分式知识点总结及复习汇总
分式知识点归纳总结

《分式》知识点回顾及考点透视一、知识总览本章主要学习分式的概念,分式的基本性质,分式的约分、通分,分式的运算(包括乘除、乘方、加减运算),分式方程等内容,分式是两个整式相除的结果,且除式中含有字母,它类似于小学学过的分数,分式的内容在初中数学中占有重要地位,特别是利用分式方程解决实际问题,是重要的应用数学模型,在中考中,有关分式的内容所占比例较大,应重视本章知识的学习.二、考点解读考点1:分式的意义例1.(1)(2006年南平市)当x 时,分式11+x 有意义. 分析:要使分式有意义,只要分母不为0即可当x ≠-1时,分式11+x 有意义. (2)(2006年浙江省义乌市)已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1 D . 1±分析:讨论分式的值为零需要同时考虑两点:(1)分子为零;(2)分母不为零,当x=1时,分子等于零,分母不为0,所以,当x=1时,原分式的值等于零,故应选C . 评注:在分式的定义中,各地中考主要考查分式A B在什么情况下有意义、无意义和值为0的问题。
当B ≠0时,分式A B 有意义;当B=0时,分式A B无意义;当A=0且B ≠0时,分式A B 的值为0 考点2:分式的变形例2.(2006年山西省)下列各式与x y x y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 解析:正确理解分式的基本性质是分式变形的前提,本例选项(C )为原分式的分子、分母都乘以同一个不等于0的整式(x-y )所得,故分式的值不变.考点3:分式的化简分式的约分与通分是进行分式化简的基础,特别是在化简过程中的运算顺序、符号、运算律的应用等也必须注意的一个重要方面例2.(2006年临安市)化简:x -1x ÷(x -1x). 分析:本题要先解决括号里面的,然后再进行计算解:原式x x x x 112-÷-=)1)(1(1-+⨯-=x x x x x 11+=x 评注:分式的乘除法运算,就是将除法转化为乘法再进行约分即可.考点4:分式的求值例4.(2006年常德市)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.分析:本题先要将复杂的分式进行化简,然后再取一个你喜欢的值代入(但你取的值必须使分式有意义).解:化简得:21x +,取x=0时,原式=1;评注:本题化简的结果是一个整式,如果不注意的话,学生很容易选1或-1代入,这是不行的,因为它们不能使分式有意义.考点5:解分式方程例5.(2006年陕西省)解分式方程:22322=--+x x x 分析:解分式方程的关键是去分母转化为整式方程解:)4(2)2(3)2(22-=+--x x x x ,82634222-=---x x x x , 27-=-x 72=x ,经检验:72=x 是原方程的解,∴原方程的解为72=x 点评:解分式方程能考查学生的运算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!考点6:分式方程的应用例6.(2006年长春市)A 城市每立方米水的水费是B 城市的1.25倍,同样交水费20元,在B 城市比在A 城市可多用2立方米水,那么A 、B 两城市每立方米水的水费各是多少元?分析:本题只要抓住两城市的水相差2立方米的等量关系列方程即可解:设B 城市每立方米水的水费为x 元,则A 城市为1.25x 元,25.120220xx =- 解得x = 2经检验x = 2是原方程的解。
分式的知识点总结

分式的知识点总结一、分式的基本概念1. 分式的定义:分式是由一个整数(分子)与另一个非零整数(分母)用分数线(也称为分子线)相连所构成的数,通常表示为 a/b(a为分子,b为分母)。
2. 分式的分类:根据分母的情况,分式可以分为真分式、假分式和带分数。
真分式的分子比分母小,假分式的分子比分母大,带分数由整数部分和真分数部分组成。
3. 分式的性质:分式的分子和分母都可以乘以(或除以)同一非零数,而不改变其值;分式的分子和分母互换位置,得到的新分式称为倒数;两个分式相乘,分子相乘,分母相乘;两个分式相除,分子相除,分母相除。
这些性质都是分式运算中的基本规律,对于分式的计算和化简有着重要的作用。
二、分式的运算1. 分式的加减法:要进行分式的加减法,首先需要找到它们的公分母,然后分别对分子进行相应的加减操作,最后将结果化简为最简分式。
如果分式的分母不同,可以通过通分的方式将它们转化为相同分母后进行计算。
2. 分式的乘法:分式的乘法是将分式的分子相乘,分母相乘,然后将结果化简为最简分式。
如果有字数相同的多个分式相乘,也可以先将它们的分子和分母分别相乘,最后将所有结果相乘得到最终结果。
3. 分式的除法:分式的除法是将两个分式相除,即将第一个分式乘以第二个分式的倒数,然后化简为最简分式。
三、分式的应用1. 代数中的分式:在代数中,分式可以用来表示多项式中的系数和字母之间的比值关系,例如多项式的根、系数、因式分解等都涉及到分式的计算和化简。
2. 几何中的分式:在几何中,分式可以用来表示两个线段或面积的比值,例如在相似三角形或相似图形中,就可以利用分式来表示相似比例。
3. 概率中的分式:在概率中,分式可以用来表示事件的发生概率,例如事件发生的次数与总次数之间的比值就可以用分式表示。
综上所述,分式是数学中重要的概念之一,它不仅具有基本的定义和运算规律,还在各个数学领域中有着广泛的应用。
熟练掌握分式的相关知识和运算方法,对于学习代数、几何和概率等数学课程都具有重要的意义。
分式知识点的总结及复习

分式知识点的总结及复习分式是数学中的一个重要概念,对于理解和解决各种问题非常有帮助。
分式的概念、性质以及操作都是数学中的基础知识点,非常值得我们重视和复习。
下面给出分式的总结及复习,希望能对大家有所帮助。
一、分式的定义和表示方法1.分式是由两个整数用除号连接起来的表达式,形如a/b,其中a和b都是整数,b不等于0。
a被称为分子,b被称为分母。
分子和分母都可以为正整数、负整数或零。
2.分式也可以表示为a÷b,即a除以b。
二、分式的化简1.如果分式的分子和分母都可以被同一个非零整数整除,则可以进行约分。
约分后得到的分式与原分式的值相等。
2.两个分数相加(减)时,要先找到它们的公共分母,然后将分子相加(减),再写上公共分母。
3.两个分数相乘时,将分子相乘,分母相乘。
4.两个分数相除时,将除号转为乘号,即分子乘以分母的倒数。
5.分子和分母同时乘以一个非零整数不改变分数的值。
这也是化简分式中常用的方法。
三、分式的乘除混合运算1.分式的乘法:把分子与分子相乘,分母与分母相乘。
然后可以进行约分。
2.分式的除法:用除号变成乘号,然后求倒数,即分子和分母交换位置。
然后进行乘法运算,可以进行约分。
四、分式的加减混合运算1.分式的加法:确定两个分式的公共分母,然后将分子相加,写上公共分母。
最后可以进行约分。
2.分式的减法:确定两个分式的公共分母,然后将分子相减,写上公共分母。
最后可以进行约分。
五、分式的化简与方程的解1.在代数中,分式经常出现在方程的求解中。
如果方程中含有分式,我们需要对方程进行化简,使得分母消失,然后求解方程。
2.常用的化简方法有通分、去括号、移项等。
六、分式的应用1.在实际生活中,分式的应用非常广泛。
比如:计算机网络中的带宽分配、物资的平均分配等都涉及到分式的应用。
2.分式在商业计算、金融投资等领域也有广泛应用。
七、分式的习题练习1.简化下列分式:(a)12/30(b)-18/12(c)40/802.求下列分式的值:(a)1/4+3/8(b)5/6-2/3(c)2/3×3/4(d)1/2÷2/33.解方程:2/(x-1)-3/(x+2)=1/(x+1)以上是分式知识点的总结及复习,对于掌握分式知识以及应用都有一定的帮助。
分式知识点总结及复习

分式知识点总结及章末复习知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) ⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)经典例题1、代数式14x-是( ) A .单项式 B .多项式 C .分式 D .整式 2、在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B .2 C .3 D .4 3、总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种 糖果便宜1元,比乙种糖果贵0.5元,设乙种糖果每千克x 元,因此,甲种糖果每千克 元,总价9元的甲种糖果的质量为 千克.4、当a 是任何有理数时,下列式子中一定有意义的是( )A .1a a + B .21a a + C .211a a ++ D .211a a +- 5、当1x =时,分式①11x x +-,②122x x --,③211x x --,④311x +中,有意义的是( ) A .①③④ B .③④ C .②④ D .④6、当1a =-时,分式211a a +-( )A .等于0 B .等于1 C .等于-1 D .无意义 7、使分式8483x x +-的值为0,则x 等于( ) A .38 B .12- C .83 D .12 8、若分式2212x x x -+-的值为0,则x 的值是( ) A .1或-1 B .1 C .-1 D .-2 9、当x 时,分式11x x +-的值为正数. 10、当x 时,分式11x x +-的值为负数. 11、当x = 时,分式132x x +-的值为1. 12、分式1111x ++有意义的条件是( ) A .0x ≠ B .1x ≠-且0x ≠ C .2x ≠-且0x ≠ D .1x ≠-且2x ≠-13、如果分式33x x --的值为1,则x 的值为( ) A .0x ≥ B .3x > C .0x ≥且3x ≠ D .3x ≠14、下列命题中,正确的有( )①A 、B 为两个整式,则式子A B 叫分式; ②m 为任何实数时,分式13m m -+有意义; ③分式2116x -有意义的条件是4x ≠; ④整式和分式统称为有理数. A .1个 B .2个 C .3个 D .4个15、在分式222x ax x x ++-中a 为常数,当x 为何值时,该分式有意义?当x 为何值时,该分 式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
分式知识点及题型总结超好用

分式知识点及题型总结超好用————————————————————————————————作者:————————————————————————————————日期:ﻩ分式知识点及题型一、分式的定义:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ••=A B A ,CB C ÷÷=A B A ,其中A 、B 、C是整式,C≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=AA A 注意:在应用分式的基本性质时,要注意C≠0这个限制条件和隐含条件B ≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
分式知识点总结及复习

分式知识点总结及复习分式是我们在数学学习中经常会遇到到的一个概念。
它也是数学中比较重要和基础的知识点之一。
今天我们就来总结和复习下分式相关的知识点。
一、分式的定义分式是表示两个整式相除的东西,通常形式为a/b,其中a和b 都是整式,b≠0。
二、分式的简化分式的简化是指对于一个分式a/b,找出他最简分式,即分式的分子和分母没有公因数。
分式简化的步骤如下:1、分子与分母可以同时除以同一个数,没有其他公因数的,就应该进行这个操作。
2、化简后的算数式应尽量保持简洁,比如说结果如果是(b+1)/(ab)的时候,不应化简成1/a+1/b,因为前者更为简洁。
三、分式的运算1、分式的加减法分式的加减法要求先将分母变为相同,然后分别对其分子进行加减运算即可。
具体方法如下:- 找到所有分式的公分母- 将每个分数的分子乘上变换因子,使得分母变成公分母。
变换因子就是公分母与原分母之间的比例数- 化简并加减分子比如:1/4+2/3=3/12+8/12=11/122、分式的乘法两个分数相乘,直接将两个分数的分子与分母分别相乘,然后再化简成最简分数即可。
比如:1/2*3/4=3/83、分式的除法将一个分数a/b乘以另一个分数c/d的倒数d/c,即a/b * d/c= ad/bc比如:1/2÷3/4=1/2*4/3=2/3四、分式方程分式方程就是方程中包含了一个或多个分式的方程。
一方面分式方程是实际问题的建模工具,另一方面分式方程本身也是数学研究中的重要对象。
分式方程的解法和解普通方程一样,只不过要注意去分母。
比如:1/(x+1) + 2/(2x-1)=3-->2(x+1)+1(x-1)=3(x+1)(2x-1)-->3x^2-4x+1=0-->x=1或1/3五、分式的应用分式在我们的日常生活中也有广泛的应用,比如在金融领域中,计算收益率、利率等都涉及到分式的运算;在化学和物理方面,化学反应平衡常数,速度常数,牛顿第二定律等也都涉及到分式的概念。
分式知识点总结及复习

分式知识点总结及复习分式是数学中一个重要的概念,也是许多人在学习数学时感到困惑的内容之一。
本文将对分式的基本概念、运算法则以及应用进行总结与复习,帮助读者更好地理解和掌握分式知识。
一、基本概念分式由分子和分母两部分组成,分子表示分数的被除数,分母表示分数的除数。
分数的值可以是整数、小数或者其他分数。
下面是分式的基本概念:1. 真分数:分子小于分母的分数称为真分数,例如1/2、3/4等。
2. 假分数:分子大于或等于分母的分数称为假分数,例如5/2、7/3等。
3. 常分数:分子为0的分数称为常分数,其值为0。
二、分式的四则运算分式的四则运算包括加法、减法、乘法和除法。
下面是各种运算的规则和注意事项:1. 加法与减法:- 分式加减法的前提是分母相同,如果分母不同,则需要找到它们的最小公倍数来进行通分。
- 计算分子时,加法取分子相加,减法取分子相减。
- 结果的分子不一定能被整除,可能需要进行约分。
2. 乘法:- 分式乘法直接将分子相乘,分母相乘。
- 结果的分子和分母都需要化简,即约分。
3. 除法:- 分式除法可以转化为乘法求逆的问题,即将被除数的分子和除数的分母互换位置,然后进行乘法运算。
- 运算结束后需化简结果。
三、分式的应用分式在实际问题中有广泛的应用,以下是几个常见的应用场景:1. 比例问题:当我们需要比较两个量的大小、计算比例或者解决比例问题时,常常会使用到分式。
2. 混合运算:在一些复杂的算术题中,可能会出现含有分式的运算,我们需要根据题目要求进行正确的计算和化简。
3. 高等数学中的应用:在微积分、线性代数等高等数学中,分式经常用于表示函数、方程组等,是一种重要的数学工具。
四、分式知识点的复习为了更好地巩固分式的知识,建议读者可以通过以下方法进行复习:1. 多做练习题:选择一些分数相关的练习题,分情况进行分类练习,逐步提高解题能力。
2. 总结归纳:将每个知识点进行总结和分类,形成自己的知识框架,并根据实际问题进行思考和应用。
分式归纳总结

分式归纳总结分式是数学中常见的一种表达方式,它由一个分子和一个分母组成,分子和分母都是数或者代数式。
在日常生活和学习中,我们经常遇到各种各样的分式,学会对分式进行归纳总结,可以帮助我们更好地理解和应用分式。
一、分式的基本概念和性质1. 分式的定义:分式是由分子和分母用横线分隔表示的数或者代数式。
2. 分式的性质:分式可以进行加、减、乘、除等运算。
分式可以化简为最简形式,即分子与分母没有公因数。
二、分式的分类和举例1. 真分式:分子的绝对值小于分母的绝对值,如1/2、3/4等。
2. 假分式:分子的绝对值大于等于分母的绝对值,如5/4、7/2等。
3. 显分式:分子为非零数,如3/1、4/1等。
4. 隐分式:分子为零,如0/5、0/9等。
三、分式的运算与应用1. 分式的加法和减法:对于相同分母的分式,可以直接对分子进行加或减。
对于不同分母的分式,需要先通分再进行运算。
例如:1/2 + 1/3 = 3/6 + 2/6 = 5/63/4 - 1/5 = 15/20 - 4/20 = 11/202. 分式的乘法和除法:将分子与分母分别相乘或相除。
例如:(2/3) * (3/4) = 6/12 = 1/2(4/5) / (2/3) = (4/5) * (3/2) = 12/10 = 6/53. 分式的应用:分式在实际生活中有很多应用,如比例、百分数、利润分成等问题。
例如:根据工资比例计算两人的收入比例:小明工资是2000元,小红工资是3000元,求两人工资的比例。
小明的工资比例为:2000 / (2000+3000) = 2000 / 5000 = 2/5小红的工资比例为:3000 / (2000+3000) = 3000 / 5000 = 3/5四、分式的化简与扩展1. 分式的化简:通过约分化简一个分式,使得分子与分母互质。
例如:8/12 = 2/3,可以将分式8/12化简为2/3。
2. 分式的扩展:将一个分式拆分为多个分式的和或差,扩展了分式的表达形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式知识点总结及复习汇总
一、分式的定义和性质:
分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。
分式可以表示一个数,也可以表示一个运算过程。
分式可以进行四则运算,包括加减乘除。
分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。
分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。
分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。
二、分式的运算法则:
1.加法:两个分式相加,分母相同,分子相加。
2.减法:两个分式相减,分母相同,分子相减。
3.乘法:两个分式相乘,分子相乘,分母相乘。
4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。
三、分式的化简方法:
1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。
2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。
四、分式与整式的相互转化:
1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。
2.整式转化为分式:将一个整数写成分子,分母为1的形式。
五、分式的应用:
1.比例问题:可以利用分式来表示两个比例的关系。
2.部分与整体的关系:可以用分式表示部分与整体的关系。
3.商业问题:例如打折、利润等问题,可以用分式来表示计算。
4.几何问题:例如面积、体积等问题,可以用分式来表示计算。
六、分式的简化步骤:
1.因式分解。
2.分子、分母约去最大公约数。
3.整理化简结果。
七、分式的应用举例:
1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?
解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和
$\frac{1}{8}$,所以他们一起完成工作的效率是
$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。
所以甲乙两人一起完成工作需要$\frac{40}{13}$小时。
2. 一块长方形的土地面积是$\frac{2}{3}$亩,长是60米,那么宽是多少?
设宽为$x$,则有$60x=444.44$,解得
$x=\frac{444.44}{60}=\frac{2222}{300}=7.41$。
所以宽是7.41米。
八、分式的注意事项:
1.分母不能为0。
2.分式的分子和分母应在尽量小的范围内。
3.分式可以约去分子分母的公因数。
4.分式可以化为最简分式。
总结:分式是数学中重要的概念之一,具有广泛的应用,需要掌握分式的定义和性质,掌握分式的运算法则和化简方法,并能熟练应用分式解决实际问题。
在复习分式时,要注意总结分式的性质和运算规则,通过做一些练习题来加深理解和巩固知识。