理论力学 第八章课件
合集下载
理论力学 第八章

x o ' = x o ' (t ) 牵连运动方程 y o ' = y o ' ( t ) = ( t )
动系与定系之间的坐标变换关系
x = xO′ + x′ cos y′sin y = yO′ + x′ sin + y′ cos
沿半径为r的圆 例8-1 点M相对于动系 Ox′y′ 沿半径为 的圆 相对于动系 周以速度v作匀速圆周运动 圆心为O 作匀速圆周运动(圆心为 周以速度 作匀速圆周运动 圆心为 1 ) ,动系x′y′ O Oxy 以匀角速度ω绕点 作定轴转动, 相对于定系 以匀角速度 绕点O作定轴转动, 绕点 作定轴转动 如图所示。 重合, 重合。 如图所示。初始时x′y′ 与 与 重合 O Oxy 重合,点M与O重合。 的绝对运动方程。 求:点M的绝对运动方程。 的绝对运动方程
. 已知: 已知 ω, OA, = r, OO1 = l, OA水平 求: ω1 = ?
解:
1.动点:滑块A . 动系:摇杆AB 2. 运动分析 绝对运动:绕O点的圆周运动
相对运动:沿O1B的直线运动 牵连运动:绕O1轴定轴转动
√ √ √
3.
ve = va sin = ωr
r
2 2
l +r ve r2ω ∴ω1 = = 2 2 O A l +r 1
4. 绝对运动方程 vt vt x = x′ cos y′ sin = r1 cos r cosωt r sin r sin ωt y = x′ sin + y′ cos = r1 cos vt sin ωt + r sin vt co-3 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴 作往复运动,如图所示。设oxy为定坐 沿水平轴x作往复运动 沿水平轴 作往复运动,如图所示。 为定坐 标系,刀尖的运动方程为 x = bsin (ωt ) 。工件以 标系, 逆时针转向转动。 等角速度 ω逆时针转向转动。 求:车刀在工件圆端面上切出的痕迹。 车刀在工件圆端面上切出的痕迹。
理论力学第八章虚位移原理课件

只滚不滑?
教材:
若轮子又滚又滑,则滑动中轮与 支承面相互的动滑动摩擦力的元 功有:
δW Fdds fd FNds
ds vI dt
δW Fdds fd FNvI dt
10
>> 力的功
8.1.5 几种常见力的功 5、摩擦力的功
轮滚动时,滚动摩阻力 偶也作功,设最大滚动摩阻 力偶矩为Mr,max,滚过的圆
δW Fxdx Fydy Fzdz
2015/10/27
教材:
2
>> 力的功
8.1.2 变力在质点任意曲线路程中的功 2、变力在质点全路程上所作的功
W M2 F dr M2 F tds
M1
M1
W
M2 M1
(
Fxdx
Fy
dy
Fzdz
)
2015/10/27
教材:
3
>> 力的功
8.1.3 合力的功
教材:
17
>> 虚位移的概念与分析方法
8.2 虚位移的概念与分析方法 8.2.2 虚位移的分析方法
1.几何法
在完整定常约束条件下,微小的实位移是虚位移之一。 因此,可以用质点间实位移的关系来给出质点间虚位移的关 系。
由运动学知,质点无限小实位移与该点的速度正成比, ,所以可用分析速度的方法来建立质点间虚位移的关系。
教材:
24
>> 虚位移的概念与分析方法
8.2 虚位移的概念与分析方法 8.2.2 虚位移的分析方法
2.解析法
xA l sin
yA xB
l cos l sin
l
s in
yB l cos l cos
δxA
教材:
若轮子又滚又滑,则滑动中轮与 支承面相互的动滑动摩擦力的元 功有:
δW Fdds fd FNds
ds vI dt
δW Fdds fd FNvI dt
10
>> 力的功
8.1.5 几种常见力的功 5、摩擦力的功
轮滚动时,滚动摩阻力 偶也作功,设最大滚动摩阻 力偶矩为Mr,max,滚过的圆
δW Fxdx Fydy Fzdz
2015/10/27
教材:
2
>> 力的功
8.1.2 变力在质点任意曲线路程中的功 2、变力在质点全路程上所作的功
W M2 F dr M2 F tds
M1
M1
W
M2 M1
(
Fxdx
Fy
dy
Fzdz
)
2015/10/27
教材:
3
>> 力的功
8.1.3 合力的功
教材:
17
>> 虚位移的概念与分析方法
8.2 虚位移的概念与分析方法 8.2.2 虚位移的分析方法
1.几何法
在完整定常约束条件下,微小的实位移是虚位移之一。 因此,可以用质点间实位移的关系来给出质点间虚位移的关 系。
由运动学知,质点无限小实位移与该点的速度正成比, ,所以可用分析速度的方法来建立质点间虚位移的关系。
教材:
24
>> 虚位移的概念与分析方法
8.2 虚位移的概念与分析方法 8.2.2 虚位移的分析方法
2.解析法
xA l sin
yA xB
l cos l sin
l
s in
yB l cos l cos
δxA
08-理论力学-第二部分运动学第八章刚体的平面运动

形S在该瞬时的位置也就确定了。
88
运动学/刚体的平面运动
四、平面运动的分解 ——平移和转动
当图形S上A点不动时,则
刚体作定轴转动 。
当图形S上 角不变时,
则刚体作平移。
故刚体平面运动可以看成是 平移和转动的合成运动。
例如:车轮的平面运动可以看成: 车轮随同车厢的平移 和相对车厢的转动的合成。
99
2121
如图示平面图形,某瞬时速度瞬心为P点, 该瞬时平面图形内任一点B速度大小
vB vP vBP vBP
B
大小:vB BP
方向:BP,指向与 转向相一致。
vB
S
vA
C
vC
同理:vA=ω·AP, vC=ω·CP
由此可见,只要已知图形在某一瞬时的速度瞬心 位置和角速度 ,就可求出该瞬时图形上各点的速度。
的平面Ⅱ内的运动。
66
运动学/刚体的平面运动
二、平面运动的简化 刚体的平面运动可以简化为
平面图形S在其自身平面内的运动。 即在研究平面运动时,不需考虑 刚体的形状和尺寸,只需研究平 面图形的运动,确定平面图形上 各点的速度和加速度。
三、平面运动方程 为了确定代表平面运动刚体的
平面图形的位置,我们只需确定平 面图形内任意一条线段的位置。
vBA
s
B
vB vA
A
vA
方向: AB, 指向与 转向一致。
即:平面图形上任一点的速度等于基点的速度与该点随
平面图形绕基点转动的速度的矢量和。 ——基点法
基点法是求解平面图形内一点速度的基本方法。 1414
运动学/刚体的平面运动
二、速度投影法
由于A, B点是任意的,因此
3理论力学 第八章点的合成运动解析

? ? tg ?1 v?
v平
[例8-2] 曲柄摆杆机构
φ
已知:OA= r , ? , OO1=l 图示瞬时OA? O
求:摆杆O1B角速度? 1
解:取套筒A点为动点,摆杆O1B为动系.基座为静系。
绝对速度va = r ?
相对速度vr = ?
方向? OA 方向//O1B
牵连速度ve = ?
方向? O1B
由速度合成定理 va ? vr ? ve 作出速度平行四边形 如图示。
r
ve ? va sin? ? r? ?
r2? l2
又?ve ? O1 A?? 1,
? ? 1 ? Ov1eA?
1? r 2 ?l2
r 2?
r2?
l2
?
r
r 2?
2 ? l2
(
)
[例8-3]圆盘凸轮机构
已知:OC=e , R ? 3e , ? (匀角速度)
vr
va
A veva
B
aa
ar
va
A
Baen
ae?
练习三
解:
A
?
?
o
B
A
? ?
o
ve ? OB??
va
B
vr
动系:OA杆; 动点:滑块B
A
? ?
arn
o
aen ? OB?? 2
ar?
B
aa
a?e ? OB??
[例8-1] 桥式吊车。 已知:小 车水平运行,速度为v平, 物块A相对小车垂直上升 的速度为v? 。求物块A的运 行速度。
一、实例 : M点运动
地面: 摆线, 车箱: 圆。
二、复合运动的一般模型
理论力学哈工大第七版第8章精品

C
一般情况下,在每一瞬时,平面图形上都唯一地存在一 个速度为零的点,称为瞬时速度中心,简称速度瞬心。
2.平面图形内各点的速度分布
基点:C
vM vMC CM
平面图形内任意点的速度等于该点随图形绕瞬时速 度中心转动的速度。
3.速度瞬心的确定方法
已知 vA , vB的方向,
且
vA不平行于
0
vB 0
90
vB vA r, vBA 0
例8-4 已知:如图所示的行星轮系中,大齿轮Ⅰ固定,半
径为r1 ,行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为r2。
系杆OA角速度为 O 。
求:轮Ⅱ的角速度ωⅡ及其上B,C 两点的速度。
解: 1.轮Ⅱ作平面运动 基点:A
2.vD vA vDA 0
第八章 刚体的平面运动
§ 8-1 刚体平面运动的概述和运动分解
1.平面运动
刚体平面运动:行星齿轮
刚体平面运动:车轮运动情况
在运动中,刚体上的任意一点与某一固定平面始终保持相 等的距离,这种运动称为平面运动。
平面运动
平面图形的运动
刚体平面运动的简化
2.运动方程
xO f1 t
yO
方向垂直于 AB ,指向同
平面图形内任一点的速度等于基点的速 度与该点随图形绕基点转动速度的矢量和。
例8-1 已知:椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。
求:B端的速度以及尺AB的角速度。
解: 1. AB作平面运动
2. vB vA vBA 大小 ? vA ? 方向
f2 t
f3 t
《理论力学》第八章刚体的平面运动

刚体的平面运动特点
刚体的平面运动具有 连续性,即刚体上任 意一点的运动轨迹都 是连续的。
刚体的平面运动具有 周期性,即刚体的运 动轨迹可以是周期性 的。
刚体的平面运动具有 对称性,即刚体的运 动轨迹可以是对称的。
02
刚体的平面运动分析
刚体的平动分析
平动定义
刚体在平面内沿着某一确定方向作等速直线运动。
详细描述
通过综合分析动能和势能的变化,可以深入理解刚体在平面运动中的能量转换过程。例 如,当刚体克服重力做功时,重力势能转化为动能;当刚体克服摩擦力做功时,机械能 转化为内能。这种能量转换过程遵循能量守恒定律,即系统总能量的变化等于外界对系
统所做的功与系统内能变化之和。
06
刚体的平面运动的实例分析
刚体的平面运动通常可以分为两种类型:纯滚动和滑动。在 纯滚动中,刚体只滚不滑,刚体上任意一点在任意时刻都位 于一个固定的圆周上。在滑动中,刚体既滚又滑,刚体上任 意一点在任意时刻都位于一个变化的圆周上。
刚体的平面运动分类
纯滚动
刚体只滚不滑,刚体上任意一点 在任意时刻都位于一个固定的圆 周上。
滑动
刚体既滚又滑,刚体上任意一点 在任意时刻都位于一个变化的圆 周上。
势能定理
总结词
势能定理描述了势能与其他形式的能量转换的关系。
详细描述
势能定理指出,在刚体的平面运动过程中,非保守力(如摩擦力、空气阻力等)对刚体所做的功等于系统势能的 减少量。非保守力做正功时,系统势能减少;非保守力做负功时,系统势能增加。
动能和势能的综合分析
总结词
在刚体的平面运动中,动能和势能的综合分析有助于理解运动过程中能量的转换和守恒。
做平动,这种运动也是复合运动。
理论力学8

摇杆绕固定轴O1来回摆动。设曲柄长OA=r,两轴间距离OO1 l
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。
理论力学第八章

?
几个有意义的实际问题
偏心转子 为什么要 固定,如 果不固定 会怎样
几个有意义的实际问题
偏心转子 电动机工作 时为什么会 左右运动;
这种运动有 什么规律; 会不会上 下跳动; 利弊得失。
?
几个有意义的实际问题
偏心转子 没有跳起 时,质心 运动情况
几个有意义的实际问题
偏心转子 有跳起时, 质心运动 情况
工程实际中的动力学问题
v1
F
v2
棒球在被球棒 击打后,其速度 的大小和方向发 生了变化。如果 已知这种变化即 可确定球与棒的 相互作用力。
工程实际中的动力学问题
载人飞船的交会与对接
v2 v1
B A
工程实际中的动力学问题
航空航天器 的姿态控制
工程实际中的动力学问题
高速列车的振动问题
ቤተ መጻሕፍቲ ባይዱ
工程实际中的动力学问题
1. 直角坐标系投影式
z
ma F
O x
M
r z y
a
y
x
v
F
d r m 2 dt
2
F
直角坐标形式
d2x m 2 Fx ma x m x dt d2y m 2 Fy ma y m y dt d 2z m 2 Fz ma z m z dt
牛顿及其在力学发展中的贡献
牛顿出生于林肯郡伍尔索朴城的一个中等农户家中。 在他出生之前父亲即去世,他不到三岁时母亲改嫁了, 他不得不靠他的外祖母养大。
1661年牛顿进入了剑桥大学的三一学院,1665年获文 学学士学位。在大学期间他全面掌握了当时的数学和光 学。1665-1666的两年期间,剑桥流行黑热病,学校暂 时停办,他回到老家。这段时间中他发现了二项式定律, 开始了光学中的颜色实验,即白光由7种色光构成的实 验,而且由于一次躺在树下看到苹果落地开始思索地心 引力问题。在30岁时,牛顿被选为皇家学会的会员,这 是当时英国最高科学荣誉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第八章刚体的平面运动
§8–1 刚体平面运动概述
§8–2 平面运动分解为平动和转动·
刚体的平面运动方程
§8–3 平面图形内各点的速度
§8–4 平面图形内各点的加速度·
加速度瞬心的概念
习题课
2
车轮的平面运动
随基点A的平动绕基点A'的转动
为基点: 随基点A平动到A'B''后, 绕基点转
13
点的运动可视为牵连运动为平动和相对运动
所以
,
17
(a)
(b)
方向如图示。
22
23
1212
(b)
v
B
P
2
3
3
5.
1312←
(
)
cm/s
41[例1]如图所示机构,
已知:OA =0.15m,n =300 rpm,AB =0.76m,
BC =BD =0.53m. 图示位置时, AB 水平.
求该位置时的,
及AB BD ωω D v 解:OA ,BC 作定轴转动,
AB ,BD 均作平面运动
根据题意:研究AB , P 1为其速度瞬心
rad/s 1030
30030πππω===n m/s 5.11015.0ππω=×=⋅=OA v A ()rad/s 16.7376.025.160sin 5.11=××===∴ππωo AB AP v A AB m/s
72.216.75.076.016.760cos 1=××=×=⋅=o AB BP v AB B ω研究BD ,P 2为其速度瞬心, ΔBDP 2为等边三角形DP 2=BP 2=BD
rad/s 13.553
.073.22===∴BP v B BD ω)(m/s 72.213.553.02↓=×=⋅=BD D DP v ω()
=12cm/s ;
rad/s)
(
这是一个需要联合应用点的合成运动和刚体平面运动理论。