分式方程的解法

合集下载

(完整)分式方程概念及解法

(完整)分式方程概念及解法

分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。

要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。

2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.要点二:分式方程的解法1。

解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解.2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。

(2)解这个整式方程。

(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。

注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。

3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是( )A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________。

分式方程的解法

分式方程的解法

分式方程的解法多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。

方法1:计算法例 解方程 32223=-++x x x 解:移项,得()()()()是原方程的根时,检验:当计算,得4,022440164022164-032223=≠-+===+-=-++=--++x x x x x x x x x x x x原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。

方法2:分式相等法例 解方程 32223=-++x x x 解:原方程化为()()()()()()()()()()()()416412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x经检验,x=4是原方程的解。

原理:两分式相等,分母相等,分子也相等。

方法3:等式性质法例 解方程 32223=-++x x x 解:方程两边同乘()()22-+x x 得()()()()4164123443223222322=-=--=+--+=++-x x x x x x x x x x经检验,x=4是原方程的解。

原理:利用等式性质,去分母化为整式方程。

方法2结合方法3,降低去分母的难度。

方法4:比例式法例 解方程 415+=x x解:两外项的乘积等于两內项的乘积 ()55554154-==-+=+=x x x x x x经检验,x=-5是原方程的解。

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧【典型例题】1. 局部通分法:例1.分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。

解:方程两边分别通分并化简,得:解之得:x=6经检验:x=6是原分式方程的根。

点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。

但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。

2. 换元法:例2.分析:此方程中各分式的分母都是含未知数x的二次三项式,且前两项完全相同,解:解此方程此方程无解。

点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。

3. 拆项裂项法:例3.分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。

解:原方程拆项,变形为:裂项为:经检验:x=1是原分式方程的解。

4. 凑合法:例4.分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。

解:部分移项得:∴x=2经检验:x=2是原分式方程的根。

5. 构造法:例5.分析:来求解,而不用常规解法。

解:原方程可化为:6. 比例法:例6.分析:由于方程两边分子、分母未知数的对应项系数相等,因此可以利用这样的恒等运算。

解:应用上述性质,可将方程变形为:【模拟试题】(答题时间:20分钟)解下列分式方程:1.2.3.4.5.【试题答案】1. 解:原方程变形为:即方程两边分别通分为:去分母得:化简得:解法2:原方程变变形得:两边分别通分得:去分母得:化简得:2. 由比例的性质可得:或解之得:经检验:是原分式方程的解。

3. 解:原方程可化为:化简得:∴原分式方程无解4. 原方程可变形为:设,则有∴原方程可化为:即解之得:当时,即,解得当时,即,解得经检验:,均是原方程的解。

分式方程的几种解法

分式方程的几种解法

分式方程的几种解法分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。

一、 去分母法方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。

例1:解方程:4121235222---=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得:)1(4)2)(1()2)(52(+-++=--x x x x x整理得:01282=+-x x 解之得:6,221==x x检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。

把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。

∴原方程的根为6=x 。

二、 换元法方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。

例2:解方程:21333322=-+-x x x x 解,设a x x =-32,则ax x 13332⨯=-,原方程变形为: 2133=+a a 去分母,得:061322=+-a a 解之得:61=a 212=a当6=a ,即632=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 23,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 23-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。

∴原方程的根是323±=∴x ,2=x , 23-=x 三、 通分法方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。

高中数学中的分式方程的解法

高中数学中的分式方程的解法

高中数学中的分式方程的解法在高中数学中,分式方程是一个重要的内容,它是由含有分式的方程组成的。

解决分式方程需要一些特定的技巧和方法。

本文将介绍一些常见的分式方程的解法。

一、一次分式方程的解法一次分式方程是指方程中只含有一次分式的方程。

解决一次分式方程的关键是将方程化简为一个整式方程。

例如,对于方程 $\frac{1}{x+1} + \frac{2}{x-2} = \frac{3}{x-1}$,我们可以通过通分的方式消去分母,得到 $x(x-2) + 2(x+1) = 3(x+1)$。

然后,我们将方程化简为一个整式方程 $x^2 - 2x + 2x + 2 = 3x + 3$,进一步简化为 $x^2 - 3x - 1 = 0$。

最后,我们可以使用因式分解、配方法或求根公式等方法求得方程的解。

二、二次分式方程的解法二次分式方程是指方程中含有二次分式的方程。

解决二次分式方程需要将方程化简为一个二次方程。

例如,对于方程 $\frac{1}{x^2 - 1} + \frac{1}{x^2 - 4} = \frac{2}{x^2 - 9}$,我们可以先找到方程中的公共分母 $(x^2 - 1)(x^2 - 4)(x^2 - 9)$。

然后,我们将方程中的每一项乘以相应的公共分母,得到 $(x^2 - 4)(x^2 - 9) + (x^2 - 1)(x^2 - 9) = 2(x^2 - 1)(x^2 - 4)$。

进一步化简得 $x^4 - 13x^2 + 36 + x^4 - 10x^2 + 9 = 2x^4 - 6x^2$。

最后,我们将方程化简为一个二次方程 $2x^4 - 3x^2 - 45 = 0$,并使用因式分解、配方法或求根公式等方法求得方程的解。

三、分式方程的约束条件在解决分式方程时,有时需要考虑方程的约束条件。

约束条件是指方程中的变量需要满足的条件。

例如,对于方程 $\frac{x}{x+1} + \frac{2}{x-2} = \frac{3}{x-1}$,我们可以通过观察发现,当 $x=-1$、$x=1$、$x=2$、$x=3$时,方程的左边或右边的分式将无定义。

分式方程与分式不等式的解法

分式方程与分式不等式的解法

分式方程与分式不等式的解法在数学学科中,我们经常会遇到分式方程和分式不等式的求解问题。

分式方程是指含有分数形式的方程,而分式不等式则是含有分数形式的不等式。

本文将介绍分式方程和分式不等式的基本解法。

一、分式方程的解法分式方程的解法可以分为以下几个步骤:1. 将方程中的分式化简为整式,消除分式。

2. 通过移项和合并同类项,将方程转化为一元一次方程。

3. 求解一元一次方程,得到方程的解。

举例说明:假设我们要解以下分式方程:(2/x) + 1 = 5首先,我们将方程中的分式化简为整式:2/x + 1 = 5然后,通过移项和合并同类项,将方程转化为一元一次方程:2 + x = 5x接下来,我们求解一元一次方程,得到方程的解:2 = 5x - xx = 1/2因此,原方程的解为x = 1/2。

二、分式不等式的解法分式不等式的解法可以分为以下几个步骤:1. 将不等式中的分式化简为整式。

2. 根据不等式的性质,进行等价变形。

3. 确定不等式的解集。

举例说明:假设我们要解以下分式不等式:(3/x) - 2 ≥ 1首先,我们将不等式中的分式化简为整式:3/x - 2 ≥ 1然后,根据不等式的性质,进行等价变形:3/x ≥ 3x ≤ 1最后,确定不等式的解集:解集为x ≤ 1。

分式方程的解法包括将分式化简为整式、转化为一元一次方程、求解一元一次方程等步骤。

而分式不等式的解法则包括将分式化简为整式、进行等价变形、确定解集等步骤。

掌握这些解法,我们就能够准确地求解各种类型的分式方程和不等式问题。

通过以上的讲解,我们对分式方程与分式不等式的解法有了更深入的理解。

希望本文对您在学习和应用中有所帮助。

如何解分式方程

如何解分式方程

1.一般‎法所谓一般‎法,就是先‎去分母,将‎分式方程转‎化为一个整‎式方程。

然‎后解这个整‎式方程。

解‎原方程就‎是方程两边‎同乘以(x‎+3)(x‎-3),约‎去分母,得‎4(x-3‎)+x(x‎+3)=x‎2-9-2‎x。

2.换‎元法换元法‎就是恰当地‎利用换元,‎将复杂的分‎式简单化。

‎分析本方‎程若去分母‎,则原方程‎会变成高次‎方程,很难‎求出方程的‎解设x2‎+x=y,‎原方程可变‎形为解这个‎方程,得y‎1=-2,‎y2=1。

‎当y=-2‎时,x2+‎x=-2。

‎∵Δ<0,‎∴该方程无‎实根;当y‎=1时,x‎2+x=1‎,∴经检‎验,是原‎方程的根,‎所以原方程‎的根是。

‎3.分组结‎合法就是把‎分式方程中‎各项适当结‎合,再利用‎因式分解法‎或换元法来‎简化解答过‎程。

4.拆‎项法拆项法‎就是根据分‎式方程的特‎点,将组成‎分式方程的‎各项或部分‎项拆项,然‎后将同分母‎的项合并使‎原方程简化‎。

特别值得‎指出的是,‎用此法解分‎式方程很少‎有增根现象‎。

例4 解‎方程解将‎方程两边拆‎项,得即x‎=-3是原‎方程的根。

‎5.因式分‎解法因式分‎解法就是将‎分式方程中‎的各分式或‎部分分式的‎分子、分母‎分解因式,‎从而简化解‎题过程。

解‎将各分式‎的分子、分‎母分解因式‎,得∵x-‎1≠0,∴‎两边同乘以‎x-1,得‎检验知,它‎们都是原方‎程的根。

所‎以,原方程‎的根为x1‎=-1,x‎2=0。

6‎.配方法配‎方法就是先‎把分式方程‎中的常数项‎移到方程的‎左边,再把‎左边配成一‎个完全平方‎式,进而可‎以用直接开‎平方法求解‎。

∴x2±‎6x+5=‎0,解这个‎方程,得x‎=±5,或‎x=±1。

‎检验知,它‎们都是原方‎程的根。

所‎以,原方程‎的根是x1‎=5,x2‎=-5,x‎3=1,x‎4=-1。

‎7.应用比‎例定理上述‎例5,除了‎用因式分解‎法外,还可‎以应用合比‎和等比定理‎来解。

分式方程与分式不等式的解法

分式方程与分式不等式的解法

分式方程与分式不等式的解法分式方程和分式不等式是涉及分数的方程和不等式,其解法与一般的代数方程和不等式有一些不同之处。

本文将介绍分式方程和分式不等式的解法,并给出一些实例说明。

一、分式方程的解法分式方程是包含有分数的方程,一般形式为:$\frac{a}{x}+\frac{b}{y}=c$解分式方程的一般步骤如下:1. 将方程的两边通分,以消去分母。

2. 将分子相加,将方程转化为一个整式方程。

3. 解得整式方程的解。

4. 检验解,将解代入原方程验证是否成立。

例如,解方程$\frac{3}{x}-\frac{2}{y}=5$:解:首先将方程的两边通分,得到$3y-2x=5xy$。

接着整理方程,得到$5xy+2x-3y=0$。

将该方程转化为整式方程:$5xy+2x-3y=0$。

解得整式方程$5xy+2x-3y=0$的解。

程$5xy+2x-3y=0$的解。

二、分式不等式的解法分式不等式是包含有分数的不等式,一般形式为:$\frac{a}{x}>\frac{b}{y}$解分式不等式的一般步骤如下:1. 将不等式的两边通分,以消去分母。

2. 根据分数的正负和大小关系确定不等式符号。

3. 将分子相减,得到一个整式不等式。

4. 解得整式不等式的解。

5. 检验解,将解代入原不等式验证是否成立。

例如,解不等式$\frac{5}{x}>\frac{2}{y}$:解:首先将不等式的两边通分,得到$5y>2x$。

根据分数的正负和大小关系,确定不等式符号为>。

接着整理不等式,得到$2x-5y<0$。

将该不等式转化为整式不等式:$2x-5y<0$。

解得整式不等式$2x-5y<0$的解。

等式$2x-5y<0$的解。

结论本文简要介绍了分式方程和分式不等式的解法。

对于分式方程,我们通过通分和整理方程,将其转化为整式方程来求解。

对于分式不等式,我们通过通分和整理不等式,将其转化为整式不等式来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程的解法
在初等代数中,我们经常会遇到分式方程(或称有理方程)的求解
问题。

分式方程的特点是方程中包含分式(或有理式),而其求解方
法与一般的代数方程有所不同。

在本文中,我将为您介绍几种常见的
分式方程的解法。

一、化简与分子分母清零法
对于一些简单的分式方程,我们可以通过化简和清零的方法求解。

首先,我们需要将方程中的分母清零,然后将分子进行化简。

接下来,我们将方程化简为一个代数方程,再通过解代数方程的方法求得解。

最后,我们将得到的解代入原方程中,验证是否满足。

例如,考虑以下分式方程:
\[ \frac{2}{x-3} + \frac{3}{x+2} = \frac{5}{x} \]
我们首先将方程两边的分母清零,得到:
\[ x(x+2) + (x-3)(x) = 5(x-3)(x+2) \]
然后对方程进行化简,得到:
\[ x^2 + 2x + x^2 - 3x = 5x^2 - 15x - 30 \]
继续化简,得到:
\[ 2x^2 - 6x = 5x^2 - 15x - 30 \]
将方程转化为代数方程:
\[ 3x^2 - 9x - 30 = 0 \]
解代数方程,得到 x = -2 或 x = 5 。

将解代入原方程进行验证,可得:
\[ \frac{2}{-2-3} + \frac{3}{-2+2} = \frac{5}{-2} \]
\[ \frac{2}{-5} + \frac{3}{0} = \frac{5}{-2} \]
我们发现 x = -2 不满足原方程,而 x = 5 满足原方程。

因此,分式方程的解为 x = 5 。

二、通分法
当分式方程中有多项式相除时,我们可以通过通分的方法将分式方程转化为一个方程,从而求解。

例如,考虑以下分式方程:
\[ \frac{x+1}{x} - \frac{1}{2} = \frac{3x-4}{2x} \]
首先,我们将分数进行通分,得到:
\[ \frac{2(x+1)}{2x} - \frac{x}{2x} = \frac{3x-4}{2x} \]
继续化简,得到:
\[ \frac{2(x+1) - x}{2x} = \frac{3x-4}{2x} \]
化简后,我们得到:
\[ \frac{2x + 2 - x}{2x} = \frac{3x-4}{2x} \]
继续合并同类项,得到:
\[ \frac{x + 2}{2x} = \frac{3x-4}{2x} \]
此时,分母相同,我们可以去掉分母,得到:
\[ x + 2 = 3x - 4 \]
然后,我们将方程化简为代数方程,得到:
\[ 2 = 2x - 4 \]
解代数方程,得到 x = 3 。

将解代入原方程进行验证,可得:
\[ \frac{3+1}{3} - \frac{1}{2} = \frac{3(3)-4}{2(3)} \]
\[ \frac{4}{3} - \frac{1}{2} = \frac{9-4}{6} \]
我们发现 x = 3 满足原方程。

因此,分式方程的解为 x = 3 。

三、参数法
对于一些复杂的分式方程,我们可以引入一个参数,然后通过求参数的值来求解方程。

参数法常用于分式方程中含有未知数的方程。

例如,考虑以下分式方程:
\[ \frac{x+2}{x-1} - \frac{x+1}{x} = a \]
我们设参数 a 为一个任意常数。

首先,我们将方程通分,得到:\[ \frac{x(x+2)}{x(x-1)} - \frac{(x+1)(x-1)}{x(x-1)} = a \]
继续化简,得到:
\[ \frac{x(x+2) - (x+1)(x-1)}{x(x-1)} = a \]
化简后,我们得到:
\[ \frac{x^2 + 2x - (x^2 - 1)}{x(x-1)} = a \]
合并同类项,得到:
\[ \frac{3x}{x(x-1)} = a \]
此时,我们可以去掉分母,得到:
\[ 3x = ax(x-1) \]
然后,我们将方程化简为代数方程,得到:
\[ 3x = ax^2 - ax \]
再次合并同类项,得到:
\[ ax^2 - 4x = 0 \]
我们发现,这是一个二次方程。

根据二次方程的解法,我们可以解得 x = 0 或 x = 4/a 。

将解代入原方程进行验证,可得:
\[ \frac{0+2}{0-1} - \frac{0+1}{0} = a \]
\[ \frac{2}{-1} - \frac{1}{0} = a \]
我们发现 x = 0 不满足原方程。

而当 x = 4/a 时,方程成立。

因此,分式方程的解为 x = 4/a 。

综上所述,根据不同的情况,我们可以采用化简与分子分母清零法、通分法或参数法等不同的方法来求解分式方程。

通过选择合适的解法,我们能够准确地求得分式方程的解,从而解决实际问题中的求解难题。

相关文档
最新文档