圆锥曲线经典题型

题型一:定义法

题型二:中点弦问题---点差法题型三对称问题

题型四面积问题

题型五角平分线

题型六平行四边形

题型七切线问题

题型八四点共圆

题型九角度问题

题型三 对称问题

【2015浙江理】已知椭圆2212x y +=上两个不同的点,A B 关于直线1

2

y mx =+对称. (1)求实数m 的取值范围;

(2)求AOB △面积的最大值(O 为坐标原点).

已知椭圆13

42

2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。

题型四 面积问题1

(2016全国3)已知抛物线C :22y x = 的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C

的准线于P ,Q 两点.

(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;

(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.

题型四 面积问题2

如图,已知点(10)F ,为抛物线2

2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线

上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的标准方程; (2)求1

2

S S 的最小值及此时点G 的坐标.

题型四 面积问题3

已知A 、B 是椭圆()0122

22>>=+b a b

y a x 的左、右顶点B(2,0),过椭圆C 的右焦点F 的直线交其于点M,N,交直线

x=4于点P ,且直线PAPF,PB 的斜率成公差不为零的等差数列

(1) 求椭圆C 的方程

(2)若记△AMB,△ANB 的面积分别为21,S S ,求2

1

S S 的取值范围

题型五 角平分线

(2010安徽文)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率2

1=e (1)求椭圆E 的方程;

(2)求∠F 1AF 2的角平分线所在直线的方程.

题型七 切线问题

如图,过抛物线py x C 2:2

1=上的一点Q 与抛物线py x C 2:2

2-=相切于B A ,两点.若抛物线

py x C 2:21=的焦点1F 到抛物线py x C 2:22-=的焦点2F 的距离为

2

1 (Ⅰ)求抛物线1C 的方程;

(Ⅱ)求证:直线AB 与抛物线1C 相切于一点P .

题型八 四点共圆

已知O 为坐标原点,F 为椭圆2

2

:12

y C x +=在y 轴正半轴上的焦点,过F 且斜率为-2的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=

(Ⅰ)证明:点P 在C 上;

(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.

题型九 角度问题

求解椭圆中的角度问题常用方法: 1.余弦定理

2.向量,||||cos a b a b θ⋅= 角度问题的等价转化:

①“以弦AB 为直径的圆过点O ”(提醒:需讨论K 是否存在)

⇔OA OB ⊥ ⇔121K K •=- ⇔0OA OB •= ⇔ 12120x x y y +=

②“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题” ③“等角、角平分、角互补问题” ⇔斜率关系(120K K +=或12K K =);

已知椭圆C : +=1(a >b >0)的离心率为,直线l :y =x +2与以原点为圆心、椭圆C 的短半轴为半

径的圆O 相切.

(1)求椭圆C 的方程;

(2)过椭圆C 的左顶点A 作直线m ,与圆O 相交于两点R ,S ,若△ORS 是钝角三角形,求直线m 的斜率k 的取值范围.

题型三十八:三角形的内切圆问题

()r CA BC AB S ABC ⋅++=

∆2

1

例1:双曲线C 的方程为13

2

2

=-y x ,左右焦点21,F F ,过点2F 作直线与双曲线C 的右支于点Q P 、,使得

901=∠PQ F ,则PQ F 1∆的内切圆的半径是

例2.椭圆

116

252

2=+y x 的左右焦点21,F F ,弦AB 过点1F 且2ABF ∆内切圆的周长为π,若B A 、的坐

标分别为()()2211,,,y x y x ,则=-21y y

高考圆锥曲线题型归类总结

圆锥曲线的七种常考题型 题型一:定义的应用 1、圆锥曲线的定义: (1)椭圆 (2)双曲线 (3)抛物线 2、定义的应用 (1)寻找符合条件的等量关系 (2)等价转换,数形结合 3、定义的适用条件: 典型例题 例1、动圆M 与圆C 1:()2 2 136x y ++=内切,与圆C 2:()2 2 14x y -+=外切,求圆心M 的 轨迹方程。 例2、方程() () 2 2 22668x y x y -+- ++=表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由2 2 x y 、分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由2 2 x y 、系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 例1、已知方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 例2、k 为何值时,方程 1592 2=---k y k x 表示的曲线: (1)是椭圆;(2)是双曲线.

题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解 2、12PF m PF n ==,,2 2 m n m n mn m n +-+,,,四者的关系在圆锥曲线中的应用 典型例题 例1、椭圆x a y b a b 222 210+=>>()上一点P 与两个焦点F F 12,的张角α=∠21PF F , 求21PF F ?的面积。 例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且 6021=∠PF F , 31221=?PF F S .求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法 1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围; 3、注重数形结合思想不等式解法 典型例题 例1、已知1F 、2F 是双曲线122 22=-b y a x (00>>b a ,)的两焦点,以线段21F F 为边作 正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 2 1 3+ D. 13+ 例2、双曲线)00(122 22>>=-b a b y a x ,的两个焦点为F 1、F 2,若P 为其 上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B.(]13, C.(3,+∞) D.[)3,+∞

圆锥曲线的经典例题

例 1 已知21:220l x m y m ++=与2:36l y x =-,若两直线平行,则m 的值为 _____. 例2 经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 . 例3 已知圆的方程为22680x y x y +--=.设该圆过点(35),的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .106 B .206 C .306 D .4063.圆锥曲线的基本问题:椭圆、双曲线、抛物线的标准方程及其性质,求简单的曲线方程. 例4已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点 距离之和取得最小值时,点P 的坐标为( )A. (41,-1) B. (4 1,1) C. (1,2) D. (1,-2) 例5已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 例6若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭ B .22(2)(1)1x y -+-= C .22(1)(3)1x y -+-= D .2 23(1)12x y ⎛⎫-+-= ⎪⎝⎭ 例7 (过双曲线22 1916 x y -=的右顶点为A ,右焦点为F 。过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为______________ 例8 在平面直角坐标系中,椭圆)0(122 22>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径的圆做圆M ,若过点P ⎪⎪⎭ ⎫ ⎝⎛0,2c a ,所作圆M 的两切线互相垂直,则该椭圆的离心率为 ▲

圆锥曲线的综合经典例题(有答案)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横 坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程. 然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

(完整版)圆锥曲线典型例题(精华版)

圆锥曲线典型例题强化训练 一、选择题 1、若点P 到直线1y =-的距离比它到点(03),的距离小2,则点P 的轨迹方程为( )A A. 212x y = B.212y x = C.24x y = D.2 6x y = 2、若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为 22,则a 的值为( )C A .-2或2 B .2321 或 C .2或0 D .-2或0 3、设F 1、F 2为曲线C 1: x 26 + y 22 =1的焦点,P 是曲线2C :13 22 =-y x 与C 1的一个交点,则△PF 1F 2的面积为( )C (A) 14 (B) 1 (C) 2 (D) 2 2 4、经过抛物线x y 22=的焦点且平行于直线0523=+-y x 的直线l 的方程是( )A A.0346=--y x B. 0323=--y x C.0232=-+y x D. 0132=-+y x 5、若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) D A .2- B .2 C .4- D .4 6、如图,过抛物线)0(22>=p px y 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点 C ,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( ) B A .x y 232= B .x y 32 = C .x y 292= D .x y 92= 7、以14 122 2=-x y 的顶点为焦点,长半轴长为4的椭圆方程为( )D A .1526422=+y x B. 1121622=+y x C. 141622=+y x D.116 42 2=+y x 8、已知双曲线192 22=-y a x ()0>a 的中心在原点, 右焦点与抛物线x y 162=的焦点重合,则该双曲线的离心率等于( ) D

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。 % (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222 c a b =+。 | 3.与双曲线x 2a 2-y 2b 2=1有相同渐近线的双曲线方程也可设为x 2a 2-y 2 b 2=λ(λ≠0),渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2-y 2b 2=λ(λ≠0).要求双曲线x 2a 2-y 2b 2=λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. — 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为k , 则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|的求法, 通常使用根与系数的关系,需要作下列变形:|x 1-x 2|=x 1+x 2 2-4x 1x 2,|y 1 -y 2|= y 1+y 2 2-4y 1y 2. 6.与圆锥曲线的弦的中点有关的问题 (1)通法.联立方程利用根与系数的关系 (2)“点差法”.点差法的作用是用弦的中点坐标表示弦所在直线的斜率. 点差法的步骤: ①将两交点A (x 1,y 1),B (x 2,y 2)的坐标代入曲线的方程. ②作差消去常数项后分解因式得到关于x 1+x 2,x 1-x 2,y 1+y 2,y 1-y 2的关系式.

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11 (3,) (,2)22 ---); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 例:(1)若椭圆1522=+m y x 的离心率510 = e ,则m 的值是__(答:3或325); (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答: p e c b a ,,,,

圆锥曲线经典好题目(带答案)

圆锥曲线练习题 一、填空题 1. 一个动点到两个定点A ,B 的距离的差为定值(小于两个定点A ,B 的距离),则动点的轨迹为________. 2. (2011·海安中学模拟)若椭圆x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2 被抛物线y 2=2bx 的焦点F 分成5∶3的两段,则此椭圆的离心率为________. 3. 已知动圆过定点(0,-1),且与定直线y =1相切,则动圆圆心的轨迹方程为________. 4. (2010·天津)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦 点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________. 5. 已知P 为抛物线y 2=4x 的焦点,过P 的直线l 与抛物线交于A ,B 两点,若Q 在直线 l 上,且满足|AP →|·|QB →|=|AQ →|·|PB → |,则点Q 总在定直线x =-1上.试猜测:如果P 为椭圆x 225 + y 29=1的左焦点,过P 的直线l 与椭圆交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线________上. 6. 过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________. 7. (2010·重庆)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB → ,则弦AB 的中点到准线的距离为________. 8. 已知过椭圆的左焦点F 1且倾斜角为60°的直线交椭圆于A 、B 两点,若F 1A =2F 1B ,则椭圆的离心率为________. 二、解答题 9. 抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2 b 2=1的一个焦点,且与双曲线实轴垂直, 已知抛物线与双曲线的交点为⎝⎛⎭⎫32,6.求抛物线与双曲线的方程. 10. 如图,已知过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,求m 6+m 4的值.

高考数学圆锥曲线典型例题(必考)

高考数学圆锥曲线典型例题(必考) 9.1 椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且 m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212 +y 2 6 =1. 题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如

圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞) 2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右 支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

圆锥曲线经典题目(含答案)

圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞)C.(1,+∞)D.(1,)∪(,+∞) 2.已知M(x 0,y )是双曲线C:=1上的一点,F 1 ,F 2 是C的左、右两个 焦点,若<0,则y 的取值范围是()A.B.C.D. 3.设F 1,F 2 分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右 支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B.C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2)C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A. B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F 1、F 2 分别是双曲线的 左、右焦点,已知PF 1⊥PF 2 ,且|PF 1 |=2|PF 2 |,则双曲线的一条渐近线方程是() A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞)B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F 1 作一条l交双曲线左支于P、Q两点,若|PQ|=8, F 2是双曲线的右焦点,则△PF 2 Q的周长是. 12.设F 1,F 2 分别是双曲线的左、右焦点,若双曲线右 支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

圆锥曲线题型归纳(经典含答案)

1 椭圆题型总结 (简单) 一、 椭圆的定义和方程问题 (一) 定义: 1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的 椭圆,则命题甲是命题乙的 ( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( D ) A.椭圆 B.圆 C.直线 D.线段 3. 已知1F 、2F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点 Q 的轨迹是( B ) A.椭圆 B.圆 C.直线 D.点 4. 椭圆 19 252 2=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 4 。 5. 选做:F 1是椭圆15 92 2=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。 解:26||2||2||||||221-=-≥-+=+AF a PF a PA PF PA 7. (1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为( 2,2 1 -),它为直线AF 与抛物线的另一交点,舍去) (2)( 1,4 1 ) 过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐标为1,代入y 2=4x 得x= 41,∴Q(1,4 1)

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题

高中数学:圆锥曲线七个经典题型整理,概念、公式、例题 圆锥曲线中常见题型总结 1、直线与圆锥曲线位置关系 这类问题主要采用分析判别式,有 △>0,直线与圆锥曲线相交; △=0,直线与圆锥曲线相切; △<0,直线与圆锥曲线相离. 若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点. 注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。 2、圆锥曲线与向量结合问题 这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。 3、圆锥曲线弦长问题 弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则: 4、定点、定值问题 (1)定点问题可先运用特殊值或者对称探索出该定点,再证明结

论,即可简化运算; (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 5、最值、参数范围问题 这类常见的解法有两种:几何法和代数法. (1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法. 在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 6、轨迹问题 轨迹问题一般方法有三种:定义法,相关点法和参数法。 定义法: (1)判断动点的运动轨迹是否满足某种曲线的定义; (2)设标准方程,求方程中的基本量 (3)求轨迹方程 相关点法: (1)分析题目:与动点M(x,y)相关的点P(x0,y0)在已知曲线上; (2)寻求关系式,x0=f(x,y),y0=g(x,y); (3)将x0,y0代入已知曲线方程; (4)整理关于x,y的关系式得到M的轨迹方程。 参数法求轨迹的一般步骤:

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】 圆锥曲线的七种常见题型 题型一:定义的应用 圆锥曲线的定义包括椭圆、双曲线和抛物线。在定义的应 用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。适用条件需要注意。 例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x- 1)+y=4外切,求圆心M的轨迹方程。 例2:方程表示的曲线是什么? 题型二:圆锥曲线焦点位置的判断 在判断圆锥曲线焦点位置时,需要将方程化成标准方程, 然后判断。对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐 标轴上,一次项的符号决定开口方向。

例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么? 例2:当k为何值时,方程是椭圆或双曲线? 题型三:圆锥曲线焦点三角形问题 在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。 例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。 例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。 题型四:圆锥曲线中离心率、渐近线的求法

在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。在解题时需要注重数形结合思想和不等式解法。 例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边 作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线 的离心率是多少? 例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。 题型五:圆锥曲线的参数方程 在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。 例1:求椭圆x^2/4+y^2/9=1的参数方程。 例2:求双曲线x^2/9-y^2/4=1的参数方程。 题型六:圆锥曲线的对称性

圆锥曲线大题题型分类归纳大全

圆锥曲线大题题型归纳梳理 圆锥曲线中的求轨迹方程问题 解题技巧 求动点的轨迹方程这类问题可难可易是高考中的高频题型,求轨迹方程的主要方法有直译法、相关点法、定义法、参数法等。 【例1.】已知平面上两定点),,(),,(2020N M -点P 满足MN MP =•求点P 的轨迹方程。 【例2.】已知点P 在椭圆14 22 =+y x 上运动,过P 作y 轴的垂线,垂足为Q ,点M 满足,PQ PM 3 1 =求动点M 的轨迹方程。 【例3.】已知圆),,(,)(:023622 2 B y x A =++点P 是圆A 上的动点,线段PB 的中垂线交 PA 于点Q ,求动点Q 的轨迹方程。 【例4.】过点),(10的直线l 与椭圆14 2 2 =+y x 相交于B A ,两点,求AB 中点M 的轨迹方程。 巩固提升 1. 在平面直角坐标系xOy 中,点()(),,,,4010B A 若直线02++-m y x 上存在点P ,使得 ,PB PA 2 1 = 则实数m 的取值范围为_________________.

2. 已知()Q P ,,24-为圆42 2 =+y x O :上任意一点,线段PQ 的中点为,M 则OM 的取值 范围为________________. 3. 抛物线x y C 42 :的焦点为,F 点A 在抛物线上运动,点P 满足,FA AP 2-=则动点P 的轨迹方程为_____________________. 4. 已知定圆,)(:10042 2 =++y x M 定点),,(40F 动圆P 过定点F 且与定圆M 内切,则动圆圆心P 的轨迹方程为____________________. 5. 已知定直线,:2-=x l 定圆,)(:442 2 =+-y x A 动圆H 与直线l 相切,与定圆A 外切,则动圆圆心H 的轨迹方程为____________________ 6. 直线033=+-+t y tx l :与抛物线x y 42=的斜率为1的平行弦的中点轨迹有公共点,则实数t 的取值范围为_________________. 7. 抛物线y x 42 =的焦点为,F 过点),(10-M 作直线l 交抛物线于B A ,两点,以BF AF ,为邻边作平行四边形,FARB 求顶点R 的轨迹方程。 8. 在平面直角坐标系xOy 中,已知直线l 与椭圆112 242 2=+y x C : 相交于B A ,两点,O 为坐标原点。 (1)若直线l 的方程为,062=-+y x 求OB OA •的值; (2)若,12-=•OB OA 求线段AB 的中点M 的轨迹方程。

圆锥曲线大题20道(含答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+ =kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其 中O 为原点). 求k 的取值范围. 解:(Ⅰ)设双曲线方程为12222=-b y a x ).0,0(>>b a 由已知得.1,2,2,32222==+== b b a c a 得再由 故双曲线C 的方程为.13 22 =-y x (Ⅱ)将得代入13 222 =-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-. 0)1(36)31(36)26(, 0312 222 k k k k 即.13 1 22<≠ k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319 ,31262 2>+>⋅--=-= +B A B A B A B A y y x x OB OA k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x .1 37 3231262319)1(22222 -+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732 222>-+->-+k k k k .33 1 2<

相关主题
相关文档
最新文档