2010概率论与数理统计习题解答1

合集下载

2010年1月概率论与数理统计(经管类)试题答案

2010年1月概率论与数理统计(经管类)试题答案

2010年1月高等教育自学考试概率论与数理统计(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.若A 与B 互为对立事件,则下式成立的是( C ) A .Ω=)(B A P B .)()()(B P A P AB P = C .)(1)(B P A P -=D .∅=)(AB PA .81 B .41 C .83 D .213.设A ,B 为两事件,已知3)(=A P ,3)|(=B A P ,5)|(=A B P ,则=)(B P ( A )A .51B .52C .53D .54则=k ( D ) A .0.1B .0.2C .0.3D .0.4的实数a ,有( B )A .⎰-=-adx x f a F 0)(1)(B .⎰-=-adx x f a F 0)(21)(C .)()(a F a F =-D .1)(2)(-=-a F a F则=}0(XY P A .121 B .61C .31D .32 A .=≤-}1{Y X P 21 B .=≤-}0{Y X P 21 C .=≤+}1{Y X P 21D .=≤+}0{Y X P 21 8.设随机变量X 具有分布5}{==k X P ,5,4,3,2,1=k ,则=)(X E ( B )A .2B .3C .4D .59.设521,,,x x x 是来自正态总体),(σμN 的样本,其样本均值和样本方差分别为∑==5151i i x x 和2512)(41∑=-=i i x x s ,则sx )(5μ-服从( A )A .)4(tB .)5(tC .)4(2χD .)5(2χ10.设总体X ~),(2σμN ,2σ未知,n x x x ,,,21 为样本,∑=--=ni i x x n s 122)(11,检验假设0H :2σ20σ=时采用的统计量是( C )A .)1(~/--=n t ns x t μB .)(~/n t ns x t μ-=C .)1(~)1(2222--=n s n χσχ D .)(~)1(22022n s n χσχ-=二、填空题(本大题共15小题,每小题2分,共30分)11.设4.0)(=A P ,3.0)(=B P ,4.0)(=B A P ,则=)(B A P ___________.12.设A ,B 相互独立且都不发生的概率为9,又A 发生而B 不发生的概率与B 发生而A不发生的概率相等,则=)(A P ___________.14.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,00,24)(2cx x x f ,则常数=c ___________.15.X 服从均值为2,方差为σ的正态分布,且3.0}42{=≤≤X P ,则=≤}0{X P _______.16.设X ,Y 相互独立,且2}1{=≤X P ,3}1{=≤Y P ,则=≤≤}1,1{Y X P ___________.17.X 和Y 的联合密度为⎩⎨⎧≤≤≤=--其他,010,2),(2y x e y x f y x ,则=>>}1,1{Y X P _________.18.设),(Y X 的概率密度为⎩⎨⎧=其他,0),(y x f ,则Y 的边缘概率密度为________.注:第18题联合概率密度是错误的,不满足规范性.19.设X 服从正态分布)4,2(N ,Y 服从均匀分布)5,3(U ,则=-)32(Y X E __________.n 则对任意的}|{|lim ,0εμε<->∞→p nP nn =___________.21.X ~)1,0(N ,Y ~)2,0(2N 相互独立,设22Y CX Z +=,则当=C _____时,Z ~)2(2χ.n 21均值,0>θ为未知参数,则θ的矩估计=θˆ ___________.00称这种错误为第___________类错误.24.设总体X ~),(11σμN ,Y ~),(22σμN ,其中21σσσ==未知,检验0H :21μμ=,1H :21μμ≠,分别从X ,Y 中取出9个和16个样品,计算得3.572=x ,1.569=y ,样本方差25.14921=s ,2.14122=s ,则t 检验中统计量=t ___________(要求计算出具体数值).0026.飞机在雨天晚点的概率为0.8,在晴天晚点的概率为0.2,天气预报称明天有雨的概率为0.4,试求明天飞机晚点的概率.解:设=A {明天有雨},=B {明天飞机晚点},已知8.0)|(=A B P ,2.0)|(=A B P ,4.0)(=A P ,则6.0)(=A P ,明天飞机晚点的概率为44.02.06.08.04.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P .27.已知9)(=X D ,4)(=Y D ,相关系数4.0=XY ρ,求)2(Y X D +,)32(Y X D -. 解:由)()(),cov(Y D X D Y X XY =ρ,即23),cov(4.0⨯=Y X ,得4.2),cov(=Y X ,),cov(4)(4)()2,cov(2)2()()2(Y X Y D X D Y X Y D X D Y X D ++=++=+6.344.24449=⨯+⨯+=,),cov(12)(9)(4)3,2cov(2)3()2()32(Y X Y D X D Y X Y D X D Y X D -+=-+-+=-2.434.2124994=⨯-⨯+⨯=.四、综合题(本大题共2小题,每小题12分,共24分)28. 设某种晶体管的寿命X (以小时计)的概率密度为⎪⎩⎪⎨⎧≤>=100,0100,100)(2x x x x f .(1)若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间不到200小时的概率是多少?(2)若一个电子仪器中装有3个独立工作的这种晶体管,在使用150小时内恰有一个晶体管损坏的概率是多少?解:(1)注意到32100100)(}150{1501502150=-===>+∞+∞+∞⎰⎰x dx xdx x f X P ,61100100)(}200150{2001502001502200150=-===<<⎰⎰x dx xdx x f X P ,所求概率为413/26/1}150{}200150{}150|200{==><<=><X P X P X X P ;(2)每一个晶体管在使用150小时内损坏的概率为31321}150{1}150{=-=>-=≤X P X P , 设使用150小时内损坏的晶体管数为Y ,则Y ~⎪⎭⎫⎝⎛31,3B ,所求概率为943231}1{213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C YP .29.某柜台做顾客调查,设每小时到达柜台的顾客数X ~)(λP ,已知}2{}1{===X P X P ,且该柜台销售情况Y (千元),满足2212+=X Y .试求:(1)参数λ的值;(2)一小时内至少有一个顾客光临的概率;(3)该柜台每小时的平均销售情况)(Y E . 解:X 的分布律为λλ-==e k k X P k!}{, ,2,1,0=k .(1)由}2{}1{===X P X P ,即λλλλ--=e e 22,得2=λ,X ~)2(P ;(2)所求概率为21}0{1}1{--==-=≥e X P X P ;(3)由X ~)2(P ,得2)()(==X D X E ,642)()()(22=+=+=X E X D X E ,526212)(21)(2=+⨯=+=X E Y E . 五、应用题(本大题共1小题,10分)30.某生产车间随机抽取9件同型号的产品进行直径测量,得到结果如下:21.54, 21.63, 21.62, 21.96, 21.42, 21.57, 21.63, 21.55, 21.48 根据长期经验,该产品的直径服从正态分布)9.0,(2μN ,试求出该产品的直径μ的置信度为0.95的置信区间.(96.1025.0=u ,645.105.0=u )(精确到小数点后三位) 解:已知9.00=σ,05.0=α,9=n ,算得57.21=x ,588.099.096.102/=⨯=⋅nu σα,μ的置信度为0.95的置信区间为⎥⎦⎤⎢⎣⎡⋅+⋅-n u x n u x σσαα2/2/,]158.22,982.20[]588.057.21,588.057.21[=+-=.。

2010年考研数学概率论真题与答案--WORD版本

2010年考研数学概率论真题与答案--WORD版本

2010年概率论考研真题与答案1. (2010年数学一、三)设随机变量X 的分布函数001()01211x x F x x ex -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,且{}1P X ==_________. 【C 】A .0 B.12 C. 112e -- D. 11e -- 解:根据分布函数的性质,有{}{}{}1111111(1)(10)1.22P X P X P X F F e e --==≤-<=--=--=- 2. (2010年数学一、三)设1()f x 为标准正态分布的概率密度,2()f x 为[1,3]-上的均匀分布的概率密度。

若12()0()(0,0)()0af x x f x a b bf x x ≤⎧=>>⎨>⎩为概率密度,则,a b 应满足__________. 【A 】A. 234a b +=B. 324a b +=C. 1a b +=D. 2a b +=解:根据题意,有221()()x f x x ϕ-==,2113()4x f x ⎧-≤≤⎪=⎨⎪⎩其他 由概率密度的性质,有01201()()()f x dx af x dx bf x dx +∞+∞-∞-∞==+⎰⎰⎰0313()424a a x dxb dx b ϕ-∞=+=+⎰⎰234a b ∴+=3. (2010年数学一)设随机变量X 的分布律为{},0,1,2,,!CP X k k k ===L 则2()E X =___________. 【2】解:根据分布律的性质,0011,!!k k C C Ce k k +∞+∞====⋅=∑∑ 即1C e -=.于是, {}11,0,1,2,,!!k C P X k e k k k -===⋅=L 即X 为服从参数为1的泊松分布,于是22()()()112E X D X E X =+=+=4. (2010年数学三)设12,,,n X X X 是来自总体2(,)(0)N μσσ>的简单随机样本,记统计量2=11n i i T X n =∑,则(T )=E __________. 【22σμ+】解: 2222()()()i i i E X D X E X σμ=+=+222222=1=1111()()()()n n i i i i E T E X E X n n n nσμσμ∴===⋅+=+∑∑5. (2010年数学一、三)设(,)X Y 的概率密度为22-2+2(,)=,(,)x xy y f x y Ae x R y R -∈∈,求常数A 及条件概率密度()Y X f y x .解:【方法一】根据概率密度的性质,有22-2+21(,)=x xy y f x y dxdy A edxdy +∞+∞+∞+∞--∞-∞-∞-∞=⎰⎰⎰⎰22()=()x y x A e dx e d y x A A π+∞+∞----∞-∞-==⎰⎰1A π∴=即: 22-2+21(,)=,,xxy y f x y e x R y R π-∈∈关于X 的边缘概率密度函数为22-2+21()(,)x xy y X f x f x y dy edy π+∞+∞--∞-∞==⎰⎰()222()1x y x x eed y x π+∞-----∞=-⎰22-+2(,)()()x xy y Y X X f x y f y x f x -∴==,,x R y R ∈∈ 【评注】充分利用积分2x e dx +∞--∞=⎰.【方法二】概率密度函数可以变形为:2222-2+2--()(,)=xxy y x y x f x y Ae Ae e --=⋅2222()112211=11x y x A e eπ---⋅⋅⋅⋅利用概率密度函数的性质2222()1122111(,)=11x y x f x y dxdy A edx edy π---⋅⋅+∞+∞+∞+∞-∞-∞-∞-∞=⋅⋅⋅⎰⎰⎰⎰A π=(利用2()21x dx μσ--+∞-∞=⎰,同时,把第二个积分中的x 看做常数即可)1Aπ∴=2222()112211(,)=11x y xf x y e e---⋅⋅∴⋅2222()12--1()(,)y xx xXf x f x y dy e dy--⋅+∞+∞-∞-∞∴==⋅=⎰⎰22-+2(,)()()x xy yY XXf x yf y xf x-∴==,(,)x R y R∈∈【评注】充分利用22()21xdxμσ--+∞-∞=⎰。

2010年10月全国自考概率论与数理统计试题答案

2010年10月全国自考概率论与数理统计试题答案

全国2010年10月高等教育自学考试《概率论与数理统计(经管类)》答案课程代码:04183(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)[答疑编号918070101]『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。

解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。

故选择A。

提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。

2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()C.Φ(1)D.Φ(3)[答疑编号918070102]『正确答案』分析:本题考察正态分布的标准化。

解析:,故选择C。

提示:正态分布的标准化是非常重要的方法,必须熟练掌握。

3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()[答疑编号918070103]『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。

解析:,故选择A。

提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-[答疑编号918070104]『正确答案』分析:本题考察概率密度的性质。

解析:1=,所以c=-1,故选择B。

提示:概率密度的性质:4.在f(x)的连续点x,有F’(X)=f(x);5.5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=[答疑编号918070105]『正确答案』分析:本题考察概率密度的判定方法。

概率论与数理统计课后习题习题1答案

概率论与数理统计课后习题习题1答案

习题1解答1.写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,记录出现的点数. A =“出现奇数点”;(2)将一颗骰子掷两次,记录出现点数. A =“两次点数之和为10”,B =“第一次的点数,比第二次的点数大2”;(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =“球的最小号码为1”;(4)记录在一段时间内,通过某桥的汽车流量,A =“通过汽车不足5台”,B =“通过的汽车不少于3台”.解 (1)123456{,,,,,}ωωωωωωΩ=其中i ω=“出现i 点”1,2,,6i =, 135{,,}A ωωω=.(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)Ω=(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)};{(4,6),(5,5),(6,4)}A =;{(3,1),(4,2),(5,3),(6,4)}B =.(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)Ω=(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){0,1,2,},{0,1,2,3,4},{3,4,}A B Ω===.2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:(1)仅A 发生;(2),,A B C 中至少有两个发生;(3),,A B C 中不多于两个发生;(4),,A B C 中恰有两个发生;(5),,A B C 中至多有一个发生.解 (1)ABC(2)ABAC BC 或ABC ABC ABC ABC ; (3)A B C 或ABCABC ABC ABC ABC ABC ABC ; (4)ABC ABC ABC ; (5)AB AC BC 或ABCABC ABC ABC ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品.解 (1)123A A A ;(2)123A A A ;(3)123123123A A A A A A A A A ;(4)121323A A A A A A .4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率.解 设A =“任取一电话号码后四个数字全不相同”,则4104126()0.50410250P P A === 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求(1)5只全是好的的概率;(2)5只中有两只坏的的概率.解 (1)设A =“5只全是好的”,则537540()0.662C P A C =; (2)设“5只中有两只坏的”,则23337540()0.0354C C P B C =.6.袋中有编号为1到10的10个球,今从袋中任取3个球,求(1)3个球的最小号码为5的概率;(2)3个球的最大号码为5的概率.解 (1)设A =“最小号码为5”,则253101()12C P A C ==; (2)设B =“最大号码为5”,则243101()20C P B C ==. 7.求下列事件的概率:(1) 一枚骰子连掷4次,至少出现一个6点;(2)两枚骰子连掷24次,至少出现一对6点.这是概率论发展历史中非常著名的一个问题(德·梅尔问题),当年德·梅尔认为这两个事件的概率应当相同,但是在实际下赌注中发现其中一个发生的次数要稍微多些.为此他迷惑不解,把问题提交给了当时的数学家帕斯卡.下面我们就来具体计算一下两个事件的概率:设1A =“一枚骰子连掷4次,至少出现一个6点”, 2A =“两枚骰子连掷24次,至少出现一对6点”则 444144655()10.517766P A -==-≈,24242422424363535()10.49143636P A -==-≈ 8.(1)教室里有r 个学生,求他们的生日都不相同的概率;(2)房间里有四个人,求至少两个人的生日在同一个月的概率.解 (1)设A =“他们的生日都不相同”,则365()365r r P P A =; (2)设B =“至少有两个人的生日在同一个月”,则212223214121141241212441()1296C C P C C C P C P B +++==; 或 412441()1()11296P P B P B =-=-=. 9.从6双不同的鞋子中任取4只,求:⑴其中恰有一双配对的概率;⑵至少有两只鞋子配成一双的概率.解 ⑴分析:先从6双中取出一双,两只全取;再从剩下的5双中任取两双,每双中取到一只,则⑴中所含样本点数为1212252216C C C C C ,所以所求概率P =1212252216C C C C C /412C =3316 ⑵设B 表示“至少有两只鞋子配成一双”,则:=-=)(1)(B P B P 1-1212121.2.46C C C C C /C 412=3317,或=[/]2612122516C C C C C +C 412=3317 [注]:不能把有利事件数取为2102216C C C ,否则会出现重复事件.这是因为,若鞋子标有号码1,2,…,6时,16C 可能取中第i 号鞋,此时210C 可能取中j 号一双,此时成为两双的配对为),(j i ;但也存在配对),(i j ,),(j i 与),(i j 是一种,出现了重复事件,即多出了26C 个事件.10.设事件A 与B 互不相容,()0.4,()0.3P A P B ==,求()P AB 与()P A B 解 ()1()1()()0.3P A B P A B P A P B =-=--= 因为,A B 不相容,所以A B ⊃,于是()()0.6P AB P A == 11.若()()P AB P AB =且()P A P =,求()P B .解 ()1()1()()()P A B P A B P A P B P A B =-=--+ 由()()P AB P AB =得()1()1P B P A p =-=-12.对任意三事件,,A B C ,试证()()()()P AB P AC P BC P A +-≤.证明 ()()()()()(P A B P A C P B C P A B P A C P A B C +-≤+- ()P AB AC ={()}()P A B C P A =≤. 证毕.13.随机地向半圆0y <<(a 为正常数)内掷一点,点落在园内任何区域的概率与区域的面积成正比,求原点与该点的连线与x 轴的夹角小于/4π的概率.解 半圆域如图设A =“原点与该点连线与x 轴夹角小于/4π”由几何概率的定义2221142()12a a A P A a ππ+==的面积半园的面积112π=+ 14.把长为a 的棒任意折成三段,求它们可以构成三角形的概率.解1 设A =“三段可构成三角形”,又三段的长分别为,,x y a x y --,则0,0,0x a y a x y a <<<<<+<,不等式构成平面域S .A 发生0,0,222a a ax y x y a ⇔<<<<<+< 不等式确定S 的子域A ,所以 1()4A P A S ==的面积的面积 解2 设三段长分别为,,x y z ,则0,0,0x a y a z a <<<<<<且S .A 发生x y z ⇔+>x z y +>y z x +>不等式确定S 的子域A ,所以1()4A P A S ==的面积的面积. 15.随机地取两个正数x 和y ,这两个数中的每一个都不超过1,试求x 与y 之和不超过1,积不小于0.09的概率.解 01,01x y ≤≤≤≤,不等式确定平面域S .A =“1,0.09x y xy +≤≥”则A 发生的充要条件为01,10.09x y xy ≤+≤≥≥不等式确定了S 的子域A ,故0.90.10.9()(1)A P A x dx S x==--⎰的面积的面积 0.40.18ln 30.2=-=16.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =“任取一件是i 等品” 1,2,3i =,所求概率为 13133()(|)()P A A P A A P A =, 因为 312A A A =+ 所以 312()()()0.60.30.9P A P A P A =+=+= 131()()0.6P A A P A ==故 1362(|)93P A A ==. 17.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =“所取两件中有一件是不合格品”i B =“所取两件中恰有i 件不合格” 1, 2.i =则 12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为 2242112464()1(|)()5P B C P B A P A C C C ===+. 18.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =“发现是同一颜色”,B =“全是白色”,C =“全是黑色”,则A B C =+,所求概率为 336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 19.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P AB 与()P B A -.解 ()()()() 1.1()(|) 1.10.P A B P A P B P A B P A P B A =+-=-=-= ()()()0.60.4P B A P B P A B -=-=-=.20.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率.解 设A =“从乙袋中取出的是白球”,i B =“从甲袋中取出的两球恰有i 个白球”0,1,2i =. 由全概率公式001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B =++11223232222555416131021025C C C C C C C =⋅+⋅+⋅=. 21.已知一批产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率是0.02,一个次品被误认为是合格品的概率是0.05,求在检查后认为是合格品的产品确是合格品的概率.解 设A =“任取一产品,经检查是合格品”,B =“任取一产品确是合格品”,则 A B AB A =+ ()()(|)()(|)P A P B P A B P B P AB =+ 0.960.980.040.050.9428=⨯+⨯=, 所求概率为()(|)0.960.98(|)0.998()0.9428P B P A B P B A P A ⨯===. 22.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求:(1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,确无残次品的概率β.解 设A =“顾客买下该箱”,B =“箱中恰有i 件残次品”,0,1,2i =,(1)001122()()(|)()(|)()(|)P A P B P A B P B P A B P B P A B α==++4419184420200.80.10.10.94C C C C =+⨯+⨯≈; (2)00()0.8(|)0.85()0.94P AB P B A P A β===≈. 23.某大型商场所出售的一种商品来自甲、乙、丙、丁四个厂家,它们的产品在该卖场所占的份额依次为:60%,20%,10%,10%,且根据以往的检验记录知,它们的次品率分别为1%,2%,3%,2%. 现有一件商品因质量问题被退货,商场欲将该产品退给原厂家,或由其承担相关费用,但该产品的标识已脱落,从外观无法弄清生产厂家,请你通过计算分析,为该商场处理此事提出建议.解 用i A (1,2,3,4i =)分别表示产品来自甲、乙、丙、丁四个厂家,设B =“产品被退货” 则1()0.60P A =,2()0.20P A =,3()0.10P A =,4()0.10P A =,1()0.01P B A =,2()0.02P B A =,3()0.03P B A =,4()0.02P B A =(1)由全概率公式,41()()()0.600.010.200.020.100.030.100.020.015i i i P B P A P B A ===⨯+⨯+⨯+⨯=∑(2) 由贝叶斯公式,1111()()()0.600.016()()()0.01515P A P B A P A B P A B P B P B ⨯==== 2222()()()0.200.024()()()0.01515P A P B A P A B P A B P B P B ⨯==== 3333()()()0.100.033()()()0.01515P A P B A P A B P A B P B P B ⨯==== 4444()()()0.100.022()()()0.01515P A P B A P A B P A B P B P B ⨯==== 以上结果表明,这只产品来自甲工厂的可能性最大,尽管甲厂次品率最低,但甲厂所占的份额大,所以该产品出自甲厂的可能性最大.处理办法:商场可以将该产品退回甲厂,也可按照比例6:4:3:2由四个厂家分摊相关费用.24.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,求甲击中的概率.解 设A =“目标被击中”,i B =“第i 个人击中” 1,2,i = 所求概率为11111212()()()(|)()()1()P B A P B P B P B A P A P B B P B B ===+- 0.60.7510.40.5==-⨯. 25.设()0,()0P A P B >>,证明A 、B 互不相容与A 、B 相互独立不能同时成立. 证明 若A 、B 互不相容,则AB φ=,于是()0()()0P AB P A P B =≠>所以A 、B 不相互独立.若A 、B 相互独立,则()()()0P AB P A P B =>,于是AB φ≠,即A 、B 不是互不相容的.注:从上面的证明可得到如下结论:1)若A 、B 互不相容,则A 、B 又是相互独立的()0P A ⇔=或()0P B =.2)因A BA BA =+,所以()()()P A P BA P BA =+如果 ()1P B =,则()0P BA =,从而()()()()P AB P A P A P B ==可见概率是1的事件与任意事件独立,自然,必然事件与任意事件独立.如果()0P B =,则()0()()P AB P A P B ==,即概率是零的事件与任意事件独立,自然,不可能事件与任何事件独立.26.证明若三事件,,A B C 相互独立,则A B 及A B -都与C 独立. 证明 {()}()()()()P A B C P AC BC P AC P BC P ABC ==+-()()()()()()()P B P C P B P C P A P B P C =+-[()()()]()P A P B P AB P C =+-()()P AB PC = 即A B 与C 独立.{()}()()()()()()P A B C P A B C P A P B P C P A B P C -===)()P A BP C =- 即 A B -与C 相互独立.27.某个公司招聘员工,指定三门考试课程,目前有两种考试方案:方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中任选两门,两门都及格为考试通过.若某应聘者对三门指定课程及格的概率分别为,,a b c ,且三门课程之间及格与否互不影响.(1)分别求该应聘者用方案一和方案二时考试通过的概率;(2) 哪种方案对应聘者更有利?为什么?解 设i A =“考生参加第i 门考试且及格”,j B =“第i 个方案通过”,则1123123123123()()()()()P B P A A A P A A A P A A A P A A A =+++(1)(1)(1)a bc a b c a b c a b c =-+-+-+ 2a b b c c a a b c=++- 2121323111()()()()333P B P A A P A A P A A =++1()3ab bc ac =++ 由于 ,,(0,1)a b c ∈,所以1222()()()2((1)(1)(1))033P B P B ab bc ac abc ab c bc a ac b -=++-=-+-+-≥ 因此方案一比方案二更容易通过.28.图中1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率均为p ,且设各继电器闭合与否相互独立,求L 至R 是通路的概率.解 设A =“L R -是通路”,i B =“第i 个接点闭合” 1,2,3,4,5i =,则1245135432A B B B B B B B B B B =1245135432234512()()()()()()()P A P B B P B B P B B B P B B B P B B B B P B B B B =+++-- 12451235134512345()()()()P B B B B P B B B B P B B B B P B B B B B ---- 123451234512345()()()P B B B B B P B B B B B P B B B B B +++23451234512345()()2252.P B B B B B P B B B B B p p p p +-=+-+29.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,求该射手的命中率.解 设该射手的命中率为p ,由题意4801(1)81p =--,41(1)81p -=,113p -= 所以 23p =. 30.设一批晶体管的次品率为0.01,今从这批晶体管中抽取4个,求其中恰有一个次品和恰有两个次品的概率.解 1344(1)(0.01)(0.99)0.0388P C ==.22244(2)(0.01)(0.99)0.000588P C ==.31.设在伯努里试验中,成功的概率为p ,求第n 次试验时得到第r 次成功的概率. 解 设A =“第n 次试验时得到第r 次成功”,则A =“前1n -次试验,成功1r -次,第n 次试验出现成功”,所以()P A P =(前1n -次试验,成功1r -次)P (第n 次试验成功)11111(1)(1)r r n r r r n r n n C p p p C p p -------=-⋅=-.32.设一厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格品,不能出厂.现该厂生产了(2)n n ≥台仪器(假定各台仪器的生产过程相互独立).求(1)全部能出厂的概率α;(2)其中恰有两台不能出厂的概率β;(3)其中至少有两台不能出厂的概率θ.解 设A =“任取一台可以出厂”,B =“可直接出厂”,C =“需进一步调试”.则 A B AC A =+, ()()(|)()(|)0.70.30.8P A P B P A B P C P A C p=+=+⨯== 将n 台仪器看作n 重伯努里试验,成功的概率为p ,于是(1)(0.94)n α=,(2)222(0.06)(0.94)n n C β-=,(3)11(0.94)(0.06)(0.94)n n n θ-=--⨯⨯.。

概率论与数理统计第一章习题解答

概率论与数理统计第一章习题解答

《概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。

(2)生产产品直到有10件正品为止,记录生产产品的总件数。

(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。

(4)在单位圆内任意取一点,记录它的坐标。

解:(1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。

故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。

(2)随机试验的样本空间S={10,11,12,……}。

(3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。

(4)随机试验的样本空间S={(x,y)|x2+y2<1}。

2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。

(2)A与B都发生,而C不发生。

(3)A,B,C中至少有一个发生。

(4)A,B,C都发生。

(5)A,B,C都不发生。

(6)A,B,C中不多于一个发生。

(7)A,B,C中不多于两个发生。

(8)A,B,C中至少有两个发生。

解:(1)A B C(2)AB C(3)A∪B∪C (4)ABC(5)A B C(6)A B C∪A B C∪A B C∪A B C(7)S-ABC (8)ABC∪AB C∪A B C∪A BC3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。

(2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P(AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。

概率论与数理统计习题册详细答案

概率论与数理统计习题册详细答案

《概率论与数理统计》练习册(2010年版)参考答案第一章 概率论的基本概念第一节 一、选择题.1、D ;2、A ;3、C ;4、D ;5、B . 二、解答题.1、(1)、C B A D ++=;(2)、C B A E =;(3)、C B A C B A C B A F ++=;(4)、=G C B A C B A C B A C B A +++.第二节 一、填空题.1、0.3;2、5.0;3、1p -;4、0.3;5、0.6;6、32;7、2113;8、158;9、2517;10、0.25. 二、选择题.1、B ;2、D ;3、B ;4、A . 三、解答题.1、307)(,157)(21==A P A P .2、21)(51025231533123822=++=C C C C C C C C P . 3、1133123831234=+C C C C .第三节 一、填空题.1、0.7;2、73;3、2;4、12053,5320. 二、选择题.1、B ;2、A ;3、C ;4、D . 三、解答题.1、令A 表示取出的球是白球,i B 表示从第i 个箱子中取球)2,1(=i ,则21}{}{,204}|{,108}|{2121====B P B P B A P B A P ,故21}{=A P . 2、设A 表示取到的是次品,i B 表示取到的零件是由甲(=i 1)、乙(=i 2)、丙(=i 3)机床提供的, 则由已知条件得18.05.01.03.03.02.02.0}{=⨯+⨯+⨯=A P (1)82.0}{=A P ;(2)5.0}|{2=A B P .3、记事件A =“小孩说谎”,B =“小孩可信”,设()0.8P B =,()0.1P A B =,()0.5P A B =.由贝叶斯公式,小孩第一次说谎之后,()0.444P B A =;第二次说谎之后,()0.138P B A =. 第四节 一、填空题.1、23;2、0.5;3、0.8704;4、1(1)n p --,1(1)(1)n n p np p --+-;5、4353或;6、0.75. 二、选择题.1、A ;2、C ;3、D ;4、B ;5、A ;6、C . 三、解答题.1、令i A 表示第i 个灯泡可使用1000个小时以上,则2.0)(=i A P ,3,2,1=i ,104.02.0)2.01(2.0)(2133321321321321=⋅-+=+++C A A A A A A A A A A A A P .2、432222)1)(21(1r r r r r r +-=-+--.3、设事件A 表示“飞机被击落”,i B 表示“飞机被i 个人击中”),3,2,1,0(=i ,1C 表示“甲击中”,2C 表示“乙击中”,3C 表示“丙击中”.则由概率加法公式、乘法公式和事件的独立性得09.0)()(3210==C C C P B P ,14.0)(,41.0)(,36.0)(321===B P B P B P .由题意有,1)|(,6.0)|(,2.0)|(,0)|(3210====B A P B A P B A P B A P 由全概率公式得458.0)(=A P .4、记i A 表示甲第i 次掷6点,i B 表示乙第i 次掷6点,1,2,i =⋅⋅⋅.记B A ,分别表示甲、乙取胜,则15()(),()(),(1,2,)66i i i i P A P B P A P B i =====⋅⋅⋅,且111211223A A A B A A B A B A =+++⋅⋅⋅,由独立性和加法公式,有116)(=A P ,从而115)(1)(=-=A P B P .第二章 随机变量第一节 一、填空题. 1、2516. 二、选择题. 1、A ;2、C . 三、解答题.1、(1)不是分布函数,因为2)(lim 1=+∞→x F x .(2)不是分布函数,因为)(2x F 在),2(ππ是单调减少的. (3)是分布函数,符合分布函数的三条性质.2、由题意知2132,1=-=+a b a ,所以61=a ,65=b .于是61}1{=-=X P ,21}2{,1}1{====X P X P .3、由1)(lim =+∞→x F x 得1=A ;由于)(x F 是连续函数,111lim20=+→x x ,故0=B ,从而0=C .4、X 的取值i 只有1,0两个值,以j ω记掷骰子出现j 点(1,2,,6j =⋅⋅⋅)事件,所以21}{)0(,61)(531=⋃⋃===ωωωωP X P P j ,21)1(==X P ,故⎪⎩⎪⎨⎧=1210)(x F , 1100≥<≤<x x x第二节一、填空题.1、14;2、12;3、2;4、⎪⎪⎩⎪⎪⎨⎧=,1,5.0,2.0,0)(x F .3,32,21,1≥<≤<≤<x x x x ;5、2719.二、选择题.1、C ;2、D . 三、解答题.分布函数为⎪⎪⎩⎪⎪⎨⎧=1918891550)(x F .2,21,10,0≥<≤<≤<x x x x 36}2{}1{}2521{==+==≤<X P X P X P .2、41}1{,42}0{,41}1{=====-=X P X P X P . 3、设所需抽取次数为随机变量X .(1)设k A 表示第k 次取得正品()4,3,2,1=k ,m B 表示第m 次取得次品()3,2,1=m .则,107)(}1{1===A P X P ,307)(}2{21===A B P X P 1201}4{,1207}3{====X P X P .所以同理可得:(3)X 的概率分布为:第三节 一、填空题.1、141;2、0>;3、4;4、1,12;5、1,0211,02xx e x e x -⎧<⎪⎪⎨⎪-≤⎪⎩;6、0.2. 二、选择题.1、B ;2、C ;3、A ;4、D .三、解答题.1、设电子元件的使用寿命为X ,i A 表示第i 个电子元件能使用200小时.则312006006001}200{)(-∞+-==>=⎰e dx e X P A P xi ,eA A A P a 11}{1321-=-=.2、(1)由0)(,1)(=-∞=+∞F F 得π1,21==B A . (2)21)1()1(}11{=--=<<-F F X P . (3))1(1)()(2x x F x f +='=π.3、(1)ππ1,11)(112===-=⎰⎰-+∞∞-A A dx xA dx x f ;(2)3111}21|{|21212=-=<⎰-dx xX P π;(3)⎪⎩⎪⎨⎧+==⎰∞-1arcsin 1210)()(x dx x f x F x,.1,11,1≥<≤--<x x x4、设1A 表示电压不超过200V ,2A 表示电压在200V ~240V 之间,3A 表示电压超过240V ,B 表示电子元件损坏,则,212.0)8.0(1)25220200(}200{)(1=Φ-=-Φ=≤=X P A P 576.0)8.0()8.0(}240200{)(2=-Φ-Φ=≤<=X P A P ,}240{)(3>=X P A P =212.0)8.0(1=Φ-,,2.0)|(,001.0)|(,1.0)|(321===A B P A B P A B P (1)1()0.0642;P P B ==(2)220.5760.001(|)0.0090.0642PP A B ⨯==≈.5、若)(x f 为概率密度,则必有,0)(≥x f 故02>++c bx ax 。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率与数理统计习题一答案讲解

概率与数理统计习题一答案讲解

概率与数理统计习题⼀答案讲解概率论与数理统计第⼀章习题参考解答1、写出下列随机试验的样本空间。

(1)枚硬币连掷三次,记录正⾯出现的次数。

(2)记录某班⼀次考试的平均分数(百分制记分)(3)对某⼯⼚出⼚的产品进⾏检验,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停⽌检查,或检查4个产品就停⽌检查,记录检查的结果。

(4)在单位圆内任取⼀点,记录它的坐标。

解:(1){}3,2,1,0=S ,(2) S ={k/n: k=0,1,2,··· ,100n},其中n 为班级⼈数,(3){}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S ,其中0表⽰次品,1表⽰正品。

(4)(){}1,22<+=y x y x S2、设A 、B 、C 为三事件,⽤A 、B 、C 的运算关系表⽰下列各事件(1)A 、B 、C 中⾄少有⼀个发⽣(2)A 、B 、C 中恰好有⼀个发⽣(3)A 、B 、C 都不发⽣(4)A 、B 、C 中不多于⼀个发⽣(5)A 、B 、C 中不多于两个发⽣解:(1)C B A ?? (2)C B A C B A C B A ??(3)C B A 错解C B A ABC =(4)即⾄少有两个不发⽣C B C A B A ??(5)即⾄少有⼀个不发⽣C B A ABC = 2、指出下列命题中哪些成⽴,哪些不成⽴。

(1)成⽴,(2)不成⽴,(3)不成⽴,(4)成⽴(5)成⽴,(6)成⽴(7)成⽴(8)成⽴ 4、把C B A ??表⽰为互不相容事件的和。

解:()()()ABC CA C BC B AB A ?-?-?- 答案不唯⼀5、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7。

问(1)在什么条件下P (AB )取到最⼤值?最⼤值是多少?(2)在什么条件下P (AB )取到最⼩值?最⼩值是多少?(1)B A ?时,6.0)(=AB P 为最⼤值,因为A 、B ⼀定相容,相交所以A 和B 重合越⼤时P (AB )越⼤(2)S B A =?时,P (AB )=0.3为最⼩值6、若事件A 的概率为0.7,是否能说在10次实验中A 将发⽣7次?为什么?答:不能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


Ai
n
Aj
ji, j1

Ai Aj
1i jn
5. 设 P(A) a, P(B) b, P(A B) c 。求 P(AB), P(AB), P(AB) 。
解:
P(AB) P(A) P(B) P( A B) a b c; P(AB) P(A) P( AB) a (a b c) c b; ( P(A B) P(B)) P(AB) 1 P(A B) 1 c.
(2) 昆虫出现残翅,但没有退化性眼睛;
P(WE) P(W ) P(WE) 0.125 0.025 0.1.
(3) 昆虫未出现残翅,也无退化性眼睛。
P(WE) P(W E) 1 P(W E) 1 0.175 0.825 。
1.8 设 A 和 B 是两个事件, P(A) 0.6, P(B) 0.8 。试问:
5
Байду номын сангаас
3

3

2


52 13


按照第二种理解,出现该花色分布的取法数可如此计算: 先从四种花色中任取一色,在此花色中取 5 张;再从余下的三种花色中任取一色,在此花色 中取 2 张;在剩下的两种花色中各取 3 张。按乘法原理,共有
种取法。故概率为
413 3131313
若两个产品是依次抽取的,它们的编号按抽中的顺序形成一个排列,以此排列作为样本
点,则 2 {(a,b) : a,b 1, 2,3, 4,5}。
(5) 检查两件产品是否合格。 一件产品合格记为 G,不合格记为 B。以两件产品各自的合格与否的状况形成的排列作为样
本点,则 {(GG), (GB), (BG), (BB)}。

mk
(m 1)k nk
.
18. n 个人排队,求指定甲乙两人之间恰有 r 个人的概率。 解法一:将每个人编号,取 n 个人的排列作为样本点,故样本空间由 n!种排列组成。假定 各基本事件发生的概率相等。记 A 为事件“甲乙两人之间恰好有 r 个人”。计算 A 中包含 的样本点数。
算法 一、先将 甲或乙排在第 i 位上, 则另一人必 须排在第 i r 1 位,故
P( AB) P( A) P( AB)
P(A) P( A) P(B) P( A B)
0.6 0.3 0.3 .
(2) P(AB) 1 P(AB) 1P(A) P(A B) 1 0.4 0.6 . (3) 因为 P(AB) P(AB) 1 P(A B) 1P(A) P(B) P(AB),所以
8. 对任意事件 A,B,证明: P(AB)P(A B) P(A)P(B) 。
证明:记 a P(AB) 。因为 P(AB)P(A B) P(A)P(B) a P(AB) P(BA) a P(AB) a P(BA) a P(AB)P(BA) 0, P(AB)P(A B) P(A)P(B)

1


5


1

2

3

3

413 3131313
P2


1


5


1

2

3

3

52 13


14. 有 k 个罐子,每一个装有 n 个球,分别编有自 1 至 n 的号码。今从每一个罐子中随机地 取出一球,问取得的球中最大号码恰好为 m 的概率。
1.3 设样本空间 {x | 0 x 2},事件 A {x | 0.5 x 1}, B {x | 0.8 x 1.6},具体
写出下列各事件:
(1) AB
AB (0.8,1]
(2) A B
A B [0.5, 0.8]
(3) A B
A B [0, 0.5) (0.8, 2]
3. 一个工人生产了 n 个零件,以事件 Ai 表示“他生产的第 i 个零件是正品”(1≤ i ≤n)。用 Ai
表示下列事件:
(1) 没有一个零件是次品;
n
Ai
i 1
(2) 至少有一个零件是次品;
n
n
Ai Ai
i 1
i 1
(3) 仅仅有一个零件是次品; (4) 至少有两个零件不是次品。
i
n 1
(2) 因为 P(AB) P(A) P(B) P(A B) ,故当 P(A B) 达到最大值时 P(AB) 达
到最小值。 P(A B) 最大值为 1,所以 P(AB) 的最小值为 0.4。当 A B 时可达到。
1.9 设 P(A) 0.2, P(B) 0.3, P(C) 0.5, P(AB) 0, P(AC) 0.1, P(BC) 0.2 ,求事件 A, B, C 中至少有一个发生的概率。
概率论与数理统计习题解答一
教材 第一章
1.1 写出下列随机试验的样本空间: (1) 某篮球运动员投篮时,连续 5 次都命中,观察其投篮次数。
以该运动员直至连续 5 次投篮命中时的投篮次数为样本点, {5, 6, 7, }。
(2) 掷一颗匀称的骰子两次,观察前后两次出现的点数之和。
以两次出现的点数之和为样本点, {2,3, ,12}; 也可以前后两次出现点数的排列为样本点,则 ' {(a,b) : a,b 1, 2, , 6}。
(1) 在什么条件下 P(AB) 取到最大值,最大值是多少? (2) 在什么条件下 P(AB) 取到最小值,最小值是多少? 解:
(1) 因为 AB A, AB B ,故 P(AB) min{P(A), P(B)}, P(AB) 的最大值为 0.6。 当 AB=A 即 A B 时可达到此最大值。
1.10 计算下列各题:
(1) 设 P(A) 0.5, P(B) 0.3, P(A B) 0.6 ,求 P(AB) ;
(2) 设 P(A) 0.8, P(A B) 0.4 ,求 P(AB) ;
(3) 设 P(AB) P(AB), P(A) 0.3 ,求 P(B) 。
解: (1)
(3) 观察某医院一天内前来就诊的人数。
以该医院一天内来就诊的人数为样本点, {0,1, 2, }。
(4) 从编号为 1,2,3,4,5 的五件产品中任意取出两件,观察取出哪两件产品。 以抽出的两件产品的编号形成的组合(不计抽中的次序)为样本点,
1 {(a,b) : 1 a b 5, a,b 1, 2, ,5} ;
和为 i”。
因为
A3 {(1, 2), (2,1)},故
P(
A3 )

2 36

1 18

因为
A4 {(1,3), (2, 2), (3,1)},故
P( A4
)

3 36

1 12

因为
A5 {(1, 4), (2,3), (3, 2), (4,1)},故
P(
A4
)

4 36

1 9

习题集 第一章
或者 aP(A) P(B) a P(A)P(B) [P(A) a][P(B) a] 0,
故结论得证。
10. 对任意事件 A1, , An ,证明:
(1)P
A n
i1 i

n
P( Ai );
(2)P
A n
i1 i
n
1 P(Ai );
(4) A B
A B [0, 0.5) (1.6, 2]
1.7 若 W 表示昆虫出现残翅,E 表示有退化性眼睛,且 P(W ) 0.125 , P(E) 0.075 ,
P(WE) 0.025 。求下列事件的概率:
(1) 昆虫出现残翅或退化性眼睛;
P(W E) P(W ) P(E) P(WE) 0.125 0.075 0.025 0.175 .
解:
从 52 张扑克牌中随机取 13 张,共有
52
13

种取法。假定每种取法等可能。
按照第一种理解,出现该花色分布的取法共有
13 13 13 13

5

3

3

2

种,故概率为
13 13 13 13
P1


(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1 ,最高气温不高于T2 )。
以该地一天内的最低气温与最高气温形成的排列作为样本点,则
{(x, y) :T1 x y T2}。
(7) 在单位圆内任取两点,观察这两点间的距离。
以两点间的距离作为样本点,则 1 [0, 2) 。
解:
从 k 个罐子中依次各取一球,共有 nk 种取法。假定每种取法等可能。记 A 为事件“最
大号码不超过 m”,B 为事件“最大号码不超过 m 1”,C 为事件“最大号码恰好为 m”。 显然, B A , C A B 。故
P(C) P(A) P(B)

mk nk

(m 1)k nk
若以两点的坐标形成的排列作为样本点,则
2 {[(x1, y1), (x2, y2 )]: xi2 yi2 1, i 1, 2}。
(8) 在长为 l 的线段上任取一点,该点将线段分成两段,观察两线段的长度。
若以两线段的长度形成的排列作为样本点,则 1 {(l1,l l1) : 0 l1 l}。 若以该点的坐标作为样本点,则 2 [0,l] 。
相关文档
最新文档