2020年高考文科数学第一模拟考试试题
2020年高考第一次模拟考试文科数学试卷(含答案)

2020年高考第一次模拟考试文科数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有项是符合题目要求的.1.若集合A ={x |0≤x ≤2},B ={x |x 2>1},则A ∪B =( ) A .{x |0≤x ≤1}B .{x |x >0或x <﹣1}C .{x |1<x ≤2}D .{x |x ≥0或x <﹣1}2.复数z 满足z =2i1−i ,则复数z 的虚部为( ) A .﹣1B .1C .iD .﹣i3.双曲线x 2−y 24=1的渐近线方程是( )A .y =±√55x B .y =±√5x C .y =±12xD .y =±2x4.已知数列{a n }满足2a n =a n ﹣1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 3+a 4=( ) A .6B .7C .8D .95.已知向量a →=(x ,−1),b →=(1,√3),若a →⊥b →,则|a →|=( ) A .√2B .√3C .2D .46.“cos2α=12”是“α=kπ+π6(k ∈Z)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.描金又称泥金画漆,是一种传统工艺美术技艺.起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹.现甲、乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹.每道工序所需的时间(单位:小时)如下:则完成这三件原料的描金工作最少需要( )A .43小时B .46小时C .47小时D .49小时8.设直线x ﹣y ﹣a =0与圆x 2+y 2=4相交于A ,B 两点,O 为坐标原点,若△AOB 为等边三角形,则实数a 的值为( ) A .±√3 B .±√6 C .±3 D .±99.函数f (x )=a1−x 2(a >1)的部分图象大致是( )10.已知定义域为I 的偶函数f (x )在(0,+∞)上单调递增,且∃x 0∈I ,f (x 0)<0,则下列函数中符合上述条件的是( ) A .f (x )=x 2+|x | B .f (x )=2x ﹣2﹣xC .f (x )=log 2|x |D .f(x)=x−4311.已知三棱锥A ﹣BCD 内接于球O ,且AD =BC =3,AC =BD =4,AB =CD =√13,则三棱锥A ﹣BCD 的外接球的表面积是( ) A .38πB .9πC .76πD .19π12.已知函数f (x )=lnx +a ,g (x )=ax +b +1,若∀x >0,f (x )≤g (x ),则b a的最小值是( ) A .1+eB .1﹣eC .e ﹣1D .2e ﹣1二、填空题:本大题共4小题,每小题5分,共20分13.若关于x 的不等式(2a ﹣b )x +(a +b )>0的解集为{x |x >﹣3},则ba = .14.若平面向量a →=(cosθ,sinθ),b →=(1,﹣1),且a →⊥b →,则sin2θ的值是 . 15.若整数x 、y 满足不等式组{0≤x ≤2x +y −2>0x −y +2>0,则z =yx的最小值为 .16.三角形ABC 中,AB =2且AC =2BC ,则三角形ABC 面积的最大值为 . 三、解答题:本大题共5小题,满分共70分.解答应写出文字说明、证明过程或演算过程 (一)必考题:共60分.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b =c ,2sin B =√3sin A .。
2020年高考(文科)数学一诊试卷(Word解析版)

2020年高考(文科)数学一诊试卷一、选择题1.已知集合A={0,1,2,3,4,5},B={x|x=2n,n∈N},则A∩B=()A.{0,2,4}B.{2,4}C.{1,3,5}D.{1,2,3,4,5} 2.已知复数,则|z|=()A.B.5C.13D.3.已知非零向量,给定p:∃λ∈R,使得,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若2sin,则tanα=()A.4B.3C.﹣4D.﹣35.已知双曲线的一条渐近线过点(2,﹣1),则它的离心率是()A.B.C.D.6.已知集合,从A中任选两个角,其正弦值相等的概率是()A.B.C.D.7.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:年份123451.40.90.750.60.3羊只数量(万只)草地植被指数 1.1 4.315.631.349.7根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为|r1,去掉第一年数据后得到的相关系数为r2,则|r1|<|r2|;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是()A.0B.1C.2D.38.已知函数,且a=f(0.20.2),b=f(log34),,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a9.已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD=60°,则异面直线AB与DE所成角的正弦值为()A .B .C .D .10.已知函数f(x)=sinωx(sinωx+cosωx)(ω>0),若函数f(x)的图象与直线y=1在(0,π)上有3个不同的交点,则ω的范围是A.(,]B.(,]C.(,]D.(,]11.已知点M(﹣4,﹣2),抛物线x2=4y,F为抛物线的焦点,l为抛物线的准线,P为抛物线上一点,过P做PQ⊥l,点Q为垂足,过P作抛物线的切线l1,l1与l交于点R,则|QR|+|MR|的最小值为()A.B.C.D.512.已知定义在R上的函数f(x),f'(x)是f(x)的导函数,且满足xf'(x)﹣f(x)=x2e x,f(1)=e,则f(x)的最小值为()A.﹣e B.e C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数,则.14.已知向量,满足||,向量,夹角为120°,且()⊥,则向量||=.15.在△ABC中,a,b,c分别为角A,B,C所对的边,且,a=8,,则c=.16.大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B′C′D′=109°28′16''.已知一个房中BB'=5,AB=2,tan54°44′08'',则此蠊房的表面积是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在等差数列{a n}中,a1=﹣8,a2=3a4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,T n为数列{b n}的前n项和,若,求n的值.18.如图,在四棱锥P﹣ABCD中,底前ABCD为平行四边形,点P在面ABCD内的射影为A,PA=AB=1,点A到平面PBC的距离为,且直线AC与PB垂直.(Ⅰ)在棱PD找点E,使直线PB与平面ACE平行,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求三棱锥P﹣EAC的体积.19.甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代入治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插针处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.(I)根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记.根据以上直方图,完成列联表:标记不标记合计坡腰坡顶合计并判断是否有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关?(Ⅲ)坡顶和坡腰的平均风蚀值分别为和,若||>20cm,则可认为此固沙方法在坡顶和坡腰的固沙效果存在差异,试根据直方图计算和(同一组中的数据用该组区间的中点值为代表),并判断该固沙方法在坡顶和坡腰的固沙效果是否存在差异.附:K2.P(K2≥k)0.0500.0100.001k 3.841 6.63510.828 20.已知点F为椭圆(a>b>0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1.(Ⅰ)求椭圆的标准方程;(Ⅱ)若M、N在椭圆上但不在坐标轴上,且直线AM∥直线BN,直线AN、BM的斜率分别为k1和k2,求证:k1•k2=e2﹣1(e为椭圆的离心率).21.已知函数(a∈R且a≠0).(Ⅰ)当a时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性与单调区间;(Ⅲ)若y=f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)<9﹣lna.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.(Ⅰ)若直线l与曲线C1交于M、N两点,求线段MN的长度;(Ⅱ)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C 2上,求的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|+|x﹣2a|+a.(Ⅰ)求不等式f(x)>4的解集;(Ⅱ)对∀x1∈R,∃x2∈R,使得f(x1)≥g(x2)成立,求a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3,4,5},B={x|x=2n,n∈N},则A∩B=()A.{0,2,4}B.{2,4}C.{1,3,5}D.{1,2,3,4,5}【分析】利用交集定义直接求解.解:∵集合A={1,2,3,4,5},B={x|x=2n,n∈N},∴A∩B={2,4}.故选:B.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.已知复数,则|z|=()A.B.5C.13D.【分析】利用复数的运算法则求出z,再求其模长即可.解:因为复数2=i(2+i)+2=1+2i;∴|z|;故选:A.【点评】本题考查了复数的运算法则,复数的模长,考查了推理能力与计算能力,属于基础题.3.已知非零向量,给定p:∃λ∈R,使得,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由q可得向量同向共线,进而判断出关系.解:由q可得向量同向共线,∴q⇒p,反之不成立.∴p是q的必要不充分条件.故选:B.【点评】本题考查了向量共线定理、简易逻辑,考查了推理能力与计算能力,属于基础题.4.若2sin,则tanα=()A.4B.3C.﹣4D.﹣3【分析】由题意利用诱导公式、二倍角的正弦公式以及同角三角函数的基本关系,求得tanα的值.解:若2sin,即2cos•(﹣sin)=2•,即﹣sin,∴,故tanα=﹣4,故选:C.【点评】本题主要考查诱导公式、二倍角的正弦公式以及同角三角函数的基本关系,属于基础题.5.已知双曲线的一条渐近线过点(2,﹣1),则它的离心率是()A.B.C.D.【分析】根据题意可知(2,﹣1)在y x上,可得a2=4b2,即可得到离心率.解:由题可知(2,﹣1)在双曲线的渐近线y x上,则a=2b,即a2=4b2,所以e,故选:A.【点评】本题考查双曲线离心率的求法,根据条件表示出a、b关系是关键,属于中档题.6.已知集合,从A中任选两个角,其正弦值相等的概率是()A.B.C.D.【分析】从A中任选两个角,基本事件总数n,其正弦值相等包含的基本事件个数m,由此能求出其正弦值相等的概率.解:∵集合,sin sin,,sin sin,,从A中任选两个角,基本事件总数n,其正弦值相等包含的基本事件个数m,∴其正弦值相等的概率是p.故选:B.【点评】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是基础题.7.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:年份123451.40.90.750.60.3羊只数量(万只)草地植被指数 1.1 4.315.631.349.7根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为|r1,去掉第一年数据后得到的相关系数为r2,则|r1|<|r2|;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是()A.0B.1C.2D.3【分析】根据两组数据的相关性,对题目中的命题判断正误即可.解:对于①,羊只数量与草场植被指数成负相关关系,不是减函数关系,所以①错误;对于②,用这五组数据得到的两变量间的相关系数为|r1,因为第一组数据(1.4,1.1)是离群值,去掉后得到的相关系数为r2,其相关性更强,所以|r1|<|r2|,②正确;对于③,利用回归直线方程,不能准确地得到当羊只数量为2万只时的草场植被指数,只是预测值,所以③错误;综上知,正确的判断序号是②,共1个.故选:B.【点评】本题考查了数据分析与线性相关性的判断问题,是基础题.8.已知函数,且a=f(0.20.2),b=f(log34),,则a、b、c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a【分析】推导出0<0.20.2<0.20=1,log34>1,1,由此能比较三个数的大小.解:∵函数的减区间为(﹣∞,0),增区间为(0,+∞),0<0.20.2<0.20=1,log34>1,1,∵a=f(0.20.2),b=f(log34),,∴b>c>a.故选:D.【点评】本题考查三个数的大小的判断,考查指数函数、对数函数的性质等基础知识,考查运算求解能力,是基础题.9.已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD=60°,则异面直线AB与DE所成角的正弦值为()A.B.C.D.【分析】建立直角坐标系.不妨设OB=1.高和底面的半径相等,得OE=OB=OA,OA⊥底面DEB,利用向量夹角公式即可得出.解:如图所示,建立直角坐标系.不妨设OB=1.因为高和底面的半径相等,∴OE=OB=OA,OA⊥底面DEB.∵点D为底面圆周上的一点,且∠ABD=60°,∴AB=AD=DB;∴D为的中点则O(0,0,0),B(0,﹣1,0),D(1,0,0),A(0,0,1),E(0,1,0),∴(0,﹣1,﹣1),(﹣1,1,0),∴cos,,∴异面直线AM与PB所成角的大小为.∴异面直线AB与DE所成角的正弦值为.故选:A.【点评】本题考查了异面直线所成的角,本题转化为向量的夹角,考查了推理能力与计算能力,属于基础题.10.已知函数f(x)=sinωx(sinωx+cosωx)(ω>0),若函数f(x)的图象与直线y=1在(0,π)上有3个不同的交点,则ω的范围是A.(,]B.(,]C.(,]D.(,]【分析】先根据两角和与差的三角函数个数化简解析式,再把问题转化为sin(2)有三个根,借助于正弦函数的性质即可求解.解:因为函数f(x)=sinωx(sinωx+cosωx)(1﹣cos2ωx)sin2ωx sin(2)(ω>0),∵函数f(x)的图象与直线y=1在(0,π)上有3个不同的交点;即sin(2)1有3个根;∴sin(2)有三个根;∵x∈(0,π);∴2∈(,2ωπ);∵2π2ωπ2π⇒ω.故选:C.【点评】本题主要考查两角和与差的三角函数以及方程根的个数问题的求解,属于综合性题目.11.已知点M(﹣4,﹣2),抛物线x2=4y,F为抛物线的焦点,l为抛物线的准线,P为抛物线上一点,过P做PQ⊥l,点Q为垂足,过P作抛物线的切线l1,l1与l交于点R,则|QR|+|MR|的最小值为()A.B.C.D.5【分析】画出图形,设出P的坐标,结合抛物线的定义,转化说明|QR|+|MR|的最小值就是MF的距离即可.解:设P(m,),则过P的切线的斜率为:k,Q(m,﹣1),k PQ,k PQ >k=﹣1,根据抛物线的定义,|PF|=|PQ|.l1为FQ的垂直平分线,|RF|=|RQ|,|QR|+|MR|的最小值为|MF|5,故选:D.【点评】本题考查抛物线的简单性质的应用,考查数形结合以及转化思想计算能力,是中档题.12.已知定义在R上的函数f(x),f'(x)是f(x)的导函数,且满足xf'(x)﹣f(x)=x2e x,f(1)=e,则f(x)的最小值为()A.﹣e B.e C.D.【分析】构造函数,则e x,设F(x)=e x+c,即f(x)=xe x+cx,又f(1)=e得c=0,所以f(x)=xe x,再利用导数即可求得f(x)的最小值.解:由xf'(x)﹣f(x)=x2e x,构造函数,则e x,所以可以设F(x)=e x+c,即,f(x)=xe x+cx,又因为f(1)=e得c=0,所以f(x)=xe x,由f'(x)=e x(x+1)=0得x=﹣1,所以当x<﹣1时f'(x)<0,即f(x)在(﹣∞,﹣1)上为减函数,当x>﹣1时f'(x)>0,f(x)在(﹣1,+∞)上为增函数,所以,故选:D.【点评】本题主要考查了构造函数,以及利用导数研究函数的最值,是中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数,则4.【分析】先求出f(log 2),从而f(),由此能求出结果.解:∵函数,∴f(log 2),∴f()=2.故答案为:4.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.已知向量,满足||,向量,夹角为120°,且()⊥,则向量||=.【分析】由题意利用两个向量垂直的性质,两个向量的数量积公式可得||•||cos,2,及||的值,而||展开可求出其值.解:因为()⊥,所以()•0,即2=0,因为||,向量,夹角为120°,整理可得2=||•||cos,2,即﹣2=||•(),所以||=2,所以||故答案为:.【点评】本题主要考查两个向量垂直的性质,及和向量的模的求法,两个向量的数量积公式的应用,属于基础题.15.在△ABC中,a,b,c分别为角A,B,C所对的边,且,a=8,,则c=9.【分析】根据可求出cos C,进而求出sin C.由可得sin A,最后利用正弦定理求出c的值.解:由得,∴.显然,结合,∴,∴.∵a=8,由正弦定理得,即,∴c=9.故答案为:9.【点评】本题考查正余弦定理的应用及二倍角公式等知识点.同时考查学生的逻辑推理、数学运算等数学核心素养.属于基础题.16.大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B′C′D′=109°28′16''.已知一个房中BB'=5,AB=2,tan54°44′08'',则此蠊房的表面积是216.【分析】连接BD,B′D′,则由题意BD∥B′D′,BD=B′D′=6,由OB′C′D′为菱形,可求OC′=2•6,B′C′=3,进而可求CC′,可求S,即可计算得解S表面积的值.梯形BB′CC′解:连接BD,B′D′,则由题意BD∥B′D′,BD=B′D′=6,∵OB′C′D′为菱形,∠B′C′D′=109°28′16'',tan54°44′08'',∴OC′=2•26,B′C′=3,∴CC′=BB′4,∴S梯形BB′CC′27,∴S表面积=63216.故答案为:216.【点评】本题主要考查了勾股定理在解三角形中的应用,考查了菱形的性质,考查了数形结合思想的应用,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在等差数列{a n}中,a1=﹣8,a2=3a4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,T n为数列{b n}的前n项和,若,求n的值.【分析】(Ⅰ)先设公差为d,由a1=﹣8,a2=3a4,求出d,进而求出a n;(Ⅱ)先利用(1)中求出的a n求b n,再利用裂项相消法求T n,从而解决n的值得问题.解:(Ⅰ)设等差数列{a n}的公差是d,由a1=﹣8,a2=3a4得:﹣8+d=3(﹣8+3d)解得d=2,所以a n=﹣10+2n;(Ⅱ)由(Ⅰ)知a n=﹣10+2n,∴,所以T n=2[()+()+…+()],由T n解得n=9.【点评】本题主要考查等差数列及裂项相消法求和,属于基础题.18.如图,在四棱锥P﹣ABCD中,底前ABCD为平行四边形,点P在面ABCD内的射影为A,PA=AB=1,点A到平面PBC的距离为,且直线AC与PB垂直.(Ⅰ)在棱PD找点E,使直线PB与平面ACE平行,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求三棱锥P﹣EAC的体积.【分析】(Ⅰ)点E为PD中点时直线PB与面ACE平行.连接BD,交AC点O,说明OE∥PB,然后证明PB与平面ACE平行(Ⅱ)说明AC⊥平面PAB,则AC⊥AB,设AC=x,通过等体积法转化求解即可.解:(Ⅰ)点E为PD中点时直线PB与面ACE平行.证明:连接BD,交AC点O,则点O为BD的中点,因为点E为PD中点,故OE为△PDB的中位线,则OE∥PB,OE⊂平面ACE,PB⊄平面ACE,所以PB与平面ACE平行.(Ⅱ)根据题意AC⊥PB,PA⊥底面ABCD,AC⊂底面ABCD,则有AC⊥PA,PA∩PB =P,所以AC⊥平面PAB,则AC⊥AB设AC=x,,得AC=1,则.【点评】本题考查几何体的体积的求法,直线与平面平行的判断定理与形状的应用,是基本知识的考查.19.甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代入治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插针处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.(I)根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记.根据以上直方图,完成列联表:标记不标记合计坡腰坡顶合计并判断是否有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关?(Ⅲ)坡顶和坡腰的平均风蚀值分别为和,若||>20cm,则可认为此固沙方法在坡顶和坡腰的固沙效果存在差异,试根据直方图计算和(同一组中的数据用该组区间的中点值为代表),并判断该固沙方法在坡顶和坡腰的固沙效果是否存在差异.附:K2.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【分析】(I)利用频率分布直方图计算“坡腰处一个插钎风蚀值小于30”的频率值;(Ⅱ)由频率分布表填写列联表,计算观测值,对照临界值得出结论;(Ⅲ)计算和,求出||,即可得出结论.解:(I)设“坡腰处一个插钎风蚀值小于30”的事件为C,则P(C)=0.08+0.16+0.36=0.6;(Ⅱ)由频率分布表,填写列联表如下:标记不标记合计坡腰302050坡顶203050合计5050100由表中数据,计算K24>3.841,所以有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关;(Ⅲ)计算0.08×5+0.16×15+0.36×25+0.24×35+0.12×45+0.04×55=25.8(cm),0.04×5+0.12×15+0.24×25+0.32×35+0.20×45+0.08×55=32.6(cm),且||=4.8<20,所以判断该固沙方法在坡顶和坡腰的固沙效果没有差异.【点评】本题考查了频率分布直方图与独立性检验的应用问题,是中档题.20.已知点F为椭圆(a>b>0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1.(Ⅰ)求椭圆的标准方程;(Ⅱ)若M、N在椭圆上但不在坐标轴上,且直线AM∥直线BN,直线AN、BM的斜率分别为k1和k2,求证:k1•k2=e2﹣1(e为椭圆的离心率).【分析】(Ⅰ)由题意可知,a+c=3,a﹣c=1,可求出a,c的值,再利用b2=a2﹣c2求出b的值,即可得到椭圆的标准方程;(Ⅱ)设直线AM的斜率为k,则直线BN的斜率也为k,所以直线AM的方程为y=k (x﹣2),直线BN的方程为y=kx,联立直线AM与椭圆方程求出点M的坐标,联立直线BN与椭圆方程求出点N的坐标,再利用斜率公式分别求出k1,k2,化简k1•k2,从而得到k1•k2=e2﹣1.解:(Ⅰ)由题意可知,,解得,∴b2=a2﹣c2=3,∴椭圆的标准方程为:;(Ⅱ)由(Ⅰ)可知,A(2,0),B(0,),设直线AM的斜率为k,则直线BN的斜率也为k,故直线AM的方程为y=k(x﹣2),直线BN的方程为y=kx,由得:(3+4k2)x2﹣16k2x+16k2﹣12=0,∴,∴,,∴,由得:,∴,,∴,∴,,∴k1k2•,又∵,∴k1•k2=e2﹣1.【点评】本题主要考查了椭圆方程,以及直线与椭圆的位置关系,考查了韦达定理得应用,是中档题.21.已知函数(a∈一、选择题且a≠0).(Ⅰ)当a时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性与单调区间;(Ⅲ)若y=f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)<9﹣lna.【分析】(Ⅰ)因为a时,f′(x)=2x⇒f′(1)=﹣1,易求f(1)=2,从而可得曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)由题意可知f′(x)=2x(x>0),令﹣x2+2x﹣a =0,通过对△=12﹣4a符号的分析,即可求得函数f(x)的单调性与单调区间;(Ⅲ)依题意,f′(x)0有两个正根x1,x2,则△=12﹣4a>0,x1+x2=2,x1•x2=a>0,f(x1)+f(x2)=2(x1+x2)﹣aln(x1x2)()+1=﹣alna+a+7,利用分析法,若要f(x1)+f(x2)<9﹣lna,即要alna﹣lna﹣a+2>0,构造函数g(x)=xlnx﹣lnx﹣x+2,通过对其导数的分析,存在x0∈(1,2),使得g (x0)=0,且g(x0)为(1,2)上的最小值,g(x0)=x0lnx0﹣x0﹣lnx0+2=3﹣(x0),利用对勾函数的单调性即可证得结论成立.解:(Ⅰ)因为a时,,所以f′(x)=2x,那么f′(1)=﹣1,f(1)=2,所以曲线y=f(x)在点(1,f(1))处的切线方程为:y﹣2(x﹣1),即x+y ﹣21=0,(Ⅱ)由题意可知f(x)的定义域为(0,+∞),因为f′(x)=2x,由﹣x2+2x﹣a=0可得:△=12﹣4a>0,即a<3时,有x1,x2,x1>x2,又当x∈(0,3)时,满足x1>x2>0,所以有x∈(0,x2)和(x1,+∞)时,f′(x)<0,即f(x)在区间(0,x2)和(x1,+∞)上为减函数.又x∈(x2,x1)时,f′(x)>0,即f(x)在区间(x2,x1)上为增函数.当a<0时,有x1>0,x2<0,则x∈(0,x1)时,f′(x)>0,f(x)为增函数;x∈(x1,+∞)时,f′(x)<0,f(x)为减函数;当a≥3时,△≤0,f′(x)≤0恒成立,所以f(x)在(0,+∞)为减函数,综上所述,当a<0时,在(0,3),f(x)为增函数;在(3,+∞),f(x)为减函数;当0<a<3时,f(x)在区间(0,3)和(3,+∞)上为减函数,在(3,3),f(x)为增函数;当a≥3时,在(0,+∞)上,f(x)为减函数.(Ⅲ)因为y=f(x)有两个极值点x1,x2,则f′(x)0有两个正根x1,x2,则△=12﹣4a>0,x1+x2=2,x1•x2=a>0,即a∈(0,3),所以f(x1)+f(x2)=2(x1+x2)﹣aln(x1x2)()+1=﹣alna+a+7,若要f(x1)+f(x2)<9﹣lna,即要alna﹣lna﹣a+2>0,构造函数g(x)=xlnx﹣lnx﹣x+2,则g′(x)=1+lnx1=lnx,且在(0,3)上为增函数,又g′(1)=﹣1<0,g′(2)=ln20,所以存在x0∈(1,2),使得g(x0)=0,即lnx0,且x∈(1,x0)时,g′(x)<0,g(x)单调递减,x∈(x0,2)时,g′(x)>0,g(x)单调递增,所以g(x)在(1,2)上有最小值g(x0)=x0lnx0﹣x0﹣lnx0+2=3﹣(x0),又因为x0∈(1,2),则x0∈(2,),所以g(x0)>0在x0∈(1,2)上恒成立,即f(x1)+f(x2)<9﹣lna成立.【点评】本题考查了利用导数研究函数的单调性与极值,考查导数的几何意义的应用,突出考查函数与方程思想、分类讨论思想及等价转化思想的综合运用,考查了逻辑推理能力与综合运算能力,属于难题.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线C2的直角坐标方程为.(Ⅰ)若直线l与曲线C1交于M、N两点,求线段MN的长度;(Ⅱ)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C 2上,求的取值范围.【分析】(Ⅰ)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果.(Ⅱ)利用直线和曲线的位置关系的应用建立等量关系,进一步求出范围.解:(Ⅰ)直线l的参数方程为(t为参数),转换为直角坐标方程为x+y﹣1=0,曲线C1的极坐标方程为,转换为直角坐标方程为x2+y2﹣2x+2y=0,转换为标准式为(x﹣1)2+(y+1)2=2,所以圆心(1,﹣1)到直线x+y﹣1=0的距离d,所以弦长|MN|=2.(Ⅱ)线C2的直角坐标方程为.转换为直角坐标方程为x2+y2=4,转换为参数方程为(0≤θ≤π).由于A(1,0),B(0,1),点P在曲线C2上,故P(2cosθ,2sinθ),所以,,(0≤θ≤π),所以2,故:,所以.【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|+|x﹣2a|+a.(Ⅰ)求不等式f(x)>4的解集;(Ⅱ)对∀x1∈R,∃x2∈R,使得f(x1)≥g(x2)成立,求a的取值范围.【分析】(Ⅰ)将函数化为分段函数的形式,再分类讨论分别解不等式,最后把每种情况的解集取并集即可;(Ⅱ)易知f(x)min=2,g(x)≥|2a+2|+a,结合题意可知2≥|2a+2|+a,由此求得实数a的取值范围.解:(Ⅰ),∴f(x)>4即为或或,∴或x∈∅或x>1,∴不等式的解集为;(Ⅱ)由(Ⅰ)知,当x=﹣1时,f(x)min=2,g(x)=|x+2|+|x﹣2a|+a≥|(x+2)﹣(x﹣2a)|+a=|2a+2|+a,由题意,对∀x1∈R,∃x2∈R,使得f(x1)≥g(x2)成立,故f(x)min≥g(x)min,即2≥|2a+2|+a,解得﹣4≤a≤0,∴实数a的取值范围为[﹣4,0].【点评】本题考查绝对值不等式的解法以及不等式的恒成立问题,同时也涉及了绝对值不等式性质的运用,属于基础题.。
2020年河南省第一次高考模拟考试文科数学试题与答案

2020年河南省第一次高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
|﹣1<x<5},集合A={1,3},则集合∁U A的子集的个数是()1. 设全集U={x NA. 16B. 8C. 7D. 42. 下列各式的运算结果为纯虚数的是()A. i(1+i)2B. i2(1﹣i)C. (1+i)2D. i(1+i)3. 为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。
其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④4. 已知直线,直线为,若则( )A.或 B.C .D .或5. 已知,条件甲:;条件乙:,则甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( ) A . B .C .D .7. 在中,a ,b ,c 分别是角A ,B ,C 的对边,,则角B=( )A.B. C.D.8. 执行如图所示的程序框图,输出的S=( )A. 25B. 9C. 17D. 209. 设直线1:210l x y -+=与直线A 的交点为A ;,P Q 分别为12,l l 上任意两点,点M 为,P Q 的中点,若12AM PQ =,则m 的值为( ) A. 2B. 2-C. 3D. 3-10.在V ABC 中,sin B A =,BC =4C π=,则=AB ( )B. 5C. D.11. 已知函数,若,且函数存在最小值,则实数的取值范围为( ) A.B.C. D. 12.已知三棱锥的底面的顶点都在球的表面上,且,,,且三棱锥的体积为,则球的体积为( ) A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2020年高考全国1卷数学(文科)模拟试卷(含答案)

2020年高考全国1卷数学(文科)模拟试卷考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B 2C 2D .22、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则AB =A .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”; ③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .14、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是8、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-…9、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 三棱锥四个面的面积中最大的值是32所有正确的说法 A 、①B 、①②C 、②③D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为 A.2 B.3 C.2 D.511、珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》•2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为( ) A .12B .25C .38D .1312、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
2020年文科数学全国卷高考模拟1【含答案】

2020年文科数学全国卷高考模拟1文科数学本试卷共23小题, 满分150分. 考试用时120分钟.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. (){},|0,,A x y x y x y R =+=∈,(){},|20,,B x y x y x y R =--=∈,则集合A B I =( )A .(1,1)-B .{}{}11x y ==-UC .{}1,1-D .(){}1,1- 2.等差数列{}n a 中,若58215a a a -=+,则5a 等于( )A .3B .4C .5D .6 3.下列函数中,在其定义域内是减函数的是( ) A .1)(2++-=x x x f B . xx f 1)(=C . 13()log f x x = D . ()ln f x x =4.已知函数(1),0()(1),0x x x f x x x x +<⎧=⎨-≥⎩,则函数()f x 的零点个数为( )A 、1B 、2C 、3D 、45.已知0a >,4()4,f x x a x =-+则()f x 为( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 有关6.已知向量(12)a =r ,,(4)b x =r ,,若向量a b //v v,则x =( ) A .2 B . 2- C . 8D .8-7.设数列{}n a 是等差数列,且5,8152=-=a a ,n S 是数列{}n a 的前n 项和,则 ( ) A.109S S < B.109S S = C.1011S S < D.1011S S =8.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则l β⊥10题③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m . 其中,真命题有( )A .0个B .1个C .2个D .3个9.已知离心率为e 的曲线22217-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为( )A .34B 423C .43D 2310.给出计算201614121++++Λ 的值的一个 程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 11.lg ,lg ,lg x y z 成等差数列是2y xz =成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件12.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =( )A .2-B .1C .2- 或1D .2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)2020年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .2B .1C .22D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3126cmB .346cmC.3272cm D .392cm11、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。
2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。
2020最新高考模拟数学考试(文科)含答案

65C . -33D . - 63,第Ⅰ卷(选择题,共 60 分)一、选择题:本大题共 l2 小题,每小题 5 分.共 60 分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设集合 A = {x || x - 2 |≤ 2, x ∈ R }, B = { y || y = - x 2,-1 ≤ x ≤ 2}, 则等于()A .RB . {x | x ∈ R 且x ≠ 0}C .{0}D . ∅R(A∩B )2 . 已 知 cos(α - β ) =3 ,sin β = - 5 , 且α ∈ (0, π ), β ∈ (- π ,0), 则 s in α =51322()A . 3365B . 63653.对于平面α 和共面的直线m ,n 下列命题中真命题是()A .若 m ⊥ α , m ⊥ n , 则n // αC .若 m ⊂ α,n // α,则m // nB .若 m // α,n // α,则m // nD .若 m ,n 与α所成的角相等,则m // n4.数列{a }中,若 a = 1 , a =n12n1 1 - an -1(n ≥ 2, n ∈ N ) 则 a2007的值为A -1B1 C 1D225.如果 f '(x) 是二次函数, 且 f '(x) 的图象开口向上,顶点坐标为(1,-那么曲线 y=f(x)上任一点的切线的倾斜角α的取值范围是()3),A. (0, 2π 3 ]B. [0, π 2π π 2π )∪[ , π)C. [0, ]∪[ 2 3 2 3, π) D.π 2π[ , ] 2 3a 2b 2| A .(1,2 + 3 ⎤B (1, 3 ⎤⎡2+ 3, +∞)D ⎡2 - 3,2 + 3 ⎤11.如图, 直线 MN 与双曲线 C: x 2线相交于 P 点, F 为右焦点,若|FM|=2|FN|, 又NP= λPM (λ∈R), 则6.两直线 3x +y -2=0 和 y +a=0 的夹角为()A. 30°B. 60°C. 120°D. 150°7.已知函数 y = f ( x )( x ∈ R)满足f ( x + 2) = f ( x ) 且当 x ∈ [-1,1]时f ( x ) = x 2 ,则y = f ( x )与y = log x 的图像的交点个数为()7A .3B .4C .5D .68.若关于 x 的方程 4cos x - cos 2 x + m - 3 = 0 恒有实数解,则实数 m 的取值范围是A. [ -1,+∞)B. [-1,8]C [0,8]D [0,5]9.如图,在杨辉三角中,斜线的上方从 1 开始按箭 头所示的数组成一个锯齿形数列 1,3,3,4,6,5,10,……,记此数列为{a } ,则 a 等于n21A .55B .65C .78D .6610.已知点 F 、F 为双曲线 x 2 - y 2 = 1 (a > 0, b > 0) 的左、右焦点, P 为右1 2支上一点,点 P 到右准线的距离为 d ,若 | PF | 、PF| 、d 依次成等差数列,12则此双曲线离心率的取值范围是()⎦⎦C⎣ ⎣ ⎦a 2 - y 2b 2 = 1的左右两支分别交于 M 、N 两点, 与双曲线 C 的右准→ →实数λ的取值为 ( )11A. B.1 C.2 D.2312.△ABC的AB边在平面α内,C在平面α外,AC和BC分别与面α成30°和45°的角,且面ABC与α成60°的二面角,那么sin∠ACB的值为()1221A.1B.C.D.1或333第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.x2113.二项式(-)9展开式中的系数为________2x x14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为_________15.过定点P(1,4)作直线交抛物线C:y=2x2于A、B两点,过A、B 分别作抛物线C的切线交于点M,则点M的轨迹方程为_________ 16.定义在R上的函数f(x)满足f(x+5)+f(x)=0,且函数f(x+5)为奇函24数,给出下列结论:①函数f(x)的最小正周期是5;②函数f(x)的2图像关于点(5,0)对称;③函数f(x)的图像关于直线x=5对称;④42函数f(x)的最大值为f(5).2其中正确结论的序号是__________(写出所有你认为正确的结论的序号)三、解答题:本大题共6小题,共74分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx 年高考文科数学第一模拟考试试题数学试题(文科)参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么 球的体积公式34π3V R =()()()P A B P A P B =g g其中R 表示球的半径如果事件A 在一次试验中发生的概率是P , 那么n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}112|{},10|{≤-=<<=x x T x x S 则S ∩T 等于A .SB .TC .}1|{≤x xD .φ2. 函数sin y x x =+的周期为A .2πB .πC .π2D .π4 3. 已知α、β是不同的两个平面,直线α⊂a,直线β⊂b ,命题p :a 与b 没有公共点;命题q :βα//,则p 是q 的A.充分不必要的条件B.必要不充分的条件C.充要条件D.既不充分也不必要的条件4. 若nx x ⎪⎪⎭⎫ ⎝⎛+13的展开式中各项系数之和为1024,则展开式中含x 的整数次幂的项共有A .2项B .3项C .5项D .6项5. 函数log (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 A .2B .4C .8D .166. 已知等差数列{}n a 中,315,a a 是方程2610x x --=的两根,则7891011a a a a a ++++ 等于A.18B.18-C. 15D.127. 先后连掷两次骰子分别得到点数m 、n ,则向量(m ,n)与向量(-1,1)的夹角ο90>θ 的概率是 A .21 B .31 C . 127 D . 125 8. 正三棱锥S —ABC 中,若侧棱34=SA ,高SO =4,则此正三棱锥S —ABC 外接球的表面积是A .36πB .64πC .144πD .256π9. 已知双曲线22221(0,0)x y a b a b-=>>24y x =的准线重合。
设双曲线与抛物线的一个交点为P ,抛物线的焦点为F ,则||PF 等于A .21B .18 C. D .410. 已知函数()2sin (0)f x x ωω=>在区间]3,4[ππ-上的最小值是2-则ω的最小值等于A .23 B.32C.2D.3 11. 己知函数f(x)=36)2(2323-++-x x a ax,若方程f(x)=0有三个不同的解,则a 的取值范围是 A. [2,+∞) B.(-∞,2]C. (0,2)D. (-∞,0)12. 如果数列{}n a 满足,1,221==a a 且1111++---=-n n n n n n n n a a a a a a a a (n ≥2),则此数列的第12项为A .1221 B .1121 C .121 D .61二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13. 函数)3(log 5.0x y -=的定义域是_________.14. 设x ,y 满足⎪⎩⎪⎨⎧≥+≥+-≤0,063y x y x x 则该不等式组表示的平面区域 ,则z=2x+y 的最大值_________.15. 两个三口之家,拟乘两艘小游艇一起水上游,每艘游艇最多只能坐4个人,其中两个小孩(另4个为两对夫妇)不能独坐一艘游艇,则不同的乘坐方法共有__________.16. 在△ABC 中,AB =3,AC =5,∠BAC =120°,其所在平面外一点P 到A 、B 、C 三个顶点的距离都是14,则P 点到直线BC 的距离为 .三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知)2cos ,2sin 3(xx a =,)2cos ,2(cos x x b -=,函数b a x f ⋅=)(.(1)求)(x f 的单调递增区间; (2)若)2,0(π∈x ,)(x f =61-,求x cos 的值.18.(本小题满分12分)某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止。
设每位工人每次测试通过的概率依次为0.2,0.4,0.5。
(1) 若有3位工人参加这次测试,求至少有一人不能上岗的概率。
(2) 若有4位工人参加这次测试,求恰有2人通过测试的概率。
19.(本小题满分12分)如图,直三棱柱A 1B 1C 1—ABC 中,C 1C=CB=CA=2,AC ⊥CB. D 、E 分别为棱C 1C 、B 1C 1的中点.(1)求B A 1与平面A 1C 1CA 所成角的大小; (2)求二面角B —A 1D —A 的大小;(3)在线段AC 上是否存在一点F ,使得EF ⊥平面A 1BD ?若存在,确定其位置并证明结论;若不存在,说明理由.20.(本小题满分12分)已知曲线C :221y x λ+=.(1)由曲线C 上任一点E 向x 轴作垂线,垂足为F ,点P 分EF u u u r 所成的比为13-,求点P 的轨迹. P 的轨迹可能是圆吗?请说明理由;(2)如果直线l 的斜率为2,且过点M (0,2-),直线l 交曲线C 于A 、B 两点,又9MA MB2?-uu r uu r,求曲线C 的方程.21.(本小题满分12分) 已知:函数.3)(23x ax x x f --= (1)若)(x f 在),1[+∞∈x 上是增函数,求实数a 的取值范围;(2)若方程f(x)=(1)32--x a (a>0)至多有两个解,求实数a 的取值范围.22.(本小题满分14分)数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意*N n ∈,总有2,,n n na S a成等差数列.(1)求数列{}n a 的通项公式;(2)若b n =a +n 41-n (n ∈*N ), B n 是数列{b n }的前n 项和,求证:不等式 B 1n +≤4B n ,对任意n ∈*N 皆成立.(3)令.}{,)12)(12(21n n a a a n T n C C n nn项和的前求数列--=+数学试题(文科)参考答案一、选择题(1)A (2) C (3) B (4) B (5) C(6)C (7)D (8)C(9) D(10) C(11)D(12) D 二、填空题(13))3,2[ (14) 15 (15) 48 (16) 1527三、解答题 17. 解:(1)21)6sin(21cos 21sin 232cos 2cos 2sin 3)(2--=--=-=⋅=πx x x x x x b a x f ……4分由3223222622πππππππππ+≤≤-+≤-≤-k x k k x k 得 )(Z k ∈ 所以)(x f 的单调递增区间为]322,32[ππππ+-k k )(Z k ∈ ………6分 (2)由)(x f =61-得:31)6sin(=-πx 366,20ππππ<-<-∴<<x x Θ ∴,322)6cos(=-πx ………8分 ∴-⋅-=+-=6cos)6cos(]6)6cos[(cos ππππx x x 6sin)6sin(ππ⋅-x=6162213123322-=⨯-⨯…………12分18. 解:1) 每位工人通过测试的概率为542112115111=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--…………2分 每位工人不能通过测试的概率为51.…………4分 3人中至少有一人不能通过测试的概率125615413=⎪⎭⎫⎝⎛-.…………6分(2) 4位工人中恰有2人通过测试的概率为P=C 24(22)51()54⋅=62596…………12分 。
19. 解:(1)∵A 1B 1C 1-ABC 为直三棱柱 ∴CC 1⊥底面ABC ∴CC 1⊥BC∵AC ⊥CB ∴BC ⊥平面A 1C 1CA ………………2分∴C BA 1∠为B A 1与平面A 1C 1CA 所成角22arctan arctan11==∠C A BC CBA∴B A 1与平面A 1C 1CA 所成角为22arctan……………4分 (2)分别延长AC ,A 1D 交于G. 过C 作CM ⊥A 1G 于M ,连结BM ∵BC ⊥平面ACC 1A 1 ∴CM 为BM 在平面A 1C 1CA 的内射影 ∴BM ⊥A 1G ∴∠CMB 为二面角B —A 1D —A 的平面角……6分 平面A 1C 1CA 中,C 1C=CA=2,D 为C 1C 的中点 ∴CG=2,DC=1 在直角三角形CDG 中, 552=∴CM 5CMB tan =∠∴, 即二面角B —A 1D —A 的大小为5arctan …………………8分 (3)在线段AC 上存在一点F ,使得EF ⊥平面A 1BD ………10分 其位置为AC 中点,证明如下:∵A 1B 1C 1—ABC 为直三棱柱 , ∴B 1C 1//BC∵由(1)BC ⊥平面A 1C 1CA ,∴B 1C 1⊥平面A 1C 1CA∵EF 在平面A 1C 1CA 内的射影为C 1F ,F 为AC 中点 ∴C 1F ⊥A 1D ∴EF ⊥A 1D ……11分 同理可证EF ⊥BD, ∴EF ⊥平面A 1BD …………12分 ∵E 为定点,平面A 1BD 为定平面 ,点F 唯一 解法二:(1)同解法一……………………4分(2)∵A 1B 1C 1—ABC 为直三棱住 C 1C=CB=CA=2 , AC ⊥CB D 、E 分别为C 1C 、B 1C 1的中点, 建立如图所示的坐标系得C (0,0,0) B (2,0,0) A (0,2,0) C 1(0,0,2) B 1(2,0,2) A 1(0,2,2)D (0,0,1)E (1,0,2)………………6分)2,2,2()1,0,2(1-=-=∴BA BD 设平面A 1BD 的法向量为n (1,,)=l mr⎩⎨⎧=μ-=λ⎩⎨⎧=μ+λ+-=μ+-⎪⎩⎪⎨⎧=⋅=⋅∴210222020BA n 0BD n 1得即 n (1,1,2)\=-r ……………8分平面ACC 1A 1的法向量为m r =(1,0,0) 16cos n,m 66<>==r r …9分即二面角B —A 1D —A 的大小为66arccos……………10分 (3)在线段AC 上存在一点F ,设F (0,y ,0)使得EF ⊥平面A 1BD欲使EF ⊥平面A 1BD 由(2)知,当且仅当n r//…………11分)2,y ,1(-=Θ 1=∴y … ……13分∴存在唯一一点F (0,1,0)满足条件. 即点F 为AC 中点……12分20.解:(1)设00(,),(,)E x y P x y ,则0(,0)F x ,∵点P 分EF u u u r 所成的比为13- ∴ 13EP PF =-u u u r u u ur∴ ()()0001,,3x x y y x x y --=---∴0023x x y y =⎧⎪⎨=⎪⎩代入22001y x λ+=中,得22419y x λ+=为P 点的轨迹方程. 当49λ=时,轨迹是圆。