7.2.3二元一次方程组的解法
七年级数学下册第7章一次方程7.2二元一次方程组的解法7.2.3用加减法解二元一次方程组1

解法一: 由①-②,得3x=3.
解法二: 由②,得3x+(x-3y)=2. ③把①代入③,得3x+5=2.
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打
“×”;
(2)请选择一种你喜欢的方法,完成解答.
第十七页,共二十四页。
首页
末页
解:(1)解法一中的解题过程有错误. 由①-②,得 3x=3“×”, 应为由①-②,得-3x=3. (2)由①-②,得-3x=3,解得 x=-1. 把 x=-1 代入①,得-1-3y=5,解得 y=-2.
用加减消去 y 的方法是①__×__2_+__②__×_3___.
第十二页,共二十四页。
首页
末页
分层作业
[学生(xué sheng)用书P34]
3x-2y=5,① 1.用加减法解二元一次方程组3x+4y=-1.②下列四种解法中,正确 的是( C ) A.①+②,得 6x-2y+(-4y)=5-1 B.②-①,得 4y-2y=-1+5,所以 y=2 C.②-①,得 4y+2y=-1-5,所以 y=-1
第九页,共二十四页。
首页
末页
类型之三 与方程组的解有关的问题
已知关于 x、y 的方程组mmxx-+12nny=y=512,的解为xy==23,. 求 m、n 的值.
解:将xy==23,代入方程组,得22mm-+323nn==215,.②①
②-①,得92n=92,即 n=1.
将 n=1 代入②,得 m=1.
【解析】 根据二元一次方程组的定义,将xy==21,代入aaxx+-bbyy==71,,得 2a+b=7, a=2, 2a-b=1,解得b=3,所以 a+b=5.
第二十页,共二十四页。
首页
二元一次方程的解法

二元一次方程的解法二元一次方程是指形如ax + by = c的方程,其中a、b、c为已知常数,而x、y为未知数。
解二元一次方程的方法有多种,下面将介绍两种常用的解法:代入法和消元法。
一、代入法解二元一次方程代入法是通过将一个变量(如x)用另一个变量(如y)的表达式代入到另一个方程中,从而将方程化简为只含一个变量的一元方程,进而求解。
例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)首先,我们可以从方程(1)中解出x的表达式,得到x = (8 - 3y) / 2,将其代入方程(2)中,得到4(8 - 3y) / 2 - 5y = 2。
接下来,通过解这个一元方程,可以得到y的值。
将y的值代入到x = (8 - 3y) / 2中,可以得到x的值。
通过这种代入法,我们可以解得二元一次方程组的解。
二、消元法解二元一次方程消元法是通过适当的加减运算来消去一个变量,从而将方程组化简为含一个变量的一元方程。
具体步骤如下:例如,考虑以下二元一次方程组:2x + 3y = 8 (1)4x - 5y = 2 (2)我们可以通过倍乘或加减运算,将两个方程的系数乘以某个倍数,使得两个方程的系数相等或者互为相反数。
然后,将两个方程相加或相减,使得一个变量的系数相加或相减后消去,从而得到只含一个变量的一元方程。
在这个例子中,我们可以将方程(1)的系数乘以2,将方程(2)的系数乘以1,得到以下两个方程:4x + 6y = 16 (3)4x - 5y = 2 (4)然后,我们将方程(3)减去方程(4),可以消去x的项,得到11y = 14。
由此得到y的值。
接下来,将求得的y的值代入方程(1)或(2)中,可以解得x的值。
通过这种消元法,我们也可以解得二元一次方程组的解。
总结:二元一次方程的解法有多种,其中代入法和消元法是比较常用的方法。
通过代入法,将一个变量代入到另一个方程中,将方程化简为一元方程,然后求解。
二元一次方程组的解法(代入消元法)教学设计

7.2二元一次方程组的解法(代入消元法)教学设计一、教学内容:初中数学华东师大2011课标版七年级下册第七章第二节二元一次方程组的解法。
二、教学目标1、使学生通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想;2、了解把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。
三、教学重难点:重点:用代入消元法解二元一次方程组的解题步骤;难点:如何正确消元。
四、教具、学具准备:教具:课件、电脑投影、导学案等;学具:签字笔、草稿纸、课本等。
五、设计理念这一堂课的学习目标是“探索二元一次方程组的解法”,通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的“最近发展区”,愉悦地接受教学活动.这是我备课时的设计意图。
六、教学流程(一)创设情境上课一开始,我就把学生学过的、熟悉的问题提出来,引导学生解答,说:“同学们,在生活中,我们时常遇到这样的问题,你能用前面我们学过的知识解决这个问题吗?问题1:小明到商店购买签字笔和作业本,签字笔价格是作业本价格的2倍,小明购买一支笔和一个作业本共花了6元钱,请你算一算签字笔和作业本的价格分别是多少元?学生活动:独立完成问题1的解答教师活动:通过巡视,发现问题的解答有可能会出现两种,一种是列一元一次方程解,另一种是列二元一次方程解,分别让学生将两种解法写在黑板上。
师:“同学们,黑板上两位同学用了不同的方法来解决这个问题,你认为哪一种方法是正确的呢?那我想请一位同学来说一说这两种方法分别是用到了前面我们学过的什么知识?那列出来的这个二元一次方程组和这个一元一次方程有没有什么联系呢,我们又该如何求解呢?这就是今天我们要一起探讨的内容,请同学们翻开书27页,并熟悉本节课的学习目标。
设计意图:当学生看到自己所学的知识与“现实世界”息息相关时,学习通常会更主动。
“与其拉马喝水,不如让它口渴”。
华东师大版七年级数学下册7.2.2二元一次方程组的解法加减消元法教学设计

(四)课堂练习,500字
在课堂练习环节,我会设计不同难度的练习题,让学生独立完成。练习题包括:
1.基础题:求解简单的二元一次方程组,巩固加减消元法的应用。
2.提高题:求解稍复杂的二元一次方程组,培养学生的逻辑思维能力和运算能力。
预习下一节课的内容,了解代入消元法的原理和步骤,为课堂学习做好准备。
作业要求:
1.作业书写要求字迹清晰、工整,解题过程要规范,避免出现错别字、漏字等现象。
2.小组合作完成的作业,需注明每位成员的参与情况,包括思考、讨论、解答等环节。
3.学生在完成作业过程中,如遇到问题,应及时与同学或老师沟通交流,确保作业质量。
教学设想:
1.创设情境,导入新课:以生活中的实际问题为例,引导学生从实际问题中发现二元一次方程组,激发学生的学习兴趣。
2.知识讲解,突破重点:通过讲解二元一次方程组的定义,让学生理解其含义。接着,详细讲解加减消元法的原理和步骤,结合例题进行演示,使学生能够掌握并运用该方法。
3.实践操作,巩固难点:设计不同难度的练习题,让学生在解题过程中,逐步掌握加减消元法的应用,培养学生的运算能力和逻辑思维能力。同时,组织学生进行小组讨论,提高学生之间的沟通与协作能力。
4.实例演示:结合导入环节的问题,现场演示如何运用加减消元法求解二元一次方程组。
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若.如何运用加减消元法求解二元一次方程组?
2.在实际问题中,如何将问题转化为二元一次方程组?
3.小组内成员之间如何分工合作,共同解决问题?
七年级数学下册第7章一次方程7.2二元一次方程组的解法7.2.3用加减法解二元一次方程组1课堂练习新

第7章 一次方程7.2.3 用加减法解二元一次方程组(1)1.用加减法解二元一次方程组⎩⎨⎧3x -2y =5,①3x +4y =-1.②下列四种解法中,正确的是( )A .①+②,得6x -2y +(-4y )=5-1B .②-①,得4y -2y =-1+5,所以y =2C .②-①,得4y +2y =-1-5,所以y =-1D .②-①,得4y +2y =1-5,所以y =-232.[xx·宁夏]已知x 、y 满足方程组⎩⎨⎧x +6y =12,3x -2y =8,则x +y 的值为( )A .9B .7C .5D .33.[xx·北京]方程组⎩⎨⎧x -y =3,3x -8y =14的解为 ( )A.⎩⎨⎧x =-1y =2B.⎩⎨⎧x =1y =-2 C.⎩⎨⎧x =-2y =1 D.⎩⎨⎧x =2y =-1 4.[xx·无锡]方程组⎩⎨⎧x -y =2,x +2y =5的解是____.5.[xx·嘉兴]用消元法解方程组⎩⎨⎧x -3y =5,①4x -3y =2 ②时,两位同学的解法如下:解法一:由①-②,得3x =3.解法二:由②,得3x +(x -3y )=2.③把①代入③,得3x +5=2.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”; (2)请选择一种你喜欢的方法,完成解答. 6.解方程组:(1)[xx·常州]⎩⎨⎧2x -3y =7,x +3y =-1;(2)[xx·宿迁]⎩⎨⎧x +2y =0,3x +4y =6.7.[xx·随州]已知⎩⎨⎧x =2,y =1是关于x 、y 的二元一次方程组⎩⎨⎧ax +by =7,ax -by =1的一组解,则a+b =____.8.校田园科技社团计划购进A 、B 两种花卉,两次购买每种花卉的数量以及每次的总费用如下表所示:花卉数量/株 总费用/元AB 第一次购买 10 25 225 第二次购买2015275(1)你从表格中获取了什么信息?(请用自己的语言描述,写出一条即可) (2)A 、B 两种花卉每株的价格各是多少元?9.对于有理数x 、y ,定义新运算:x y =ax +by ,其中a 、b 是常数,等式右边是通常的加法和乘法运算.例如,34=3a +4b ,则若34=8,即可知3a +4b =8.已知12=1,(-3)3=6,求2(-5)的值.参考答案【分层作业】 1. C 2. C 3. D【解析】⎩⎨⎧x -y =3,①3x -8y =14.②②-①×3,得-5y =5,解得y =-1. 把y =-1代入①,得x +1=3,解得x =2.故原方程组的解为⎩⎨⎧x =2,y =-1.4.⎩⎨⎧x =3,y =1【解析】⎩⎨⎧x -y =2,①x +2y =5.②②-①,得3y =3,解得y =1.把y =1代入①,得x -1=2,解得x =3.故原方程组的解是⎩⎨⎧x =3,y =1.5.解:(1)解法一中的解题过程有错误. 由①-②,得3x =3“×”, 应为由①-②,得-3x =3.(2)由①-②,得-3x =3,解得x =-1. 把x =-1代入①,得-1-3y =5,解得y =-2.所以原方程组的解是⎩⎨⎧x =-1,y =-2.6. (1)解:⎩⎨⎧2x -3y =7,①x +3y =-1.②①+②,得3x =6,解得x =2. 将x =2代入①,得y =-1.故原方程组的解为⎩⎨⎧x =2,y =-1.(2)解:⎩⎨⎧x +2y =0,①3x +4y =6.②由①,得x =-2y .③把③代入②,得3×(-2y )+4y =6, 解得y =-3.将y =-3代入③,得x =6.故原方程组的解为⎩⎨⎧x =6,y =-3.7. 5【解析】根据二元一次方程组的定义,将⎩⎨⎧x =2,y =1代入⎩⎨⎧ax +by =7,ax -by =1,得⎩⎨⎧2a +b =7,2a -b =1,解得⎩⎨⎧a =2,b =3,所以a +b =5.8.解:(1)略.答案不唯一,信息合理即可. (2)设A 、B 两种花卉每株的价格分别是x 元、y 元.由题意,得⎩⎨⎧10x +25y =225,20x +15y =275,解得⎩⎨⎧x =10,y =5.答:A 、B 两种花卉每株的价格分别是10元、5元.9.解:根据题意,得⎩⎨⎧a +2b =1,①-3a +3b =6.②①×3+②,得b =1. 将b =1代入①,得a =-1. 故2(-5)=2a -5b =-2-5=-7.。
七年级下册数学7.2二元一次方程组的解法

2015.湖北荆州中考.7分 解方程组:
① ②
※多种解法
这个方程可以用整体代 入法解出,但是程序繁 琐,有没有更好一点的、 更简便的方法来解这个 方程呢?请想一想。
① ②
解法
解:②×3-①得11y=22,即y=2(3分) 把y=2代入②得x=1…………法)
那么我们再看一例:
2015.乐山中考.5分
①
解方程组:
②
解法
①
②
解:由①,得2x=5+3y③ 将③代入②,得2(5+3y)-5y=7,解得y=3. 将y=-3代入①,得2x+9=5,解得x=-2. 所以:
注意:
整体代入消元法适用 于方程中含有未知数 项的系数有倍数关系 的方程组。
来看一例:
根据题意:得x+4-3x=1 (3分) 解,得:x=1.5,∴x+4=5.5. (5分)
再看一题:
2015.湖北娄底中考.9分
出租车起步价所包含的路程为0—1.5km,超过 1.5km的部分按每千米另收费。 刘说:“我乘出租车从市政府到娄底汽车站走了 4.5千米,付车费10.5元。” 李说:“我乘出租车从市政府到娄底火车站走了 6.5千米,付车费14.5元。” 问:(1)出租车的起步价是多少;超过一点五千米 后每千米收费多少元? (2)小张乘出租车从市政府到娄底南站地铁走 了5.5千米,应付车费多少元?
解二元一次方程基本步骤(代入法)
解二元一次方程的基本思路是“消元”——把 “二元”转化成“一元”。用代入法解二元一次 方程组的基本步骤: 第一步:选择其中一个方程,用含有一个未知数 的代数式表示另一个未知数; 第二步:把得到的表达式代入另一个方程中,化 这个方程为一元一次方程; 第三步:解这个一元一次方程; 第四步:将方程的解代入第一步得到的表达式中, 求出另一个未知数的值; 第五步:确定方程组的解。
新华东师大版七年级数学下册《7章 一次方程组 7.2 二元一次方程组的解法 加减法解二元一次方程组》教案_5

7.2 二元一次方程组的解法——加减消元法一、教材分析:本节课内容节选自华师大版七年级数学下册第7章第二节第2课时。
是在学生学习了代入消元法解二元一次方程组的基础上,继续学习的另外的一种消元方法——加减消元法,它是学生系统学习二元一次方程组知识的前提和基础。
如何求得二元一次方程组的解是本节课要解决的主要问题,通过本节的学习要让学生掌握解二元一次方程组的另一种方法——加减法。
使学生体会“化未知为已知”的化归思想,培养他们对数学的兴趣,同时,对后继数学的学习起到奠基作用。
二、学情分析:我所任教的班级学生基础比较一般,不过有些学生还是具有一定的探索能力和思维能力,也初步养成了合作交流的习惯。
有好一部分学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨、引导和归纳。
因此,我遵循学生的认知规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
三、教学策略分析:1、深究教材定教法:在深究教材章节内容后,围绕着确定的教学目标,我根据所要教的内容和七年级学生的年龄特征和认知特点,在教学中我主要采取了“先练后教,问题发现,分层探究,例题讲解,巩固训练,拓展设疑”的教法掌握重点,突破难点。
2、因材施教定学法:英国教育学家斯宾塞说过:“教课应该从具体开始,而以抽象结束。
”因此,在教学中,我先温故而知新,复习旧知,增加兴趣,再引入新知识,富有挑战性,课堂要求学生自主探究、合作学习。
对于问题,分组交流,相互补充,再进行归纳小结,而教师参与小组讨论,解答疑问。
四、教学目标:(一)知识与技能目标:1、理解加减消元法的基本思想,体会化未知为已知的化归思想。
2、灵活的对方程进行恒等变形使之便于加减消元;3、学会用加减消元法解二元一次方程组;(二)过程与方法目标:1、根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;训练学生的运算技巧。
七年级数学二元一次方程组的解法人教实验版知识精讲

初一数学二元一次方程组的解法人教实验版【本讲教育信息】一、教学内容:二元一次方程组的解法二、教学重点:(1)掌握二元一次方程和二元一次方程组的概念 (2)掌握二元一次方程组的解法三、知识点扫描:(1)二元一次方程:含有两个未知数,并且未知数项的次数是1的方程。
(2)二元一次方程组:两个二元一次方程合在一起,就组成了二元一次方程组。
(3)二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
(4)代入消元法:由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.简称代入法。
(5)加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边相加或相减,就能消去一个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
四、中考考点分析:本节中考命题的重点是二元一次方程(组)的有关概念及二元一次方程(组)的解法,考查方法有直接用代入法或加减法解二元一次方程组,分值不高,且以填空、选择、简单解答题的形式出现。
【典型例题】例一、已知二元一次方程组⎩⎨⎧=-=-)2(3n m 2)1(4n 2m ,则m+n 的值是( )。
A 、1B 、0C 、-2D 、-1解法一:由(1)得m=4+2n 代入(2)中得2(4+2n )-n=3解得n=-35m=32∴m+n=-1 解法二:用(2)-(1)得m+n=-1例二、[2008中考试题]若方程组⎩⎨⎧=+=-9.30b 5a 313b 3a 2的解是⎩⎨⎧==2.1b 5.8a 则方程组⎩⎨⎧=-++=--+9.30)1y (5)2x (313)1y (3)2x (2的解是( ) A 、⎩⎨⎧==2.1y 5.8x B 、⎩⎨⎧==2.2y 5.10x C 、⎩⎨⎧==2.2y 5.6x D 、⎩⎨⎧==2.0y 5.10x解:例三、若方程组⎩⎨⎧=-=-16by ax 332y x 5与⎩⎨⎧=-=-22by 2ax 519y 2x 有相同的解,求a 、b 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
检测练习
5、 5x+y=7 3x-y=1
8x=8
解得,x=1
① ②
解:①+②得,
解:②-①得,
4x-3y=5 ① 4x+6y=14 ②
9y=9
解得, y=1
把x=1代入①得,y=2 把y=1代入①得,x=2
所以 x=1
y=2
所以 x=2
y=1
小结
本节课你有何收获?
作业
P32
练习1、2、3、4
小结:学习了本节课你有哪些收获?
例4解方程组:3x+7y=9 +7y 9 4x-7y 5 -7y=5
解:①+②得,
① ②
+(
)= +
7x=14
x=2 3 把x=2代入①得,y= 7 所以 x=2
3 y= 7
为什么可以用 ① -②得, 用① 方程中某一未 +②可消去 ① +②来消元? x+14y=4 互为 未知数 知数系数 y。 ____ 可以消去哪个 相反数 无法消去未知 ______ 时,两 可以用① -②来 未知数? 相加 消元 数 y。 方程 ____ 消去未知数 y吗?
y=-2
-(
)= -
加减消元法求 方程中某一未 把y=-2代入② 出的解与代入 知数系数相同 y=-2只能代入 也可以解出 法求出的解一 时,可以让两 ①吗? x =5 一样 样吗? 方程相减消元
自学提示2
解方程组: 3x+7y=9 4x -7y=5 ① ②
⑴请你观察两个方程中未知数y的系数有何 特点? ⑵怎样解这个方程组呢?用什么方法消去一 个未知数?先消哪个未知数比较方便? ⑶试着解一解。
3x-4y=23
②
你觉得麻烦吗? 有没有更简单的方法呢?
加减消元法
学习目标
1、初步探索二元一次方程组的加减消 元法; 2、会用加减法解一些简单的二元一次 方程组。 3、体会把“未知”转化“已知”的思 想,“二元”转化为“一元的”的 “消元”思想。
自学提示1
解方程组 3x+5y=5 ①
3x-4y=23
7.2.3 二元一次方程的解法
加减消元法
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
2.代 3.解 用含有一个未知数的代数式 表示另一个未知数
消去一个元
分别求出两个未知数的值 写出方程组的解
4.写
ห้องสมุดไป่ตู้
3.用代人法解方程组 3x+5y=5 ①
加减消元法:两个二元一次方程中同一未知数 的系数相反或相等时,将两个方程的两边分别 相加或相减,就能消去这个未知数,得到一个 一元一次方程,这种方法叫做加减消元法, 加减消元法解方程组的主要步骤:
变形 加减
求解 写解
同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值 写出方程组的解
A.①-②消去y B.①-②消去x C. ②- ①消去常数 D. 以上都不对 4.方程组 消去y后所得的方程是( A.9x=8 B.9x=18 C.6x=5 D.x=18
)
检测练习
5、解方程组: 5x+y=7 ① 3x-y=1 ②
4x-3y=5 ① 4x+6y=14 ②
检测练习
答案: 1.相加 y 2.相减 x 3.B 4.B
分别求出两个未知数的值 写出方程组的解
拓展练习
指出下列方程组求解过程中的错误步骤 (1) 解:①-②,得 2x = 4- 4, x= 0 (2) 解:①-②,得 -2x=12 x =-6
1.已知方程组 两个方程只要两边____,就可以消去未知数_ _。 2.已知方程组 两个方程只要两边____,就可以消去未知数__。 3. 用加减法解方程组 应用( )
小组讨论
1、通过例3、例4的解答,你发现了二元一 次方程组的一种新解法吗?这种解法需要 方程组有什么特征? 2、目前为止,二元一次方程组的解法有几 种?各有什么特征?解方程组基本思路是 什么?
【归纳】 两个二元一次方程中同一未知数的系数 ________或________时,将两个方程的两 边分别_______或_________,就能消去这 个未知数,得到一个_________方程,这 种方法叫做加减消元法,简称加减法.
两个二元一次方程中同一未知数的系 数相反或相等时,将两个方程的两边分 别相加或相减,就能消去这个未知数, 得到一个一元一次方程,这种方法叫做 加减消元法,简称加减法.
加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路 加减消元: : 主要步骤:
变形
加减 求解 写解 消去一个元
二元
一元
同一个未知数的系 数相同或互为相反数
例3解方程组: 3x+5y=5 3x -4y=23 例4解方程组:3x+7y =9 4x-7y=5
① ② ① ②
加减消元法 通过例3、例4的解答,你发现二元一次 方程组的新解法了吗? 相减 可消元, 两方程____ 未知数系数 这种解法需要方程组有什么特征? 相同 例如,例3中①-②。 未知数系数 互为相反数 相加 可消元, 两方程____ 例如,例4中①+②。
②
(1)观察方程组中未知数x的两个系数有什 么特点? (2)怎样才能把这个未知数消去?你的根据 是什么? (3)利用这种关系你能发现新的消元方法吗? 试试看。
例3解方程组:3x+5y +5y=5 5 3x-4y 23 -4y=23
解:①-②得,
① ②
3x+5y-3x+4y=-18 9y=-18 y=-2 把y=-2代入①得,x=5 所以 x=5