椭圆与双曲线

合集下载

椭圆与双曲线知识点集合

椭圆与双曲线知识点集合

椭圆与双曲线知识点集合椭圆和双曲线是平面内的两种点的轨迹。

椭圆是指与两个定点F1和F2的距离的和等于常数(大于|F1,F2|)的点的轨迹,这两个点被称为椭圆的焦点。

双曲线是指与两个定点F1和F2的距离的差的绝对值等于常数(大于且小于|F1,F2|)的点的轨迹,这两个点被称为双曲线的焦点。

椭圆和双曲线的定义中,参数2a的范围限制符号不同。

对于椭圆,焦点在x轴上或y轴上,有P={M||MF1|+|MF2|=2a}(2a>|F1F2|);对于双曲线,焦点在x轴上或y轴上,有P={M||MF1|-|MF2|=2a}(0<2a<|F1F2|)。

标准方程是表示椭圆和双曲线的一种方式。

在求标准方程时,一定要考虑焦点位置,即焦距|F1F2|=2c。

椭圆和双曲线的长轴和短轴的长度关系为a2=b2+c2和c2=a2+b2.几何含义是|x|≤a,|y|≤b,或者|x|≤b,|y|≤a,或者|x|≥a,y∈R。

椭圆有4个顶点,双曲线有2个顶点,椭圆没有渐近线,双曲线有两条渐近线。

椭圆和双曲线的顶点和长轴、短轴的长度可以通过求解标准方程得到。

长轴和短轴分别被称为实轴和虚轴,实轴的长度为2a,虚轴的长度为2b。

离心率是描述椭圆和双曲线形状的一个参数,其取值范围为c∈(0,1)和c∈(1,∞)。

离心率越大,椭圆或双曲线越扁,离心率越小,椭圆或双曲线越圆(椭圆)或开口越小(双曲线)。

在平面内,对于一个点到定点F的距离与到定直线l的距离之比为常数e。

这是第一定义。

第二定义是,对于平面内到定点F的距离与到定直线l的距离之比为(<e<1)的点的轨迹是椭圆,其中F在l外。

F是椭圆的一个焦点,而l是焦点F对应的准线。

同样地,当常数(ee1)时,点的轨迹是双曲线。

F是双曲线的一个焦点,而l是焦点F对应的准线。

焦点可以在x轴上或y轴上。

椭圆的准线在两侧,而双曲线的准线在两支之间。

准线方程如下:左准线x a2/c,右准线x a2/c下准线y c2/b,上准线y c2/b左焦半径|PF1|a ex,右焦半径|PF2|a ex下焦半径|PF1|a ey,上焦半径|PF2|a ey左焦半径|PF1||a ex|,右焦半径|PF2||a ex| 下焦半径|PF1||a ey|,上焦半径|PF2||a ey| 焦准距p b2/c焦半径公式是焦半径取值范围[a-c,a+c]左焦点弦|AB|2a e(x1x2),右焦点弦|AB|2a e(x1x2)下焦点弦|AB|2a e(y1y2),上焦点弦|AB|2a e(y1y2)左|AB||2a e(x1x2)|,右|AB||2a e(x1x2)|下|AB||2a e(y1y2)|,上|AB||2a e(y1y2)|焦点弦为长轴时最长,长为2a;焦点弦为通径时最短,长为2b2/a;同侧焦点弦为通径时最短,长为2b2/a;异侧焦点弦为实轴时最短,长为2a。

椭圆和双曲线的标准方程

椭圆和双曲线的标准方程

椭圆和双曲线的标准方程椭圆和双曲线是解析几何中常见的曲线,它们在数学和物理学中有着重要的应用。

本文将介绍椭圆和双曲线的标准方程,帮助读者更好地理解和运用这两种曲线。

首先,让我们来看看椭圆的标准方程。

椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

椭圆的标准方程为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中,a和b分别表示椭圆的长半轴和短半轴。

通过这个标准方程,我们可以推导出椭圆的各种性质和特点,进而进行相关的数学推导和计算。

接下来,让我们转而来看看双曲线的标准方程。

双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P的轨迹。

双曲线的标准方程为:\[\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\]同样地,a和b分别表示双曲线的长半轴和短半轴。

通过这个标准方程,我们也可以推导出双曲线的各种性质和特点,进行相关的数学推导和计算。

椭圆和双曲线作为解析几何中的重要内容,其标准方程的推导和运用都是数学学习中的重点和难点。

通过本文的介绍,相信读者对椭圆和双曲线的标准方程有了更清晰的认识,能够更好地应用于相关的数学问题中。

总结一下,椭圆和双曲线的标准方程分别为\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]和\[\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\]。

通过这些标准方程,我们可以推导出椭圆和双曲线的各种性质和特点,帮助我们更好地理解和运用这两种曲线。

希望本文的介绍能够对读者有所帮助,也希望大家能够在学习和工作中善于运用数学知识,不断提升自己的数学水平。

谢谢大家的阅读!。

椭圆双曲线参数方程公式

椭圆双曲线参数方程公式

椭圆双曲线参数方程公式
椭圆双曲线是二元二次方程的一种类型。

它的参数方程公式描述了在平面坐标系中的形状和位置。

椭圆和双曲线的参数方程公式略有不同,下面分别介绍。

1. 椭圆的参数方程公式:
椭圆的参数方程公式可以表示为:
x = a cos(t)
y = b sin(t)
其中,a和b是椭圆的两个半轴长度,t是参数,范围从0到2π。

这个参数方程公式描述了椭圆上每一点的坐标。

在坐标系中,椭圆的中心在原点,且半轴与坐标轴平行。

2. 双曲线的参数方程公式:
双曲线的参数方程公式可以表示为:
x = a sec(t)
y = b tan(t)
其中,a和b是双曲线的两个半轴长度,t是参数,范围从0到2π。

这个参数
方程公式描述了双曲线上每一点的坐标。

在坐标系中,双曲线的中心在原点,且两支曲线分别关于x轴和y轴对称。

需要注意的是,双曲线有两种形式:左右开口和上下开口。

如果双曲线的参数方程公式中y的系数为负数,则为左右开口;如果x的系数为负数,则为上下开口。

总之,椭圆和双曲线的参数方程公式是数学中的基础知识,可以用于描述其形状和位置。

学生应该掌握这些参数方程公式的基本概念和用法。

椭圆与双曲线

椭圆与双曲线

椭圆与双曲线椭圆与双曲线是数学中重要的曲线类型,它们在几何学、物理学等领域拥有广泛的应用。

椭圆和双曲线的定义以及特性是我们接下来要探讨的主题。

一、椭圆的定义与特性椭圆是由一个固定点F(焦点)和到该点的距离之和等于常数2a的点P的轨迹。

该常数2a被称为椭圆的长轴,2b被称为椭圆的短轴,且b^2 = a^2 - c^2。

其中,焦距c等于椭圆的长轴与短轴之间的距离。

椭圆具有以下的特性:1. 椭圆上的任意一点到焦点F及到另一个焦点F'的距离之和相等,等于常数2a。

2. 椭圆的离心率等于焦距与长轴之比,即e = c/a,且e < 1。

3. 椭圆的中点为原点O,对称轴为x轴和y轴。

4. 椭圆可以通过参数方程(x = a cosθ, y = b sinθ) 来表示。

二、双曲线的定义与特性双曲线是由一个固定点F(焦点)和到该点的距离之差等于常数2a的点P的轨迹。

该常数2a被称为双曲线的距离差,也是双曲线的长轴。

双曲线具有以下的特性:1. 双曲线上的任意一点到焦点F及到另一个焦点F'的距离之差相等,等于常数2a。

2. 双曲线的离心率大于1,即e = c/a,且e > 1。

3. 双曲线的中点为原点O,对称轴为x轴和y轴。

4. 双曲线可以通过参数方程(x = a secθ, y = b tanθ) 来表示。

三、椭圆与双曲线的应用椭圆与双曲线在几何学、物理学和工程学等领域有广泛的应用,下面列举几个例子:1. 天体的轨道:行星、彗星等天体的轨道大多为椭圆或双曲线。

椭圆轨道表示行星等天体绕着太阳运动,而双曲线轨道表示彗星等天体从远离太阳的地方接近太阳,然后再远离。

2. 天体测量:椭圆和双曲线在测量天体的位置、速度和质量等方面有着广泛的应用。

例如,通过观测行星轨道的椭圆形状和参数,可以计算出行星的质量和轨道周期等信息。

3. 摄影测量:在航空摄影和卫星影像解译中,椭圆与双曲线用于描述地球表面的特征、地物形态和地形测量等。

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结(一)椭圆1.椭圆的定义如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C当a>c时表示当a=c时表示当a<c时第二定义:动点M与一个定点的距离和它到一条定直线的距离的比是常数e(0<e<1)时,这个点的规迹是椭圆。

定点是,定直是e是2.椭圆的标准方程参数方程(1)标准方程(2)参数方程3.椭圆的性质(1)焦点在x标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e= 范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的左右两焦点,P为椭圆上的一点) 椭圆的通径(过椭圆的一个焦点F且垂直于它过焦点的对称轴的弦)|P1P(2)焦点在y轴上的椭圆标准方程x,y的范围顶点焦点对称轴对称中心长半轴的长短半轴的长焦距离心率e= 范围e越大椭圆越e越小椭圆越准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点)4.椭圆系(1)共焦点的椭圆系方程为2221x yk k c+=-(其中k>c2,c为半焦距)(2 )具有相同离心率的标准椭圆系的方程2222(0) x ya bλλ+=>(二) 双曲线1.双曲线的定义如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是(2) 若|P F1|-|PF2|=2a①0<2a<|F1F2|则动点P的轨迹是②2a=|F1F2|则动点P的轨迹是③2a=0则动点P的轨迹是2.双曲线的标准方程3.双曲线的性质(1)焦点在x轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的左右两焦点,P为椭圆上的一点)(3)焦点在y轴上的双曲线标准方程x,y的范围顶点焦点对称轴对称中心实半轴的长虚半轴的长焦距离心率e= 范围e越大双曲线的开口越e越小双曲线的开口越准线渐近线焦半径公式|PF1|= |PF2|= (F1,F2分别为双曲线的下上两焦点,P为椭圆上的一点)4.等轴双曲线22(0)x yλλ-=≠特点①实轴与虚轴长相等②渐近线互相垂直y x=±③离心率为5.共轭双曲线以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原双曲线的共轭双曲线特点①有共同的渐近线②四焦点共圆双曲线22221x ya b+=的共轭双曲线是6.双曲线系(1)共焦点的双曲线的方程为2221x yk k c+=-(0<k<c2,c为半焦距)(2)共渐近线的双曲线的方程为2222(0) x ya bλλ-=≠。

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结椭圆和双曲线都是曲线,是数学上的重要概念。

它们在很多地方都有着广泛的应用,特别是在几何学中,它们被广泛使用。

椭圆和双曲线都有一些比较共同的性质,也有一些明显的不同之处。

本文将从一般的基本性质、定义、方程式、参数方程式以及其他应用等方面,总结椭圆与双曲线知识点。

一、椭圆和双曲线的概念椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上。

椭圆曲线的弦长度相等,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。

双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上。

双曲线的弦长度不相等,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。

二、椭圆和双曲线的定义根据椭圆的性质,一般定义椭圆为:椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。

双曲线的定义是:双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。

三、椭圆和双曲线的方程式椭圆的方程式一般可以表示为:$$x=a\cos t,y=b\sin t$$其中,a和b分别为椭圆的长短轴,t为参数。

双曲线的方程式一般可以表示为:$$x=a\cosht,y=b\sinh t$$其中,a和b分别为双曲线的长短轴,t为参数。

四、椭圆和双曲线的参数方程式椭圆的参数方程式可以表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$双曲线的参数方程式可以表示为:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$五、椭圆和双曲线的性质1.椭圆的长短轴之和是一定值,即$a+b=C$;2.椭圆的长短轴之积也是一定值,即$ab=A$;3.椭圆的弦长度是一定值,即$2\pi a=L$;4.双曲线的长短轴之和是一定值,即$a+b=D$;5.双曲线的长短轴之积也是一定值,即$ab=B$;6.双曲线的弦长度是一定值,即$2\pi a\cosh t=M$;7.椭圆和双曲线都具有对称性,可以通过旋转或对称变换来实现。

高考数学中的椭圆与双曲线相关知识点详解

高考数学中的椭圆与双曲线相关知识点详解

高考数学中的椭圆与双曲线相关知识点详解椭圆和双曲线是高中数学中非常重要的概念,它们在解决几何问题和代数问题中都有广泛的应用。

在高考数学中,椭圆和双曲线都是重点考查的内容,因此对于这两个概念,学生需要掌握其相关知识点。

一、椭圆的定义与特征椭圆是平面上一点集合,其到两个不同定点的距离之和等于常数,这两个定点叫做椭圆的焦点。

椭圆上任意一点到这两个定点的距离之和等于椭圆上任意一点到其所在直线的垂足的距离之和。

根据椭圆的定义,我们可以得出以下特征:1. 椭圆上任意一点到两个焦点的距离之和等于常数2a;2. 椭圆的两个直径的长度之和为常数2a;3. 椭圆的两条焦弦的长度之和为常数2a;4. 椭圆的中心点位于两个焦点的中垂线上,中心到两个焦点的距离之和等于常数2a。

二、双曲线的定义与特征双曲线是平面上一点集合,其到两个不同定点的距离之差等于常数。

这两个定点叫做双曲线的焦点。

在双曲线上任意一点到这两个定点的距离之差等于椭圆上任意一点到其所在直线的垂足的距离之差。

双曲线的定义可以得出以下特征:1. 双曲线上任意一点到两个焦点的距离之差等于常数2a;2. 双曲线的两个直径的长度之差为常数2a;3. 双曲线的两条焦弦的长度之差为常数2a。

三、椭圆和双曲线的方程椭圆和双曲线都可以用方程表示。

以椭圆为例,如果椭圆的中心点为(h,k),椭圆的长轴长度为2a,短轴长度为2b,那么椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1而双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,a和b分别代表长轴的长度和短轴的长度。

当a²> b²时,方程表示的是椭圆;当a² < b²时,方程表示的是双曲线;当a² = b²时,方程表示的是圆。

四、椭圆和双曲线的参数方程椭圆和双曲线的参数方程也可以帮助我们更好地了解它们的特征。

椭圆与双曲线的通径

椭圆与双曲线的通径

椭圆与双曲线的通径椭圆与双曲线的通径椭圆和双曲线是高中数学中常见的曲线,它们在几何、物理、工程等领域都有广泛的应用。

本文将介绍椭圆和双曲线的通径,包括定义、性质和应用。

一、椭圆的通径1. 定义椭圆是平面上到两个定点(焦点)距离之和等于定长(长轴)的点的轨迹。

通径是指过两个焦点且垂直于长轴的直线段。

2. 性质(1)通径长度为2b,其中b为短轴长度。

(2)任意一条过焦点且垂直于长轴的直线段都是椭圆的通径。

(3)任意一条过中心且垂直于短轴的直线段都是椭圆的主轴。

3. 应用(1)在建筑设计中,可以利用椭圆形状设计拱门或者天花板。

(2)在天文学中,行星绕太阳运动的轨道大多呈现出类似于椭圆形状。

二、双曲线的通径1. 定义双曲线是平面上到两个定点(焦点)距离之差等于定长(距离)的点的轨迹。

通径是指过两个焦点且垂直于双曲线中心轴的直线段。

2. 性质(1)通径长度为2b,其中b为双曲线中心轴到顶点的距离。

(2)任意一条过焦点且垂直于双曲线中心轴的直线段都是双曲线的通径。

(3)任意一条过中心且垂直于双曲线渐近线的直线段都是双曲线的主轴。

3. 应用(1)在物理学中,电磁波传播和光学成像等问题可以用到双曲线函数来描述。

(2)在工程学中,可以利用双曲线形状设计道路或者桥梁等结构。

三、椭圆与双曲线通径的比较1. 长度比较椭圆和双曲线的通径长度相同,均为2b,其中b分别为短轴和中心轴到顶点的距离。

但是,由于椭圆长轴较短,所以椭圆通径相对较短。

2. 形状比较椭圆和双曲线的通径形状有所不同。

椭圆的通径是一条水平线段,而双曲线的通径是一条斜线段。

这也反映了椭圆和双曲线在几何性质上的差异。

3. 应用比较椭圆和双曲线在应用方面有所不同。

椭圆常用于建筑设计、天文学等领域,而双曲线则常用于物理学、工程学等领域。

这也与它们各自的特点和性质有关。

四、总结本文介绍了椭圆和双曲线的通径,包括定义、性质和应用。

通过对比可以看出,虽然它们都是二次曲线,但在几何性质、形状以及应用方面有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线一、知识导学1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+bx a y (0>>b a )3椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率4.椭圆的准线方程对于12222=+by a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=5.焦点到准线的距离cb c c a c c a p 2222=-=-=6椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x 7.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距8.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-bya x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b ) (2)c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a9焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上10.双曲线的几何性质: (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a ,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心(2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a , a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异(3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b y a x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:1>e双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔11. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率.12.双曲线的准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线c a x l 22:=;焦点到准线的距离cb p 2=(也叫焦参数)对于12222=-b x a y 来说,相对于上焦点),0(1c F 对应着上准线c a y l 21:=;相对于下焦点),0(2c F -对应着下准线ca y l 22:-=二、疑难知识导析椭圆、双曲线、抛物线同属于圆锥曲线,它们的定义、标准方程及其推导过程以及简单的几何性质都存在着相似之处,也有着一定的区别,因此,要准确地理解和掌握三种曲线的特点以及它们之间的区别与联系1.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e2.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x aby ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 3.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-14.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点. (4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 19抛物线的焦半径公式:抛物线)0(22>=p px y ,0022x pp x PF +=+=抛物线)0(22>-=p px y ,0022x p p x PF -=-=抛物线)0(22>=p py x ,0022y p p y PF +=+= 抛物线)0(22>-=p py x ,0022y p p y PF -=-= 三、经典例题导讲[例1]设双曲线的渐近线为:x y 23±=,求其离心率.错解:由双曲线的渐近线为:x y 23±=,可得:23=a b ,从而213122=+==ab ac e 剖析:由双曲线的渐近线为x y 23±=是不能确定焦点的位置在x 轴上的,当焦点的位置在y 轴上时,32=a b ,故本题应有两解,即:213122=+==ab ac e 或313. [例2]设点P(x,y)在椭圆4422=+y x 上,求y x +的最大、最小值. 错解:因4422=+y x ∴442≤x ,得:11≤≤-x ,同理得:22≤≤-y ,故33≤+≤-y x ∴最大、最小值分别为3,-3.剖析:本题中x 、y 除了分别满足以上条件外,还受制约条件4422=+y x 的约束.当x=1时,y 此时取不到最大值2,故x+y 的最大值不为3.其实本题只需令θθsin 2,cos ==y x ,则)sin(5sin 2cos ψθθθ+=+=+y x ,故其最大值为5,最小值为5-.[例3]已知双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,求双曲线方程.错解一: .60,40,10,422222=-=∴=∴===a c b a c ca x 故所求的双曲线方程为.1604022=-y x错解二: 由焦点)0,10(F 知,10=c .75,5,2222=-==∴==a cb a ace 故所求的双曲线方程为.1752522=-y x错因: 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。

由于判断错误,而造成解法错误。

随意增加、遗漏题设条件,都会产生错误解法.解法一: 设),(y x P 为双曲线上任意一点,因为双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,由双曲线的定义知.2|4|)10(22=-+-x y x 整理得 .14816)2(22=--y x解法二: 依题意,设双曲线的中心为)0,(m ,则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+.21042acm c m c a 解得 ⎪⎩⎪⎨⎧===.284m c a ,所以 ,481664222=-=-=a c b 故所求双曲线方程为 .14816)2(22=--y x[例4]设椭圆的中心是坐标原点,长轴x 在轴上,离心率23=e ,已知点)23,0(P 到这个椭圆上的最远距离是7,求这个椭圆的方程.错解:依题意可设椭圆方程为)0(12222>>=+b a b y a x则 43122222222=-=-==ab a b a ac e , 所以 4122=ab ,即 .2b a =设椭圆上的点),(y x 到点P 的距离为d , 则 222)23(-+=y x d.34)21(3493)1(222222+++-=+-+-=b y y y b y a 所以当21-=y 时,2d 有最大值,从而d 也有最大值。

所以 22)7(34=+b ,由此解得:.4,122==a b于是所求椭圆的方程为.1422=+y x错因:尽管上面解法的最后结果是正确的,但这种解法却是错误的。

结果正确只是碰巧而已。

由当21-=y 时,2d 有最大值,这步推理是错误的,没有考虑y 到的取值范围.事实上,由于点),(y x 在椭圆上,所以有b y b ≤≤-,因此在求2d 的最大值时,应分类讨论. 正解:若21<b ,则当b y -=时,2d (从而d )有最大值.于是,)23()7(22+=b 从而解得矛盾与21,21237<>-=b b . 所以必有21≥b ,此时当21-=y 时,2d (从而d )有最大值,所以22)7(34=+b ,解得.4,122==a b于是所求椭圆的方程为.1422=+y x[例5]从椭圆12222=+by a x ,(a >b>0)上一点M 向x 轴所作垂线恰好通过椭圆的左焦点F 1,A 、B 分别是椭圆长、短轴的端点,AB ∥OM 设Q是椭圆上任意一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若⊿F 1PQ 的面积为203,求此时椭圆的方程解:本题可用待定系数法求解∵b=c, a =2c ,可设椭圆方程为122222=+cy c x∵PQ ⊥AB,∴k PQ =-21==bak AB ,则PQ 的方程为y=2(x-c), 代入椭圆方程整理得5x 2-8cx+2c 2=0, 根据弦长公式,得c PQ 526=, 又点F 1到PQ 的距离d=362 c ∴==∆d PQ S PQ F 2112534c ,由,2532053422==c c ,得 故所求椭圆方程为1255022=+y x[例6]已知椭圆:1922=+y x,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长解:a=3,b=1,c=22; 则F (-22,0)由题意知:)22(31:+=x y l 与1922=+y x 联立消去y 得:01521242=++x x设A (),11y x 、B (),22y x ,则21,x x 是上面方程的二实根,由违达定理,2321-=+x x41521=⋅x x ,223221-=+=x x x M 又因为A 、B 、F 都是直线l 上的点, 所以|AB|=21518324)(32||3112122121=-=-+⋅=-⋅+x x x x x x点评:也可利用“焦半径”公式计算[例7](06年全国理科)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ |的最大值.解: 依题意可设P (0,1),Q (y x ,),则|PQ |=22)1(-+y x ,又因为Q 在椭圆上,所以,)1(222y a x -=,|PQ |2=12)1(222+-+-y y y a =22212)1(a y y a ++--=22222111)11)(1(a aa y a -+-----. 因为||y ≤1,a >1,若a ≥2,则|11|2a -≤1,当211ay -=时,|PQ |取最大值11222--a a a ;若1<a <2,则当1-=y 时,|PQ |取最大值2.[例8]已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程解:设所求双曲线方程为)0,0(12222>>=-b a by a x ,由右焦点为(2,0)知C=2,b 2=4-a 2则双曲线方程为142222=--a y a x ,设直线MN 的方程为:)2(53-=x y ,代入双曲线方程整理得:(20-8a 2)x 2+12a 2x+5a 4-32a 2=0设M (x 1,y 1),N(x 2,y 2),则222182012a a x x --=+, 22421820325a a a x x --=∴ ()212124531x x x x MN -+⋅⎪⎪⎭⎫⎝⎛+=482032548201258224222=--⋅-⎪⎪⎭⎫ ⎝⎛--⋅=a a a a a 解得 12=a ,3142=-=∴b故所求双曲线方程为:1322=-y x点评:利用待定系数法求曲线方程,运用一元二次方程的根与系数关系将两根之和与积整体代入,体现了数学的整体思想,也简化了计算,要求学生熟练掌握四、习题导练1. 设双曲线)0,0(12222>>=-b a by a x 两焦点为F 1、F 2,点Q 为双曲线上除顶点外的任一点,过F 1作∠F 1QF 2的平分线的垂线,垂足为P,则点P 的轨迹是 ( )A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.圆的一部分.2.已知点(-2,3)与抛物线y 2=2px(p >0)的焦点 的距离是5,则p= .3.平面内有两定点4)4()301)0,1(22=-+--y x B A ),在圆(,(和上,求一点P 使22BP AP +取得最大值或最小值,并求出最大值和最小值.4.已知椭圆)0(12222>>=+b a by a x 的离心率为22.(1)若圆(x-2)2+(y-1)2=320与椭圆相交于A 、B 两点且线段AB 恰为圆的直径,求椭圆方程;(2)设L 为过椭圆右焦点F 的直线,交椭圆于M 、N 两点,且L 的倾斜角为600,求NFMF 的值.5.已知抛物线方程为)0)(1(22>+=p x p y ,直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值.6.线段AB 过x 轴正半轴上一点M (m,0)(m>0),端点A 、B 到x 轴距离之积为m 2,以x 轴为对称轴,过A ,O ,B 三点作抛物线(1)求抛物线方程;(2)若m AOB tg ,求1-=∠的取值范围点、直线和圆锥曲线一、知识导学1. 点M(x 0,y 0)与圆锥曲线C :f(x ,y)=0的位置关系已知12222=+b y a x (a >b >0)的焦点为F 1、F 2, 12222=-by a x (a >0,b>0)的焦点为F 1、F 2,px y 22=(p >0)的焦点为F ,一定点为P(x 0,y 0),M 点到抛物线的准线的距离为d ,则有:上述结论可以利用定比分点公式,建立两点间的关系进行证明. 2.直线l ∶Ax +B y +C=0与圆锥曲线C ∶f(x ,y)=0的位置关系: 直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为: 设直线l :Ax+By+C=0,圆锥曲线C:f(x,y)=0,由⎩⎨⎧==++0y)f(x,0C By Ax消去y(或消去x)得:ax 2+bx+c=0,△=b 2-4ac,(若a ≠0时), △>0⇔相交 △<0⇔相离 △= 0⇔相切注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件. 二、疑难知识导析1.椭圆的焦半径公式:(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率。

相关文档
最新文档