《理论力学》第一章 力的分解与力的投影解析
高中物理必修一-力的分解

力的分解知识集结知识元力的分解知识讲解力的分解一、力的分解1.力的分解:求一个已知力的分力叫做力的分解.2.分解规律:力的分解是力的合成的逆运算,同样遵守平行四边形定则,即把已知力作为平形四边形的对角线,那么,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力.3.力的分解方法:根据力F产生的作用效果,先确定两个分力的方向,再根据平行四边形定则用作图法作出两个分力F1和F2的示意图,最后根据相关数学知识计算出两个分力的大小二、力的分解的解的问题1.已知两分力方向(1)两分力方向在一条直线上时当两力与合力同向时,无论是同向还是反向,均有无数组解.(2)两分力不在一条直线上时要使问题有解,合力必夹在两分力之间,仅有一组解.2.已知一个分力的大小和方向合力与一个确定的分力已经确定了三角形的三个顶点(三力在一条直线上的情况可看成是压扁的三角形),由三角形定则知,解是唯一的.3.已知两个分力的大小要使问题有解,两个分力的代数和不能小于合力的大小;差的绝对值不能大于合力的大小.在这个前提下讨论,可以做图得到结果.(1)当时在平面内有两解,在空间中有无数解.(如图所示)(2)当时,有唯一解(3)当时,有唯一解4.已知其中一分力F1的方向和另一分力F2的大小时(1)已知方向的分力与合力成锐角时(2)已知方向的分力与合力成直角或钝角时当时,无解.当时,有唯一解.按力的效果进行分解一、按效果分在实际问题中一个力究竟该分解成怎样的两个力,要看力的实际作用效果二、分解方法:1.根据力的实际作用效果确定两个分力的方向2.根据两个分力的方向做平行四边形3.根据平行四边形和相关的数学知识,求出两个分力的大小和方向.正交分解法正交分解法是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,它是处理力的合成和分解的复杂问题的一种简便方法,其步骤如下:1.正确选定直角坐标系.通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际问题来确定,原则是使坐标轴与尽可能多的力重合,即:使向两坐标轴投影分解的力尽可能少.在处理静力学问题时,通常是选用水平方向和竖直方向上的直角坐标,当然在其他方向较为简便时也可选用.2.分别将各个力投影到坐标轴上,分别求出x轴和y轴上各力的投影的合力F x和F y:F x=F1x+F2x+F3x+……;F y=F1y+F2y+F3y+……(式中的F1x和F1y是F1在x轴和y轴上的两个分量,其余类推.)这样,共点力的合力大小为:F=.3.设合力的方向与x轴正方向之间的夹角为α,因为tanα=,所以,通过查数学用表,可得α数值,即得出合力F的方向.特别的:若F=0,则可推得F x=0,F y=0.这是处理多个力作用下物体平衡问题的常用的好办法.例题精讲力的分解例1.关于力的分解,下列说法中不正确的是()A.一个力可以分解成两个比它大的分力B.一个力可分解成两个大小跟它相等的力C.如果一个力和它的一个分力的大小方向确定,那么另一个分力就是唯一的D.如果一个力以及它的一个分力大小和另一个分力的方向确定,这两个分力就完全确定了例2.如图所示,将力F分解为F1和F2两个分力,已知F1的大小和F2与F之间的夹角α,且α为锐角,则()A.当F1>F sinα时,一定有两解B.当F1=F sinα时,有唯一解C.当F1<F sinα时,无解D.当F sinα<F1<F时,一定有两解例3.如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成53°角时,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)()A.B.C.D.当堂练习单选题练习1.在日常生活中,力的分解有着广泛的应用,如甲图用斧子把木桩劈开的图,已知两个侧面之间的夹角为2θ,斧子对木桩施加一个向下的力F时,产生了大小相等的两个侧向分力F1、F2,由乙图可得下列关系正确的是()A.B.C.D.练习2.如图所示,质量均为M的A、B两滑块放在粗糙水平面上,两轻杆等长,杆与滑块、杆与杆间均用光滑铰链连接,在两杆铰合处悬挂一质量为m的重物C,整个装置处于静止状态,设杆与水平面间的夹角为θ.下列说法正确的是()A.当m一定时,θ越大,轻杆受力越小B.当m一定时,θ越小,滑块对地面的压力越大C.当θ一定时,M越大,滑块与地面间的摩擦力越大D.当θ一定时,M越小,可悬挂重物C的质量m越大练习3.将一个有确定方向的力F=10N分解成两个分力,已知一个分力有确定的方向,与F成30°夹角,另一个分力的大小为6N,则在分解时()A.有无数组解B.有两组解C.有唯一解D.无解练习4.为了行车的方便与安全,上山的公路都是很长的“之”字形盘山公路,这样做的主要目的是()A.减小上山车辆受到的摩擦力B.减小上山车辆的重力C.减小上山车辆对路面的压力D.减小上山车辆的重力平行于路面向下的分力练习5.关于力的分解,下列说法中不正确的是()A.一个力可以分解成两个比它大的分力B.一个力可分解成两个大小跟它相等的力C.如果一个力和它的一个分力的大小方向确定,那么另一个分力就是唯一的D.如果一个力以及它的一个分力大小和另一个分力的方向确定,这两个分力就完全确定了练习6.已知两个共点力F的合力为2N,分力F1的方向与合力F的方向成30°角,分力F2的大小为N.则()A.F2的方向是唯一的B.F2有无数个可能的方向C.F1的大小是唯一的D.F1的大小可取N练习7.如图中按力的作用效果分解正确的是()B.C.D.A.练习8.如图所示,被轻绳系住静止在光滑斜面上的小球.若按力的实际作用效果来分解小球受到的重力G,则G的两个分力的方向分别是图中的()A.1和4 B.3和4 C.2和4 D.3和2练习9.如图,研究物体沿斜面下滑时,常把物体所受的重力分解为()A.斜面支持力和下滑力B.沿斜面向下的下滑力和垂直在斜面上的压力C.平行于斜面向下的分力和垂直于斜面向下的分力D.下滑力和垂直于斜面向下的分力练习10.如图所示,倾角为θ的斜面上固定有一竖直挡板,重为G的光滑小球静止时对斜面的压力为N,小球的重力按照产生的作用效果可分解为()A.垂直于斜面的分力和水平方向的分力,且B.垂直于斜面的分力和水平方向的分力,且N=G cosθC.垂直于斜面的分力和平行于斜面的分力,且D.垂直于斜面的分力和平行于斜面的分力,且N=G cosθ练习11.如图所示,倾角为15°的斜面上放着一个木箱,现有一个与水平方向成45°角的拉力F斜向上拉着木箱.分别以平行于斜面和垂直于斜面的方向为x轴和y轴建立坐标系,把F分解为沿着两个坐标轴的分力.则分力F x和F y的大小分别为()A.F cos15°、F sin15°B.F cos30°、F sin30°C.F cos45°、F sin45°D.F cos60°、F sin60°练习12.如图所示,在高度不同的两水平台阶上放有质量分别为m1、m2的两物体,物体间用轻弹簧相连,弹簧与竖直方向夹角为θ.在m1左端施加水平拉力F,使m1、m2均处于静止状态,已知m1下表面光滑,重力加速度为g,则下列说法正确的是()A.弹簧可能处于压缩状态B.弹簧弹力的大小为C.地面对m2的支持力可能为零D.地面对m2的摩擦力大小为F练习13.如图所示,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动.若保持F的大小不变,而方向与水平面成53°角时,物块也恰好做匀速直线运动.则物块与桌面间的动摩擦因数为(不计空气阻力,sin53°=0.8,cos53°=0.6)()A.B.C.D.多选题练习1.如图所示是骨折病人的牵引装置示意图,绳的一端固定,绕过定滑轮和动滑轮后挂着一个重物,与动滑轮相连的帆布带拉着病人的脚,整个装置在同一竖直平面内.为了使脚所受的拉力减小,可采取的方法是()A.只增加绳的长度B.只减小重物的质量C.只将病人的脚向左移动D.只将两定滑轮的间距增大练习2.将一个力F分解为两个分力F1和F2,则下列说法中正确的是()A.F1和F2的代数和等于FB.F1和F2两个分力在效果上可以取代力FC.F是F1和F2的合力D.物体受到F1、F2和F三个力的作用练习3.图1为斧子劈开树桩的实例,树桩容易被劈开是因为形的斧锋在砍进木桩时,斧刃两侧会对木桩产生很大的侧向压力,将此过程简化成图2的模型,已知斧子是竖直向下且对木桩施加一个竖直向下的力F,斧子形的夹角为θ,则()A.斧子对木桩的侧向压力大小为B.斧子对木桩的侧向压力大小为C.斧锋夹角越大,斧子对木桩的侧向压力越大D.斧锋夹角越小,斧子对木桩的侧向压力越大练习4.如图所示,将力F分解为F1和F2两个分力,已知F1的大小和F2与F之间的夹角α,且α为锐角,则()A.当F1>F sinα时,一定有两解B.当F1=F sinα时,有唯一解C.当F1<F sinα时,无解D.当F sinα<F1<F时,一定有两解练习5.将力F分解为两个共点力,已知其中一个分力F1的方向与F的夹角为θ,则()A.若已知另一个分力的方向,就可得到确定的两个分力B.若已知F1的大小,就可以得到确定的两个分力C.若已知另一个分力的大小,一定可以得到确定的两个分力D.另一个分力的最小值为F sinθ练习6.已知两个共点力的合力为60N,分力F1的方向与合力F的方向成30°角,分力F2的大小为35N,下列说法中正确的有()A.F1的大小是唯一的B.F1的大小有两个可能的值C.F2有两个可能的方向D.可能任意方向填空题练习1.如图所示,重10N的物体静止在倾斜的长木板上,按照重力的实际作用效果将重力分解为:沿_____________方向的分力和沿____________方向的分力.请准确画出两个分力的图示(要求保留作图痕迹),由图示可读得:F1=______N,F2=______N.(精确到0.1N)按照重力作用的实际效果,可以将重力沿垂直木板方向和平行木板方向进行分解.木板上物体的重力,按效果分解的力图如图.解答题练习1.'已知共点力F1=10N,F2=10N,F3=5(1+)N,方向如图所示.求:(1)F1、F2的合力F合的大小和方向(先在图甲中作图,后求解);(2)F1、F2、F3的合力F合的大小和方向(先在图乙中作图,后求解).'练习2.'如图一大人拉着装有货物的木箱匀速前进,用的拉力为200N,车和货物的总重为500N.F与水平线的夹角为37°,(sin37°=0.6、cos37°=0.8)求:(1)F沿水平方向的分力和竖直方向的分力是多少?(2)地面对木箱的摩擦力是多少?方向向哪?(3)地面对木箱的支持力是多少?(4)画出木箱受力图.'练习3.'如图所示,一物块置于水平地面上.当用与水平方向成60°角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成60°角的力F2推该物块时,物块仍做匀速直线运动.已知物块与地面间的动摩擦因数为,求F1与F2的大小之比.'练习4.'如图1用水平拉力F刚好能使质量为m的物块在静止水平木板上做匀速直线运动,已知重力加速度为g,求:(1)物块与木板间的动摩擦因数μ是多少?(2)若将水平拉力F改为与水平方向斜向上成θ角度的拉力F1拉物块如图2,仍使物块沿该水平木板做匀速直线运动,则拉力F1为多大?(3)如图3若将木板一端固定,另一端抬高,使木板与水平面成α角度,形成一斜面,现用平行于斜面向上的力F2沿斜面向上拉物块,仍能使物块做匀速直线运动,则拉力F2又是多大?'。
理论力学-力的分解与力的投影以及平面力系中的力矩

cos Fx
F
cos Fy
F
式中的α和β分别表示力F与x轴和y轴正向间的夹角。
第一章 静力学的基本公理与受力分析
合力投影定理
合力在任一轴上的投影等于各分力在同一轴上投影的代数和。
F R F 1 F 2 L L F nF
F R F x i F y j,F i F x ii F y ij( i 1 ,2 ,L n )
第一章 静力学的基本公理与受力分析
例题
平面基本力系
合力的大小:
FR Fx2Fy217.31N
合力与轴x,y夹角的方向余弦为:
cos Fx 0 .754
FR
cos F y 0 .656
FR
所以,合力与轴x,y的夹角分别为:
40.99
49.01
第一章 静力学的基本公理与受力分析
F2 y
三、力在空间坐标轴上的投影
力在空间正交坐标轴上的投影可用两种方法来计算
直接投影法
z
Fx F cos
F
y
F
cos
F z F c o s
F
F = Fx+Fy+Fz= Fx i+Fy j+Fz k
O
y
x
第一章 静力学的基本公理与受力分析
二次投影法
z
F = Fx+Fy+Fz= Fx i+Fy j+Fz k
力F使物体绕O点转动效果的量度取决于三个因素: (1)力F的大小与力臂的乘积,即力矩的大小; (2)力F与矩心O所确定的平面的方位,即力矩的作用面; (3)在作用面内,力F绕矩心O的转向。
第一章 静力学的基本公理与受力分析
理论力学课件 第一章力的投影,主矩主矢

•
•
v Fn
=
X niv
•
+ Yn
vj
+
v Znk
z
Fn O x
Fi
F1 y
F2
∑ X1 + X 2 +L+ X n = X
∑ Y1 + Y2 + L + Yn = Y
∑ Z1 + Z2 + L + Zn = Z
v FV
=
(∑
X
)iv
+ (∑Y )vj
+ (∑ Z )kv
1.1 力的投影、力系的主矢、汇交力系的合力
1.1 力的投影、力系的主矢、汇交力系的合力
合力解析表达式Fv形R式= (−153.6iv −170.5 vj )N
合力的大小和方向
∑ ∑ FR = ( X )2 + ( Y )2 = 229.5N
θ
=
arctan
∑Y ∑X
= 47.98°
y
θO x
FR
1.1 力的投影、力系的主矢、汇交力系的合力 2、汇交力系合成的几何法
例1-4:边长为a的正方体受到四个大小都等于F的力, 方向如图,求此力系的主矢。
z A
G
F4
O
F1
E x
B
F2
H
F3
C y
D
1.1 力的投影、力系的主矢、汇交力系的合力
z
解
A
B 四力的矢量解析表达式:
G
F2
H
v F1
=
F
⎜⎜⎝⎛
2
v i
+
2
2 2
v j
理论力学完整讲义

理论力学一 静力学(平衡问题)01力的投影与分力 02约束与约束力 03二力构件04平面汇交力系的简化 05力矩与力偶理论06平面一般力系的简化:主矢和主矩 07平面一般力系的平衡方程 08零杆的简易判断方法 09刚体系统的平衡问题 10考虑摩擦时的平衡问题01力的投影与分力 基本概念:刚体:在力的作用下大小和形状都不变的物体。
平衡:物体相对于惯性参考系保持静止或均速直线运动的状态 力的三要素:力的大小、方向、作用点。
集中力:力在物体上的作用面积很小,可以看做是一个作用点,单位:N 。
分布力:小车的重力均匀分布在桥梁上面,这种力称为分布力(也称为均布荷载),常用q 表示,单位N/m ,若均布荷载q 作用的桥梁的长度是L ,则均布荷载q 的合力就等于q ×L ,合力的作用点就在桥梁的中点位置。
力的投影和分力 1)在直角坐标系: 投影(标量):cos x F F α= cos y F F β=分力(矢量)cos x F F i α=u u r r cos y F F j β=u u r r2)在斜坐标系: 投影(标量):cos x F F α= cos()y F F ϕα=-分力(矢量)(cos sin cot )x F F F i ααϕ=-u u r rsin sin y F F j αβ=u u r r02约束与约束力约束:对于研究对象起限制作用的其他物体。
约束力方向:总是与约束所能阻止物体运动的方向相反,作用在物体和约束的接触点处。
约束力大小:通常未知,需要根据平衡条件和主动力求解。
(1)柔索约束:柔索约束:由绳索、皮带、链条等各种柔性物体所形成的约束,称为柔索约束。
特点:只能承受拉力,不能承受压力。
约束力:作用点位接触点,作用线沿拉直方向,背向约束物体。
(2)光滑面约束光滑面约束:由光滑面所形成的约束称为光滑面约束。
约束性质:只能限制物体沿接触面公法线趋向接触面的位移。
特点:只能受压不能受拉,约束力F 沿接触面公法线指向物体。
理论力学-第一章基本概念和物体受力分析

§1.2静力学公理三(力的可传性)
公理3 加减平衡力系公理 在已知力系上加上或减去任意平衡力系,并不 改变原力系对刚体的作用。
推理1 力的可传性原理 作用 在刚体上某点的力,可以沿着它的作用线移动到刚体 内任意一点,而不改变该力对刚体的作用效果。
§1.3 约束和约束反力(定义)
引言: 物体受到的力一般可以分为两类: 一类是使物体运动或使物体有运动趋势 的力,称为主动力,如重力、水压力等,主 动力在工程上称为(工作)荷载; 另一类是对物体的运动或运动趋势起限制 作用的力,称为被动力。在工程上 一般称 为约束反力。 通常主动力是已知的,约束反力是未知的。
物体受力分析及受力图的概念
•受力分析:就是分析物体(即研究对象)受到的 全部主动力和约束反力 •分离体:就是解除所有约束后得到的物体,又称 为隔离体或脱离体。
•受力图:在分离体上画出其所受的全部主动力和约 束反力。
§1.4 物体的受力分析
例 画弯杆受力图
取 隔 离 体
F1
F2
FAy
F3
FAx
FRB
圆柱铰链的约束反 力在与销钉轴线垂 直的平面内并通过 销钉中心,但方向 未定。如图(a)示 固定铰支座约束的简图和约束反力
3.中间铰约束
中间铰
中间铰约束的简图和约束反力
4.可动铰支座
在固定铰支座的座体 与支承面之间加辊轴 就成为可动铰支座。 其约束反力必垂直于 支承面。
可动铰支座约束的简图和约束反力
• 【例1.3】如图(a)所示,梁AC与CD在C处铰接, 并支承在三个支座上,画出梁AC、CD及全梁AD的
【解】取梁CD为研究对象并画出分离体,如图(b)所示 取梁AC为研究对象并画出分离体, 如图(c)所示。 以整个梁为研究对象,画出分离体,如图(d)所示ቤተ መጻሕፍቲ ባይዱ
力学受力分析之力的分解分析课件

力的分解可以通过力的平行四边 形法则或三角形法则来实现,这 些法则在解决实际工程问题中具
有广泛的应用。
力的分解有助于深入理解力的作 用效果和物体运动状态的变化, 是解决力学问题的重要手段之一。
力的正交分解
力的正交分解是将一个力按照正交坐 标系的方向进行分解,得到若干个分 力。
在正交分解时,应注意各个分力的正 负号,以便正确地表示力的方向和大 小。
感您的 看
THANKS
在建筑设计时,需要对建筑物的结构进行 受力分析,将外力分解为各个方向的力, 以确定建筑物的安全性和稳定性。
04
受力分析的方法
隔离法
总结词
将研究对象从其周围物体中隔离出来,分析它受到的力。
详细描述
隔离法是受力分析中最常用的方法之一。通过将研究对象从 其周围物体中隔离出来,可以单独分析研究对象的受力情况, 从而确定每个力的作用点和方向。这种方法有助于我们清晰 地理解物体的运动状态和受力关系。
合力和分力是替代关系,即它们 在分析中可以互相替代。
合力和分力不一定是实际存在的 力,它们可以是虚拟的力。
06
及解析
基础习题
基础习题1
一个物体受到两个力F₁和F₂的 作用,这两个力的大小分别为 3N和5N,求它们的合力大小。
答案
合力大小为8N。
基础习题2
一个物体受到三个力F₁、F₂和 F₃的作用,这三个力的大小分 别为2N、3N和4N,求这三个 力的合力大小。
详细描述
假设法是一种基于逻辑推理的受力分析方法。根据已知的运动状态,我们可以假设某些 力存在或不存在,然后通过牛顿第二定律等力学原理进行逻辑推理,验证假设的正确性。
这种方法在解决一些复杂的动力学问题时非常有效,可以帮助我们快速找到解题思路。
理论力学 第一张详述

合力(合力的大小与方向) FR F1 F2 亦可用力三角形求得合力矢
(矢量的和)
公理2 二力平衡条件
作用在刚体上的两个力,使刚体保持平衡的必要和充分条 件是:这两个力的大小相等,方向相反,且作用在同一直线上。
A
A A
A
A
FA
(a)
(b)
(c)
约束特点:在上述固定铰支座与光滑固定平面之间装
有光滑辊轴而成。
约束力:构件受到垂直于光滑面的约束力,指向待定。
(2) 球铰链
约束特点:通过球与球壳将构件连接,构件可以绕球 心任意转动,但构件与球心不能有任何移动。
约束力:当忽略摩擦时,球与球座亦是光滑约束问题。 约束力通过接触点,并指向球心,是一个不能预先确 定的空间力,可用三个正交分力表示。
Fx
Fy
当主动力尚未确定时,约束力的方向预先不能确定。 可用二个通过轴心的正交分力 Fx, Fy 表示。
(2)光滑圆柱铰链
约束特点:由两个各穿孔的 构件及圆柱销钉组成,如剪 刀。
约束力:光滑圆柱铰链亦为孔与轴的配合问题,与 轴承一样,可用两个正交分力表示。
Fcx F 'cx, Fcy F 'cy
变形体在某一力系作用下处于平衡,如将此变形体刚化 为刚体,其平衡状态保持不变。
柔性体(受拉力平衡) 反之不一定成受压平衡)
柔性体(受压不能平衡)
思考
只适用于刚体的公理有哪些? 二力平衡条件和加减平衡力系公理
§1-2 约束和约束力
自由体:位移不受任何限制的物体。 非自由体:位移受到限制的物体。
理论力学课件 第一章力的投影,主矩主矢

vj
+
v Fz k
1.1 力的投影、力系的主矢、汇交力系的合力 二、力系的主矢量
1、力系的主矢量定义
z F1
力系的各个力的矢量和。
Fn O
y
∑ v
FV
=
v F
=
v F1
+
v F2
+⋅⋅⋅+
v Fn
x
F2 Fi
力系的主矢是自由矢量(大小、方向)
1.1 力的投影、力系的主矢、汇交力系的合力
2、FvFv2力1 ==系XX的21iviv主++矢YY21的vvjj ++计ZZ算12kkvv
例1-4:边长为a的正方体受到四个大小都等于F的力, 方向如图,求此力系的主矢。
z A
G
F4
O
F1
E x
B
F2
H
F3
C y
D
1.1 力的投影、力系的主矢、汇交力系的合力
z
解
A
B 四力的矢量解析表达式:
G
F2
H
v F1
=
F
⎜⎜⎝⎛
2
v i
+
2
2 2
v j
⎟⎟⎠⎞
F4
O
F1
E x
F3
C
v F2
=
F ⎜⎜⎝⎛ −
z F1
Fn O
y
x
一个复杂的力系(任意F力2 系)两个特征量即主矢、主矩。
二.力系的简化
z
z
F1
Fn O
y=
MO O
FR y
x
x
F2
一个复杂的力系(任意力系)化简为力—力偶系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、力的分解
力的分解与力的投影
根据力的平行四边形法则,作用在O点的一个力 R,可以过同一点O向任意两个方位线分解,分力的 大小与合力R的关系根据平行四边形的边、角几何 关系确定。
y
F1
O
R
F2
x
第一章
静力学的基本公理与受力分析
二、力在坐标轴上的投影
定义:在力矢量起点和终点作轴的垂线,在轴上得一线段,给 这线段加上适当的正负号,则称为力在轴上的投影。 F α
F2
y
合力与轴x,y夹角的方向余弦为:
F cos x 0.754 FR cos Fy FR 0.656
F1
60
O
45
30
45
x
F3
所以,合力与轴x,y的夹角分别为:
F4
40.99
第一章
49.01
静力学的基本公理与受力分析
例题
或
合力的大小:
第一章 静力学的基本公理与受力分析
例题
计算图示力F对点O之 矩。F与水平线夹角 为,杆OA长r,与水 平线夹角为。
平面力系中的力矩
解:
M O ( F ) Fh Frsin( - )
MO (Fx ) -Fx y -Fcos rsin MO (Fy ) Fy x Fsin rcos
静力学的基本公理与受力分析
一、平面力系中的力矩
力矩是度量力使刚体绕点转动效应的物理量 O——矩心
h——力臂,点O到力的作用线的垂直距离
力对点之矩是一个代数量,它的绝对值等于力的大小与 力臂的乘积,它的正负可按下法确定:力使物体绕矩心 逆时针转向时为正,反之为负。
Mo(F)=±Fh=±2AOAB
力矩为零的情况:当h=0即力的作用线通过矩心时 力矩单位 牛顿米(Nm) 千牛顿米(KNm)
平面基本力系
Fx 129.3 N
Fy 112.3 N
F2
FR Fx2 Fy2 171.3 N
y
合力的方向: Fy 112.3 tan 0.8685 Fx 129.3 FR Fy
40.97
o
F1
60
O
45
30
45
x
Fx
第一章 静力学的基本公理与受力分析
z
F = Fx+Fy+Fz= Fx i+Fy j+Fz k
F
O
Fxy
x
y
Fx F sin cos Fy F sin sin Fz F cos
第一章 静力学的基本公理与受力分析
F Fx2 Fy2 Fz2 Fx cos( F , i ) F Fy cos( F , j ) F Fz cos( F , k ) F
投影是代数量
x
力在某轴的投影,等于力的模乘以力与投影轴正向 间夹角的余弦。
第一章 静力学的基本公理与受力分析
Fx=F cos Fy=F cos=F sin
Fx和Fy是力F在x,y轴上的投影
力的解析式:
F Fx i Fy j
力的大小与方向为:
F Fx Fy
22Fx cFra biblioteks F第一章 静力学的基本公理与受力分析
例题
平面力系中的力矩
M O (Fx ) M O (Fy ) xFy - yFx
Fr(sincos - cossin ) Frsin ( - ) M O (F )
M O (F ) M O (Fx ) M O (Fy )
O
45
30
45
x
129.3 N
F3
Fy Fyi F1 sin 30 F2 sin 60 F3 sin 45 F4 sin 45 112.3 N
第一章 静力学的基本公理与受力分析
F4
例题
合力的大小:
平面基本力系
FR Fx2 Fy2 171.3 N
第一章 静力学的基本公理与受力分析
例题
已知:Fn,,r
平面力系中的力矩
r
O
求:力 Fn 块对轮心O的力矩。
解:(1)直接计算
F Fn
h
M O (Fn ) Fn h Fn r cos
(2)利用合力定理计算
Fr
M O ( Fn ) M O ( Fr ) M O ( F ) M O (F ) Fn r cos
例题
平面基本力系
求如图所示平面共点力系的合力。其中:F1 = 200 N, F2 y F = 300 N,F = 100 N,F = 250 N。
2 3 4
解:
根据合力投影定理,得合力在轴 x,y上的投影分别为:
F1
60
Fx Fxi F1 cos 30 F2 cos 60 F3 cos 45 F4 cos 45
Fx i Fy j (Fxi i ) (Fyi j ) ( Fxi )i ( Fyi ) j
合力的大小和方向余弦为
FR Fx2 Fy2 ( Fxi ) 2 ( Fyi ) 2 Fy Fx cosα , cos FR FR
第一章 静力学的基本公理与受力分析
F3
F4
三、力在空间坐标轴上的投影 力在空间正交坐标轴上的投影可用两种方法来计算 直接投影法
Fx F cos Fy F cos Fz F cos
z
O
F
y
F = Fx+Fy+Fz= Fx i+Fy j+Fz k
x
第一章
静力学的基本公理与受力分析
二次投影法
§ 1 –4
力对物体可以产生
力 矩
移动效应--取决于力的大小、方向; 转动效应--取决于力矩的大小、方向.
力F使物体绕O点转动效果的量度取决于三个因素: (1)力F的大小与力臂的乘积,即力矩的大小; (2)力F与矩心O所确定的平面的方位,即力矩的作用面; (3)在作用面内,力F绕矩心O的转向。
第一章
cos
Fy F
式中的α和β分别表示力F与x轴和y轴正向间的夹角。
第一章 静力学的基本公理与受力分析
合力投影定理
合力在任一轴上的投影等于各分力在同一轴上投影的代数和。
FR F1 F2 Fn F
FR Fx i Fy j , Fi Fxi i Fyi j (i 1, 2,n)