EBF ∆∽CBD ∆,∵79BEF BCD S S ∆∆=,∴2279BEF BCDS BE S BC ∆∆==∵1BC =,BE BD =,∴279BD =过点B 作BH AC ⊥于点H ,∵60C ∠=︒,∴BH =16DH =,12CH =当点D 在线段CH 上时,111263CD CH DH =-=-=当点D 在线段CH 的延长线上时,112263CD CH DH =+=+=综上所述,当13x =或23时,79BEF BCD S S ∆∆=.巩固3:在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上一动点,将三角板直角顶点重合于点P ,三角板两直角边中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断EAP ∆与PDC ∆一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是EAP ∆周长等于PDC ∆周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.解析:(1)△EAP ∽△PDC①当P 在AD 边上时,如图(1):∵矩形ABCD ,==90D A ∠∠ ,∴1+2=90∠∠据题意=90CPE ∠ ∴3+2=90∠∠ ,∴1=3∠∠,∴△EAP ∽△PDC②当P 在AD 边上时,如图(2):同理可得△EAP ∽△PDC(2)若点P 在边AD 上,据题意:PD x =6PA x =-4DC =AE y =又∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴22613442x x y x x -==-+()06x <<若点P 在边DA 延长线上时,据题意PD x =,则6PA x =-,4DC =,AE y =,∵△EAP ∽△PDC ,∴AE PA PD DC =,∴64y x x -=,∴()2664x x y x -=>(3)假如存在这样的点P ,使△EAP 周长等于PDC ∆的2倍①若点P 在边AD 上∵△EAP ∽△PDC ∴():6:4EAP PDC C C x =- ,∴()6:42x -=,∴2x =-不合题意舍去;②若点P 在边DA 延长线上,同理得()6:42x -=,∴14x =综上所述:存在这样的点P 满足题意,此时14PD =巩固4:如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.解析:(1)∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C ∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴这个抛物线的解析式为:2142y x x =--顶点为9(1,)2-(2)如图:取OA 的中点,记为点N ∵OA =OC =4,∠AOC =90°∴∠ACB =45°∵点N 是OA 的中点∴ON =2又∵OB =2∴OB =ON又∵∠BON =90°∴∠ONB =45°∴∠ACB =∠ONB∵∠OMB +∠OAB =∠ACB ∠NBA +∠OAB =∠ONB ∴∠OMB =∠NBA1°当点M 在点N 的上方时,记为M 1∵∠BAN =∠M 1AB ,∠NBA =∠OM 1B ,∴△ABN ∽△AM 1B ∴1AN AB AB AM =又∵AN =2,AB =∴110AM =又∵A (0,—4)∴1(0,6)M 2°当点M 在点N 的下方时,记为M 2,点M 1与点M 2关于x 轴对称,∴2(0,6)M -综上所述,点M 的坐标为(0,6)或(0,6)-题型二动点形成的相切问题1.直线和圆相切:圆心到直线距离等于半径构造直角三角形,利用三角比、勾股定理等来表示圆心到直线距离及半径,建立等量关系2.圆和圆相切:两圆半径和等于圆心距.利用平行线分线段成比例、勾股定理、三角比、相似等表示相关线段,建立等量关系角度4:直线与圆相切问题例题4:如图,在ABC ∆中,10,12,AB AC BC ===点E F 、分别在边BC AC 、上(点F 不与点A 、C 重合)//EF AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设FC x =.(1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE DF 、分别交AB 于M 、N ,若MN y =,求y 关于x 的函数关系式并写出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的E 与边AC 1没有公共点时,求x 的取值范围.2一个公共点时,求x 的取值范围.3两个公共点时,求x 的取值范围.AE CB FA B D GC EF变式6:已知:矩形ABCD 中,过点B 作BG ⊥AC 交AC 于点E ,分别交射线AD 于F 点、交射线CD 于G 点,BC =6.(1)当点F 为AD 中点时,求AB 的长;(2)联结AG ,设AFG AB x S y ∆==,,求y 关于x 的函数关系式及自变量x 的取值范围;(3)是否存在x 的值,使以D 为圆心的圆与BC 、BG 都相切?若存在,求出x 的值;若不存在,请说明理由.解析:(1)∵点F 为AD 中点,且AD =BC =6,∴AF =3∵矩形ABCD 中,∠ABC =90°,BG ⊥AC 于点E ,∴∠ABE +∠EBC =90°,∠AC ∠EBC =90°∴∠ABE =∠ACB ,∴△ABF ∽△BCF ,∴AB AF BC AB =∴AB =23(2)由(1)可得△ABF ∽△BCF ∴AB AF BC AB =∵AB =x ,BC =6∴AF =62x ;同理可得:CG =x36①当F 点在线段AD 上时DG =CG -CD =x x x x 23636-=-∴S ⊿AFG =1236213x x CG AF -=⋅。

四边形中的动点问题(带答案)

四边形中的动点问题(带答案)

四边形中的动点问题1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠ EFB =2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 _____3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ +PQ 的最小值为___________4、如图,在Rt△ABC中,∠ B=90°,AC=60cm,∠A=60°,点 D 从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点 A 出发沿AB 方向以2cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t ≤15).过点 D 作DF⊥ BC于点F,连接DE,EF.(1) 求证:AE=DF;(2) 四边形AEFD能够成为菱形吗如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,△ DEF为直角三角形请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点 A 出发沿射线AG以1cm/s 的速度运动,同时点 F 从点 B 出发沿射线BC以2cm/s 的速度运动,设运动时间为t.(1)连接EF,当EF经过AC边的中点 D 时,(1)求证:△ ADE≌△ CDF;:(2)当t 为____ s 时,四边形ACFE是菱形;6、在菱形ABCD中,∠ B=60°,点E在射线BC上运动,∠ EAF=60°,点 F 在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点 E 在BC的延长线上时(如图2),线段EC、CF、AB 有怎样的相等关系写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠ DAB=60°,点E是AD边的中点.点M 是AB边上一动点不与点 A 重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为____ 时,四边形AMDN 是矩形;②当AM 的值为____ 时,四边形AMDN 是菱形.8、如图,△ ABC中,点O 是边AC上一个动点,过O 作直线MN ∥BC,设MN 交∠ BCA的平分线于点E,交∠ BCA 的外角平分线于点F.(1)探究:线段OE与OF 的数量关系并加以证明;(2)当点O 运动到何处,且△ ABC满足什么条件时,四边形AECF是正方形(3)当点O 在边AC上运动时,四边形BCFE会是菱形吗若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D 重合)分别向直线AB、AD 作垂线,垂足分别为E、F.(1)BD的长是___ ;(2)连接PC,当PE+PF+PC取得最小值时,此时PB 的长是__10、如图,∠ MON=90°,矩形ABCD的顶点A、B分别在边OM,ON 上,当B在边ON 上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为_____ .11、如图,已知矩形ABCD,AD=4,CD=10,P 是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN 是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN 是菱形;(3)四边形PMEN有可能是矩形吗若有可能,求出AP 的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A 运动,其速度为/s。

中考数学论文动点问题论文:例谈中考数学中的动点问题

中考数学论文动点问题论文:例谈中考数学中的动点问题[摘要]本文将以由动点产生的三角形、四边形、圆等几何图形的问题为例,剖析此类问题,让考生有所借鉴,使解决这类问题水到渠成。

[关键词]中考数学动点问题压轴题在中考数学中,最让学生发怵的无疑是被大家称为压轴题的最后一题,而所谓的考试成绩区分度很大程度上取决于最后的压轴题。

纵观各省市多年来的中考压轴题,无不都体现着数形结合的思想,其中函数图像中的动点问题占据着非常重要的一席之地。

这部分的压轴题的主要特征是先求函数的解析式,然后在函数的图像上探求几何条件的点。

本文将以由动点产生的三角形、四边形、圆等几何图形的问题为例,剖析此类问题,让考生有所借鉴,使解决这类问题水到渠成。

一、由动点产生的三角形问题例1 (2010重庆綦江县)已知抛物线y=ax2+bx+c(a>0)的图象经过点b(12,0)和c(0,-6),对称轴为x=2.(1)求该抛物线的解析式;(2)点d在线段ab上且ad=ac,若动点p从a出发沿线段ab以每秒1个单位长度的速度匀速运动,同时另一动点q以某一速度从c出发沿线段cb匀速运动,问是否存在某一时刻,使线段pq被直线cd垂直平分?若存在,请求出此时的时间t(秒)和点q的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x=1上是否存在点m时,△mpq为等腰三角形?若存在,请求出所有点m的坐标,若不存在,请说明理由。

【思维点拨】1.第一问是典型的已知两点求二次图像的问题,直接运用待定系数法,将两点的坐标代入即可求得抛物线的解析式。

对于本题而言,考生亦可采取通过图像的对称性表示抛物线的解析式,进而将两点的坐标代入求得结果。

2.第二、三问为典型的点的存在性问题,所需满足的几何条件分别为:线段垂直平分以及构成等腰三角形。

解决此类问题,一般假设结论成立即存在满足条件的点,以此作为前提进行推导,所得点即为所求;若推导所得不合题意则假设不成立,即满足条件的点不存在。

初中数学重点模型14 动点在四边形中的分类讨论(基础)

专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。

动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。

四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。

一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。

而2t也就是这个点所运动的线段长。

进而能表示其他相关线段的长度。

所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。

3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。

4、难点是找等量关系这种题的难点是找到等量关系。

这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。

5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。

【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。

初中数学动点问题的分类和解题思路探究

2023年3月下半月㊀解法探究㊀㊀㊀㊀初中数学动点问题的分类和解题思路探究◉江苏省扬州大学㊀秦海燕㊀㊀摘要:动点问题因涉及的知识点较多,题目类型复杂,综合性较强,解题规律不易寻找,成为了初中数学的重点和难点问题.本文中针对动点问题涉及的知识点以及主要的解题方法进行阐述,具体介绍了三种动点问题类型,详细讲解了运用二次函数的性质分析解答㊁借助熟悉的图形进行求解㊁通过作图的方式寻找特殊位置求解的三种解题方法,同时结合例题进行分析说明.关键词:动点问题;初中数学;数形结合;解题方法1引言动点问题是初中数学中的一类常见题型,综合性较强,是初中数学中的重点和难点问题.动点问题涉及的知识点广泛,包括较为简单的数轴问题,以及有一定难度的求几何线段的长度㊁几何图形的存在性㊁面积的最值㊁函数的综合类题型等.因此,有不少学生对其产生畏惧和逃避心理.动点问题的难点在于寻找未知量与已知量之间的联系,涉及到分类讨论㊁函数㊁数形结合等数学思想.因此,需要厘清知识脉络,了解知识点之间的联系,实现熟练掌握并能够优化动点问题解题思路的目的.2动点问题涉及的主要知识点(1)两点之间线段最短㊁垂线段最短;(2)数轴㊁绝对值;(3)特殊三角形性质㊁相似三角形的性质;(4)特殊四边形性质,如平行四边形㊁菱形㊁正方形㊁长方形㊁梯形等判定定理和性质定理,圆的性质;(5)二次函数的性质.3动点问题常见基础模型图1模型一:如图1所示,直线l 的两侧分别有A ,B 两点,在直线l 上找一点P ,使得P A +P B 的值最小.针对这个模型,可直接连接A ,B 两点,此时线段A B 与直线l 必定相交于一点,这个点正是我们要找的点P [1].图2模型二:如图2所示,直线l 的同侧分别有A ,B 两点,在直线l 上找一点P ,使得P A -P B 的值最大.在这个模型中,直接连接A ,B 两点,将线段A B 延长与直线l 的交点,就是所求的点P [1].图3模型三:如图3所示,直线l 的同侧分别有A ,B 两点,在直线l 上找一点P ,使得P A +P B 的值最小.这个模型是最常见的一类,需要作点A (或者点B )关于直线l 的对称点,将同侧转化为异侧,即转化为模型一,利用两点之间线段最短进行求解.图4模型四:如图4所示,点P 是øA O B 内部的一点,M ,N 分别是边O A ,O B 上的动点,求由P ,M ,N 三点构成的әP MN 的周长最小值.针对这个模型,分别作点P 关于边O A ,O B 的对称点P ᶄ,P ᵡ,连接P ᶄP ᵡ,则P ᶄP ᵡ与边O A ,O B 的交点就是所求的M ,N ,此时әP MN 的周长最小.以上四种模型是动点问题中最基础㊁最重要的模型,在不同的题目中即使是再多几个动点,其本质都是相通的,即两点之间线段最短㊁三角形三边关系定理㊁轴对称等这些几何知识的综合.4几种常见的动点问题类型4.1点在多边形上运动初中数学中的特殊几何图形有等腰三角形㊁等边三角形㊁直角三角形㊁平行四边形㊁菱形㊁矩形等,当动点问题以这些几何图形为载体时,题目的难度将会上升.这时就要综合分析题目中变量与不变量,求出运动变量与已知量之间的函数关系,用变化的眼光对问题进行深入分析,探求动点在某一位置时是否可以形成某一特殊图形,从而进行解答.4.2点在圆上运动在初中数学中,圆的知识也是很重要的一部分.由18Copyright ©博看网. All Rights Reserved.解法探究2023年3月下半月㊀㊀㊀于圆的特殊性,当动点在圆上或圆内运动时,会涉及到求最大(小)值的问题.(1)求圆上一点P 到圆内(外)一点A 距离的最大(小)值.设圆心到点A 的距离为d .当点A 在圆的内部时,P Am a x=r +d ,P A m i n =r -d ;当点A 在圆的外部时,P A m a x =r +d ,P A m i n =d -r .(2)求圆上一点A 到圆的相离直线的距离D 的最大(小)值.过圆心作相离直线的垂线与圆相交于两点.设圆心到直线的距离为d ,则D m a x =d +r ,D m i n =d -r .以上两类是圆中求最值问题最常见的类型,涉及的知识点主要是 三角形三边关系定理 .很多关于圆定点动的题目设计都是以这两个模型为基础,因此需要牢固掌握.4.3点在函数图象上运动初中阶段主要学习了一次函数㊁二次函数㊁反比例函数,对应的函数图象分别是直线㊁抛物线㊁双曲线.在中考压轴题中经常出现函数类综合题,主要类型有:点在抛物线上运动,求线段㊁三角形面积的最值;函数图象上是否存在一点,使该点与其他点能够形成直角三角形㊁菱形㊁正方形等特殊图形;寻找函数图象上某一动点,能够与其他已知点形成的三角形与已知三角形全等或相似[2].5几种常见的解题策略5.1运用二次函数的性质分析解答二次函数是初中阶段最重要的函数之一,利用二次函数的性质求解最值问题应用广泛.遇到动点问题中求最值时,可以根据题干的问题情境设出相关参数,结合相似三角形的性质㊁线段的比例关系㊁勾股定理等知识,建立二次函数关系,利用二次函数的性质求出最值.在求解过程中一定要关注自变量的取值范围[3].图5例1㊀如图5所示,抛物线y =-12x 2+mx +n 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D .已知A (-1,0),C (0,2),E 是线段B C上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形C D B F 的面积最大时,点E 的坐标为.解析:四边形C D B F 的面积等于әC D B 的面积与әB C F 的面积之和,因为әC D B 的面积为定值,所以当四边形C D B F 的面积最大时,即әB C F 的面积最大.设出点E 的坐标,用点E 的坐标表示出әB C F 的面积,进而求出әB C F 面积最大时点E 的坐标.图6在解题过程中需要作出辅助线,如图6,过点E 作E G 垂直x 轴于点G ,交抛物线于点F ,连接C F ,B F .由题意可得抛物线解析式为y =-12x 2+32x +2,直线B C 的解析式为y =-12x +2.由点E 在线段B C 上,设其坐标为(x ,-12x +2)(0<x <3),则点F 的坐标设为(x ,-12x 2+32x +2),求得E F =-12x 2+32x +2-(-12x +2)=-12x 2+2x .由铅垂法,得S әB C F =12F E O B =-12(x -2)2+2.由二次函数的性质可知E 的坐标为(2,1)时,әB C F 面积最大,即四边形C D B F 的面积最大.此题将四边形分割为两个三角形,将求四边形面积最大值转化为求三角形面积最大值.通过设出点的坐标,结合图形将三角形的面积表示出来,利用二次函数的性质,得出最终答案.5.2利用熟悉的图形进行求解几何题目中的动点问题,要根据题目的条件,将动态问题转化为静态知识,即画出动点在某个特殊位置时对应的几何图形,将动态过程反应在所画的图形中,然后进行细致分析,进而发现解题的关键要素.图7例2㊀如图7所示,在矩形O AH C 中,O C =8,O A =12,B 为边C H 中点,连接A B .动点M 从点O 出发沿O A 边向点A 运动,动点N 从点A 出发沿A B 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接C M ,C N ,MN .设运动时间为t s (0<t <10).则t =时,әC MN 为直角三角形.解析:әC MN 是直角三角形时,有三种情况,一是øC MN =90ʎ,二是øMN C =90ʎ,三是øM C N =90ʎ.然后进行分类讨论求出t 的值.图8如图8所示,过点N 作O A 的垂线,交O A 于点F ,交C H 于点E .可以证明әB E N ʐәB H A ,从而有B N A B =E NAH,即28Copyright ©博看网. All Rights Reserved.2023年3月下半月㊀解法探究㊀㊀㊀㊀10-t 10=E N 8,可得E N =4(10-t )5,进而F N =45t .题目要求әC MN 是直角三角形,并没有说明哪个角是直角,因此需要进行分类讨论.①当øC MN =90ʎ时,根据勾股定理可求得A F =35t ,从而得到M F =12-85t .通过证明әC O M ʐәM F N ,所以O C M F =O M F N ,带入即可求出t =72.②当øMN C =90ʎ时,通过证明øMN F =øE C N ,可得әC E N ʐәN F M ,所以C E F N =E NM F ,代入求得t =41ʃ2414.根据题目中t 的取值范围为0<t <10,所以t =41-2414.③当øM C N =90ʎ时,与题目条件不符,因此不存在.此题通过对图形进行分析,利用勾股定理以及相似三角形的性质求解.动点在运动过程中会因为位置不同而呈现出不同的图形,因此要分情况进行讨论,在每一段运动过程中,分析总结出不同的线段数量关系,进而求解答案.5.3在题目中寻找特殊位置在一些题目中,动点在运动的过程中会在某一位置形成特殊图形,从而能建立特殊的数量关系,如相似㊁勾股定理等.因此可以把特殊问题一般化,复杂问题简单化,动静结合,寻找出内在联系,进而求解题目.另外,通过作图的方式,直观呈现动点的运动轨迹,同时结合学过的图形进行对照,将未知的运动转化为熟悉的知识.通过作图,有条理地掌握动点的运动过程和图形发生的相应变化,深刻理解 以不变应万变 的含义,分析运动过程中的隐含点,找到解题突破口.图9例3㊀如图9所示,已知以点A (0,1),C (1,0)为顶点的әAB C中,øB A C =60ʎ,øA C B =90ʎ.坐标系内有一动点P (不与A 重合),以P ,B ,C 为顶点的三角形和әA B C 全等,则点P 坐标为.解析:题目中有含30ʎ角的直角三角形,可以根据已知数据先求出A C ,A B ,B C 的长;点P 是动点,以P ,B ,C 为顶点的三角形就是不确定的,因此需要进行分类讨论,分类作图,寻找关键信息.①如图10所示,通过作图,得出әA B C ɸәP B C ,此时很容易就可得出点P 的坐标为(2,-1).这里其实就是作了点A 关于B C 的对称点,得到点P 的位置,过P 作P M 垂直x 轴于点M ,证明әA O C ɸәP M C ,从而得出点P 坐标.图10㊀㊀㊀图11②如图11所示,过点C 作C P ʊA B 且C P =A B ,连接B P ,作P M 垂直x 轴于点M .分析得øP C M =15ʎ,构造等腰三角形P C N ,即在C M 上找一点N ,使øP NM =30ʎ,则C N =P N .设P M =x ,则C N =P N =2x ,MN =3x .在R t әC P M 中,根据勾股定理求出x 的值,进而求出点P 的坐标为(2+3,3-1).该情况运用了平行四边形的知识,再构造等腰三角形进行解答.图12③在②的基础上作出点P 关于B C 的对称点即如图12所示.分析得出øP C M =75ʎ,øC P M =15ʎ,同理根据勾股定理即可求出C M =3-1,P M =3+1,即得到点P 的坐标为(3,3+1).本题通过作图刻画动点P 与已知点B ,C 构成的直角三角形,由于直角的不确定性,进行分类讨论.利用对称点分别构造出直角三角形,体现了数形结合的思想,运用勾股定理求出点P 的坐标.6总结解决初中数学动点问题需要扎实的数学基础,在做题时要认真观察题目中条件的内在联系,通过动静结合的方法,将动态过程转化为静态的㊁熟悉的知识.同时,需要勤加练习含有动点问题的题目,采用数形结合的思考方法,对不同类型的题目熟练解答,然后进行知识的归纳和梳理,不断总结反思,找到适合自己的解题方法,化难为易.参考文献:[1]赵玉叶.初中数学中 含有一个动点的线段和(差)的最值问题 的解题策略[J ].数学教学通讯,2021(32):86G88.[2]刘艳萍.动中求静,静中求解 初中数学动点问题探究[J ].中学数学,2020(18):59G60,67.[3]刘振龙.初中数学动点问题策略研究[J ].数理化解题研究,2021(35):40G41.Z38Copyright ©博看网. All Rights Reserved.。

动点问题解题技巧总结

动点问题解题技巧总结一、 动点选择题(中考选择最后一道)1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是()()1122,,x y x y , 确定纵坐标比122y y +大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,04x <<和48x <<,区间中点=2x 和=6x ,=2x 时43223,132BQ BP Q BP y ===<,过作的垂线,垂线段长, 则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1. 三角形、四边形中的动点问题
【解题思路与方法】
1.关注变化因素和不变因素以及图形的特殊性,寻找常量和变量;
2.化动为静 (由一般到特殊),以静制动;
3.数学建模:确定图形运动中的变量关系时常常建立函数模型,确定图形运动中的特殊位置关系 时常常建立方程模型;
4.关注运动问题的三个要素:运动方向、速度、范围(直线、射线、线段、折线);
5.注重分类讨论,通过分别画图与分离图形使问题简单化;
6.根据运动元素的不同分为动点问题、动线问题、动图问题三大类型(包括点、线、图同时运动).
◆典例解析
一、三角形中的动点问题
例1. 已知,如图△ABC 是边长3cm 的等边三角形.动点P 以1cm/s 的速度从点A 出发,沿线段AB 向点B 运动.设运动时间为t (s ),
(1)如图1,当t 为何值时,△PBC 是直角三角形?
(2)如图2,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D. 如果动点P 、Q 都以1cm/s 的速度同时出发.那么 当t 为何值时,△DCQ 是等腰三角形?
(3)如图3,若另一动点Q 从点C 出发,沿射线BC 方向运动. 连接PQ 交AC 于D ,连接PC.
如果动点P 、Q 都以1cm/s 的速度同时出发. 请探究:在点P 、Q 的运动过程中△PCD 和 △QCD 的面积是否相等?
B
C
P
A Q
D
B
C
P
A
Q
D
B
C
P
A
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC 方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC 的面积是△ABC面积的三分之二?如果存在,求出相应的t值;若不存在,请说明理由。

A
P
例2.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)若点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A 点运动.
①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?
(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
如图(1)△ABC为等边三角形,动点D在边CA上,动点P边BC上,若这两点分别从C、B点同时出发,以相同的速度由C向A和由B向C运动,连接AP,BD交于点Q,两点运动过程中AP=BD。

可通过证明得到这个结论;
(2)如果把原题中“动点D在边CA上,动点P边BC上,”改为“动点D,P在射线CA和射线BC 上运动”,其他条件不变,如图(2)所示,两点运动过程中∠BQP的大小保持不变.利用图(2)的情形,求证:∠BQP=60°;
(3)如果把原题中“动点P在边BC上”改为“动点P在AB的延长线上运动,连接PD交BC于E”,其他条件不变,如图(3),则动点D,P在运动过程中,DE始终等于PE吗?写出证明过程.
二、特殊四边形中的动点问题
例3.如图,在等腰梯形ABCD中,AB∥DC,cm
BC
AD5
=
=,AB=12 cm,CD=6cm , 点P从A开始沿AB边向B以每秒3cm的速度移动,点Q从C开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。

设运动时间为t秒。

(1)求证:当t=
2
3
时,四边形APQD是平行四边形;
(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平
分BD;若不能,请说明理由; A B
C
D
P
如图,在四边形ABCD中,AD∥BC,∠B﹦90°,AB﹦cm,AD﹦18cm,BC﹦24cm。

点p从点
A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t s.
(1)t为何值时,四边形ABQP为矩形?
(2)t为何值时,四边形PQCD为平行四边形?
(3)在其它条件不变的情况下,能否通过改变点Q的运动速度,使得四边形PQCD为菱形?
例4.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)试说明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.
3
E
1.如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动。

(1)试判断四边形PQEF 是正方形并证明。

(2)PE 是否总过某一定点,并说明理由。

(3)四边形PQEF 的顶点位于何处时,其面积最小,最大?各是多少?
2.如图所示,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD 、等边△ACE 、等边 △BCF .
(1)求证:四边形DAEF 是平行四边形;
(2)探究下列问题:(只填满足的条件,不需证明) ①当△ABC 满足_________________________条件时,四边形DAEF 是矩形; ②当△ABC 满足_________________________条件时,四边形DAEF 是菱形;
③当△ABC 满足_________________________条件时,以D 、A 、E 、F 为顶点的四边形不存在.
C B A
D
F
E
◆延伸课堂
1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x
(1)用含x的代数式表示AC+CE的长;
(2)请问点C满足什么条件时,AC+CE的值最小?
(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.
2.直线y=- 3/4x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S= 48/5时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
3.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边以3厘米/秒的速度向B点运动。

已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。

假设运动时间为t秒,问:
(1)t为何值时,四边形PQCD是平行四边形?
(2)t为何值时,线段AB与线段PQ相等?
(3)在某个时刻,四边形PQCD可能是菱形吗?为什么?
(4)是否存在t值,使PQ把直角梯形分成周长相等的两部分?若存在,求出t的值;若不存在,请你说明理由.
4. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD 的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)探究:t为何值时,△PMC为等腰三角形.。

相关文档
最新文档