理论力学第8章
理论力学第八章点的合成运动

3
实例三
描述一个长杆在平面内同时作直线运动和回转运动的合成运动,讨论合成运动对 杆心运动特性的影响。
合成运动中的矢量操作
在合成运动中,我们经常需要进行矢量的加法、减法和乘法等操作。这些操作可以帮助我们推导、计算和分析 合成运动的各种特性。
合成运动的应用及展望
应用
合成运动的概念和原理广泛应用于物理学、工程学和运动学等领域,为我们理解和解决复杂 的运动问题提供了有力的工具。
点的合成运动的基本概念
点的合成运动是指多个点以各自不同的速度和方向同时运动,并在同一时间 到达相对位置的运动方式。它是合成运动的基本形式之一。
合成运动的示意图和公式推导
示意图
通过示意图展示合成运动的过程和结果,帮助加深 理解。
公式推导
推导合成运动的公式,使我们能够定量描述和计算 合成运动的各个特性。
质点运动的合成运动
质点的合成运动是指质点在运动过程中,同时具有平移运动和旋转运动的一 种复杂运动形式。在合成运动中,质点的运动轨迹会呈现出特定的形态和规 律。
质点合成运动实例分析
1
实例一
分析一个小球在倾斜平面上同时进行滚动和滑动的合成运动,探讨其运动规律和 性质。
2
实例二
研究一个弹射体在水平飞行过程中受到重力和空气阻力合成运动的影响,揭示合 成运动对物体运动轨迹的影响。
理论力学第八章点的合成 运动
欢迎大家来到本次关于理论力学第八章点的合成运动的精彩演讲。在本次演 讲中,我们将深入探讨合成运动的定义、基本概念、示意图与公式推导,以 及质点运动的合成运动等内容。
合成运动的定义
合成运动是指由多个简单的运动相结合而成的复杂运动。它将两个或多个运 动矢量合成为一个合成矢量,从而形成全新的运动方式。
理论力学一第八章试题

一、概念题1.动点的牵连速度是指该瞬时牵连点的速度,它所相对的坐标系是( )。
① 动坐标系 ② 不必确定的③ 定坐标系 ④ 都可以2.点的速度合成定理v a = v e + v r 的适用条件是( )。
① 牵连运动只能是平动 ② 各种牵连运动都适合③ 牵连运动只能是转动 ④ 牵连运动为零3.两曲柄摇杆机构分别如图(a )、(b )所示。
取套筒A为动点,则动点A 的速度平行四边形( )。
① 图(a )、(b )所示的都正确② 图(a )所示的正确.,图(b )所示的不正确③ 图(a )所示的不正确.,图(b )所示的正确④ 图(a )、(b )所示的都不正确4.图示偏心凸轮如以匀角速度ω绕水平轴O 逆时针转动,从而推动顶杆AB 沿铅直槽上下移动,AB 杆的延长线通过O 点。
若取凸轮中心C 为动点,动系与顶杆AB 固连,则动点C 的相对运动轨迹为( )。
① 铅直直线② 以O 点为圆心的圆周③ 以A 点为圆心的圆周④ 无法直接确定5.在图示机构中,已知s = a + b sin ωt ,且φ = ωt (其中a 、b 、ω均为常数),杆长为L ,若取小球A 为动点,动系固连于物块B ,定系固连于地面,则小球A 的牵连速度v e 的大小为( );相对速度v r 的大小为( )。
① L ω ② b ωcos ωt③ b ωcos ωt + L ωcos ωt④ b ωcos ωt + L ω6.图示偏心轮摇杆机构中,ω、α为已知,要求摇杆的角加速度α1,应取( )。
① 杆上的M 为动点,轮为动系② 轮上的M 为动点,杆为动系 ③ 轮心C 为动点,杆为动系④ 轮心C 为动点,轮为动系7.如图所示,直角曲杆以匀角速度ω绕O 轴转动,套在其上的小环M 沿固定直杆滑动。
取M 为动点,直角曲杆为动系,则M 的( )。
① v e ⊥CD ,a C ⊥CD② v e ⊥OM ,a C ⊥CD③ v e ⊥OM ,a C ⊥OMα α18.平行四边形机构如图。
理论力学PPT课件第8章 虚位移原理与能量法

W
1、光滑面约束
N
FNi ri 0
理想约束的例子:
2019年1月25日
30
2、铰链约束
3、圆轮在平面上作纯滚动
二. 虚位移原理
受定常理想约束的质点系,在某位置平衡的必要与充 分条件是:
W Fi ri 0
上式又称为虚功方程。
2019年1月25日 31
点积形式: 自然坐标形式:
C
B
答:
D
P
O A
P 2 cot Q 3
Q
36
2019年1月25日
例3 图示系统中除连接H点的两杆长度为l 外, 其余各杆长度 均为 2l, 弹簧的弹性系数为k, 当未加水平力 P 时弹簧不受力, = 0 。 求平衡位置θ。 答:
5 P 8kl sin 0 arcsin 8kl
2 双侧约束与单侧约束 双侧约束 —— 约束方程可以写成等式的约束。 单侧约束 —— 约束方程写成不等式的约束。
f j (xi ) 0,
i 1, 2, ,3n;j 1, 2, , s
f j (xi,t ) 0,
i 1, 2, ,3n;j 1, 2, , s
O
c x
进行积分后,得 xC R 0
说明圆轮所受约束为完整约束。
2019年1月25日
19
非完整约束的例子——追踪系统
y yB
B
A xB x A x A yB y A y
此约束方程不可以积 分,所以导弹所受的约束 为非完整约束。 x
yA
A
vA
O
xA
2019年1月25日
FBD
2 3 8m F 5 5L
理论力学哈工大第七版第8章精品

C
一般情况下,在每一瞬时,平面图形上都唯一地存在一 个速度为零的点,称为瞬时速度中心,简称速度瞬心。
2.平面图形内各点的速度分布
基点:C
vM vMC CM
平面图形内任意点的速度等于该点随图形绕瞬时速 度中心转动的速度。
3.速度瞬心的确定方法
已知 vA , vB的方向,
且
vA不平行于
0
vB 0
90
vB vA r, vBA 0
例8-4 已知:如图所示的行星轮系中,大齿轮Ⅰ固定,半
径为r1 ,行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为r2。
系杆OA角速度为 O 。
求:轮Ⅱ的角速度ωⅡ及其上B,C 两点的速度。
解: 1.轮Ⅱ作平面运动 基点:A
2.vD vA vDA 0
第八章 刚体的平面运动
§ 8-1 刚体平面运动的概述和运动分解
1.平面运动
刚体平面运动:行星齿轮
刚体平面运动:车轮运动情况
在运动中,刚体上的任意一点与某一固定平面始终保持相 等的距离,这种运动称为平面运动。
平面运动
平面图形的运动
刚体平面运动的简化
2.运动方程
xO f1 t
yO
方向垂直于 AB ,指向同
平面图形内任一点的速度等于基点的速 度与该点随图形绕基点转动速度的矢量和。
例8-1 已知:椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。
求:B端的速度以及尺AB的角速度。
解: 1. AB作平面运动
2. vB vA vBA 大小 ? vA ? 方向
f2 t
f3 t
理论力学8章分析解析

2018/10/20
理论力学第8章
22
补充例题。圆轮纯滚动的运动特点。 1. 圆轮在水平面上作纯滚动。轮心A作水平直 线运动。 无滑动条件:轮心A的 水平位移OC等于轮缘 滚动过的弧长,即 OC=MC。设OC长度为x, MC的圆心角为φ,则
x r
2018/10/20 理论力学第8章 23
OA sin AB sin r sin sin l
2018/10/20 理论力学第8章 13
2018/10/20
理论力学第8章
14
用基点法建立A和B的 速度关系。
v B v A v BA vB v A sin vBA sin 0 v A cos vBA cos r cos vBA AB l cos cos sin( ) vB r sin r sin r cos cos cos r , cos
2018/10/20
理论力学第8章
34
轮A的速度和加速度分析:
vA v A r A, A 10rad / s R vC 2 R A 4m / s aA aA r A , A 10rad / s 2 R t n aC a A aCA aCA
v B v A v BA vB cos30 v A cos30 vB sin 30 v A sin 30 vBA v B v A r vBA 0,
2018/10/20
BA 0
理论力学第8章
19
对于轮B: C为瞬心。
vC v B vCB 0 vB vCB vCB vB r vCB B r
理论力学第三版课后答案第8章

(9)
代入式(3)得 aCx = 1.03m/s 2 ,将其与式(9)第 1 式代入式(7)可解出端 B 加速度
aB = 2.65m/s 2
aB 为正,表明原假定正确,端 B 的确向左滑动。
课
后 答
案
网
ww w
.k hd
aw .
8-5C 质量为 m 半径为 R 的半圆柱体在图示位置静止释放。 图中,点 C 为质心, OC =
洪嘉振等《理论力学》第 3 版习题详解
2
1 R 5 R R J C = mR 2 + m( ) 2 + m( ) 2 + m( ) 2 = mR 2 4 2 2 4 4
系统惯性力系的主矩方向如图 8-1Cb 所示,其大小为为
M * = J Cα =
5 mR 2α 4
课
后 答
案
网
ww w
.k hd
aw .
可解得此瞬时质心速度为
vC = gl
由于杆作瞬时平移,故有点 B 的速度
vB = v A = vC = gl
r (2)对于连体基 A − e 1 ,定义该基的角加速度的正向如图 8-4Cb 不所示。基点 A 作圆 周运动,令其加速度为
课
T − T0 = mg xC0 − xC
后 答
(
1 2 mvC 。由动能定理 2
r r r r r r 其中 a1C = aC = aCx + aCy , a1etC = a A , a1eωC = lω12 = 0 , a1eαC = lα1 。上式变为
即
后 答
r x : aCx = − aωA + a1eαC cos θ
理论力学第8章 点的合成运动
第8章 点的合成运动8-1 如图 8-1 所示,光点 M 沿 y 轴作谐振动,其运动方程为 x = 0, y = a cos(kt +β)如将点 M 投影到感光记录纸上,此纸以等速v e 向左运动。
求点 M 在记录纸上的轨迹。
解 动系O 'x ' y '固结在纸上,点 M 的相对运动方程x '= v e t , y '= a cos(kt + β) 消去t 得点 M 在记录纸上的轨迹方程ky '= a cos(x '+β)v e8-2 如图 8-2 所示,点 M 在平面Ox ' y '中运动,图 8-1 运动方程为x '= 40(1− cos t ) , y '= 40sin t式中t 以 s 计,x '和 y '以 mm 计。
平面Ox ' y '又绕垂直于该平面的轴O 转动,转动方程为 ϕ= t rad ,式中角ϕ为动系的 x '轴与定系的 x 轴间的交角。
求点 M 的相对轨迹和绝对轨迹。
解 由点 M 的相对运动方程可改写为⎛ x ' ⎞⎜⎜⎝40 −1⎟⎟⎠ = −cos ty ' = sin t40上2式两边平方后相加,得点 M 的相对轨迹方程(x '−40)2 + y '2 =1600图 8-2由题得点 M 的坐标变换关系式x = x 'cos ϕ− y 'sin ϕy =x 'sin ϕ+ y 'cos ϕ将ϕ= t 和相对运动方程代入,消去t 得点M 的绝对轨迹方程 (x + 40)2 + y 2 =16008-3 水流在水轮机工作轮入口处的绝对速度v a =15 m/s ,并与直径成β=60° 角,如图 8-3a 所示,工作轮的半径R = 2 m ,转速n = 30 r/min 。
为避免水流与工作轮叶片相冲击,叶片应恰当地安装,以使水流对工作轮的相对速度与叶片相切。
理论力学第八章点的合成运动
运动学/点的合成运动
▼曲柄摇杆机构运动分析
动 点:套筒A
动 系:摇杆OC 定 系: 地面 绝对运动:圆周(O1) 相对运动:直线(沿
OC)
牵连运动: 定轴转动 (绕O)
运动学/点的合成运动
▼平底凸轮机构运动分析
动点:凸轮圆心点C 动系:平底挺杆 静系:地面 绝对运动:圆周(C) 相对运动:直线
运动学/点的合成运动
飞机螺旋桨上点P的运动分析
飞机上观察 P点为圆周 运动
当飞机直线 平移时地面 上观察P点的 运动为曲线 运动。
P点的运动可看成随飞机的平移与绕螺旋桨轴心转动的合成。
运动学/点的合成运动
本章利用运动的分解、合成的方 法对点的速度、加速度进行分析,研 究点在不同参考系中的运动,以及它 们之间的联系。
运 动 , 带 动 顶 杆 AB 沿 铅
A
R φ
v0
垂方向运动,如图所示。
试求φ=60º时,顶杆AB的
速度。
n
运动学/点的合成运动
解: 1. 选择动点、动系与定系
B
y
y A
v0
R
o φ
x
o
n
x
动点:AB 杆的端点A 动系:固连于凸轮
定系:固连于水平 轨道
2. 运动分析
绝对运动:直线运动
相对运动:沿凸轮轮 廓曲线运动
▼牵连点指某瞬时动系上与
动点相重合的点,不同瞬时 牵连点的位置不同。
▼动点相对动系、定系必
须有运动,不能和动系在同 一物体上。
▼以上可归结为一点、两
系、三运动。
运动学/点的合成运动
四、 运动方程及坐标变换 可以利用坐标变换来建立绝对、
理论力学试题库-计算题第8章
理论力学试题库题型:A 填空题,B 选择题,C 简答题,D 判断题,E 计算题,F 综合题,G 作图题。
编号E04001中,E 表示计算题,04表示内容的章节号即题目内容属于第04章,001表示章节题号的序号,即此题是第04章计算题的001号题。
计算题:08:E08001. (15分)在如图E08001所示机构中,已知:O 1A 以匀角速度ω绕O 1轴转动,O 1A= r ,O 2B =2L ,CDE 构件CD 段水平,DE 段在ϕ = 60º的滑道内。
在图示位置时,O 1A 杆水平,滑块A 处于O 2B 中点,试求该瞬时CDE 构件的速度。
图E08001 E08002. (15分)在图E08002示四连杆机构OABO 1中,l OO B O OA ===11。
BO 1杆以角速度rad/s 2=ω作逆时针方向匀速转动。
当 90=ϕ时,B O 1正好在1OO 的延长线上。
试求此瞬时:(1)AB 杆和OA 杆的角速度;(2)OA 杆的角加速度。
图E08002E08003. (20分)机构如图E08003所示,已知OA 匀角速转动0ω=10rad/s ,OA=2r=20cm ,AB=6r ,1O B =5r ,BC=4r ,当φ=90°时,1BC O B⊥,且O 与BC 在同一水平线上求此瞬时(1) A 、B 、C 各点速度;(2)杆1O B 的角速度。
图E08003E08004. (10分)椭圆规尺AB 由曲柄OC 带动,曲柄以角速度绕O 轴匀速转动,如图所示。
如OC=BC=AC=r ,并取C 为基点,求椭圆规尺AB 的平面运动方程。
图E08004E08005. (10分)如图所示,圆柱A 缠以细绳,绳的B 端固定在天花板上。
圆柱自静止落下,其轴心的速度为,其中g 为常量,h 为圆柱轴心到初始位置的距离。
如圆柱半径为r ,求圆柱的平面运动方程。
图E08005E08006.(10分)半径为r的齿轮由曲柄OA带动,沿半径为r的固定齿轮滚动,如图所示。
理论力学第八章复习
1.刚体平面运动定义 刚体作平面运动的充要条件是:刚体在运动过程中,其上任何一点到 某固定平面的距离始终保持不变。 2.平面运动方程 刚体的平面运动可以简化成平面图形在平面上的运动。运动方程:
习题8-1
其中A为基点。如果以 A 为原点建立平动动系,则平面运动分解为跟随基点(动系) 的平动和相对于基点(动系)的转动。
注意:(1)平动部分与基点选择有关。 (2)转动部分与基点选择无关。
刚体平面运动
3.研究平面运动的基本方法
(1)基点法--本章重点 (2)绕两平行轴转动的合成--常用于研究行星轮系统的传速比。 4.平面运动刚体上各点的速度分析 三种方法: (1)基点法--应用速度合成定理 (2)速度投影定理(由基点法推论) (3)瞬心法(由基点法推论) 5.加速度分析 只推荐用基点法分析平面运动刚体上各点的加在自身平面内运动,若其顶点 A、B、C、D 的加速度大小 相等,方向由图(a)、(b)表示,则------。
① (a)、(b)两种运动都可能 ③ (a)运动可能,(b)运动不可能
② (a)、(b)两种运动都不可能 ④ (a)运动不可能,(b)运动可能
2.曲柄连杆机构中,曲柄 OA 以匀角速度 连杆AB 的角加速度为------。其大小为?
① ② ③ ④ =r
,
_________,加速度的大小为_________。
半径为 r 的车轮沿固定圆弧面作纯滚动,若某瞬时轮子的角速度为ω,
角加速度为ε,则轮心 O 的切向加速度和法向加速度的大小分别为------。
① ② ③ ④ =r
3.半径为 r 的车轮沿固定圆弧面作纯滚动,若某瞬时轮子的角速度为ω,
角加速度为ε,则轮心 O 的切向加速度和法向加速度的大小分别为------。