特殊的四边形及三角形的定义 性质 判定 相关计算公式
四边形的认识与性质

四边形的认识与性质四边形是几何学中的一个基本概念,它是由四条线段组成的图形,其中任意两边都不相交。
四边形在我们日常生活中随处可见,比如我们熟知的长方形、正方形、梯形等都是常见的四边形。
在本文中,我们将探讨四边形的定义、分类以及它们的性质。
一、四边形的定义四边形是由四条线段组成的闭合图形,其中任意两边都不相交。
它有四个顶点、四条边和四个内角。
四边形可以是凸四边形或凹四边形,具体形状取决于各边之间的相对位置。
二、四边形的分类1. 矩形:矩形是一种特殊的四边形,它的四个角都是直角。
矩形的对边相等且平行,对角线相等。
矩形具有许多特殊性质,比如它的对边互相垂直,对角线互相平分,以及面积等于边长乘积等。
2. 正方形:正方形也是一种特殊的矩形,它的四边长度相等且四个角都是直角。
正方形的对边平行且相等,在它内部的对角线相等且互相垂直。
正方形具有独特的特性,比如它的周长等于四倍边长,面积等于边长的平方等。
3. 平行四边形:平行四边形是四边形中较为常见的一种形式。
它的对边平行且长度相等,对角线在中点相交。
平行四边形具有许多有趣的性质,比如它的对边互相平分,对角线互相平分且长度相等,面积等于底边长乘以高等。
4. 梯形:梯形是一种至少存在两个平行边的四边形。
这两个平行边被称为上底和下底,连接它们的线段被称为斜边。
梯形的斜边上的两个内角和等于180度。
梯形还有其他各边之间的关系以及面积的计算公式。
三、四边形的性质1. 内角和:四边形的内角和等于360度。
2. 对边关系:平行四边形的对边互相平分,对边长度相等。
矩形和正方形的对边互相垂直,对边长度相等。
3. 对角线关系:矩形和正方形的对角线互相平分,对角线长度相等。
平行四边形的对角线在中点相交。
4. 面积计算:不同形状的四边形有不同的面积计算公式。
比如,矩形的面积等于边长乘积,三角形的面积等于底边长乘以高的一半。
总结:四边形是几何学中的基本图形,由四条线段组成,其中任意两边不相交。
初中几何图形概念、公式和性质等知识,父母为孩子收藏起来吧

初中几何图形概念、公式和性质等知识,父母为孩子收藏起来吧展开全文三角形知识点、概念总结1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形的分类3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7. 高线、中线、角平分线的意义和做法8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9. 三角形内角和定理:三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角和推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11. 三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1. 两组对边平行的四边形是平行四边形。
2. 性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3. 判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4. 对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1. 定义:有一个角是直角的平行四边形叫做矩形2. 性质:矩形的四个角都是直角,矩形的对角线相等3. 判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4. 对称性:矩形是轴对称图形也是中心对称图形。
知识必备07 四边形(公式、定理、结论图表)

知识必备07四边形(公式、定理、结论图表)考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°;(2)推论:四边形的外角和是360°.典例1:2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.【解答】解:连接BE,CF,BE、CF交于点O,如右图所示,∵六边形ABCDEF是正六边形,AD的长约为8mm,∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,∴AF约为4mm,故选:D.【点评】本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.典例2:(2022•柳州)如图,四边形ABCD的内角和等于()A.180°B.270°C.360°D.540°【分析】根据四边形的内角和等于360°解答即可.【解答】解:四边形ABCD的内角和为360°.故选:C.【点评】本题考查了四边形的内角和,四边形的内角和等于360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2.平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形=21ab=ch.(a、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高)S 平行四边形=ah.a 为平行四边形的边,h 为a 上的高)典例3:(2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG =90°,∠EGF =60°,∠AEF =50°,则∠EGC 的度数为()A .100°B .80°C .70°D .60°【分析】由平行四边形的性质可得AB ∥DC ,再根据三角形内角和定理,即可得到∠GEF 的度数,依据平行线的性质,即可得到∠EGC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴AB∥DC,∴∠AEG=∠EGC,∵∠EFG=90°,∠EGF=60°,∴∠GEF=30°,∴∠GEA=80°,∴∠EGC=80°.故选:B.【点评】此题考查的是平行四边形的性质,掌握其性质定理是解决此题的关键.典例4:(2022•鞍山)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.【分析】结合已知条件推知AB∥CD;然后由全等三角形的判定定理AAS证得△ABE≌△CDF,则其对应边相等:AB=CD;最后根据“对边平行且相等是四边形是平行四边形”证得结论.【解答】证明:∵∠ABD=∠BDC,∴AB∥CD.∴∠BAE=∠DCF.在△ABE与△CDF中,.∴△ABE≌△CDF(AAS).∴AB=CD.∴四边形ABCD是平行四边形.【点评】本题主要考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.典例5:(2022•内江)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【点评】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质,掌握平行四边形的对边平行且相等、一组对边平行且相等的四边形是平行四边形是解题的关键.典例6:(2022•兰州)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4,则OE=()A.4B.2C.2D.【分析】根据菱形的性质可得,∠ABO=30°,AC⊥BD,则BO=2,再利用含30°角的直角三角形的性质可得答案.【解答】解:∵四边形ABCD是菱形,∠ABC=60°,∴BO=DO,∠ABO=30°,AC⊥BD,AB=AD,∴BO=2,∴AO==2,∴AB=2AO=4,∵E为AD的中点,∠AOD=90°,∴OE=AD=2,故选:C.【点评】本题主要考查了菱形的性质,含30°角的直角三角形的性质等知识,熟练掌握菱形的性质是解题的关键.典例7:(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.【分析】(1)由CF∥AB,得∠ADF=∠CFD,∠DAC=∠FCA,又AE=CE,可证△ADE≌△CFE(AAS),即得AD=CF;(2)由AD=CF,AD∥CF,知四边形ADCF是平行四边形,若AC⊥BC,点D是AB的中点,可得CD =AB=AD,即得四边形ADCF是菱形.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.【点评】本题考查全等三角形的判定与性质及菱形的判定,解题的关键是掌握全等三角形判定定理及菱形的判定定理.典例8:(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.【分析】(1)由一组对边平行且相等的四边形是平行四边形,可证四边形AECD是平行四边形,由平行线的性质和角平分线的性质可证AD=CD,可得结论;(2)由菱形的性质可求AE=BE=CE=2,由等边三角形的性质和直角三角形的性质可求BC,AC的长,即可求解.【解答】(1)证明:∵E为AB中点,∴AB=2AE=2BE,∵AB=2CD,∴CD=AE,又∵AE∥CD,∴四边形AECD是平行四边形,∵AC平分∠DAB,∴∠DAC=∠EAC,∵AB∥CD,∴∠DCA=∠CAB,∴∠DCA=∠DAC,∴AD=CD,∴平行四边形AECD是菱形;(2)∵四边形AECD是菱形,∠D=120°,∴AD=CD=CE=AE=2,∠D=120°=∠AEC,∴AE=CE=BE,∠CEB=60°,∴∠CAE=30°=∠ACE,△CEB是等边三角形,∴BE=BC=EC=2,∠B=60°,∴∠ACB=90°,∴AC=BC=2,=×AC×BC=×2×2=2.∴S△ABC【点评】本题考查了菱形的判定和性质,等边三角形的性质,角平分线的性质,灵活运用这些性质解决问题是解题的关键.典例9:(2022•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为6.【分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BDC的面积.【解答】解:∵四边形ABCD是矩形,AB=3,∴OA=OC,AB=CD=3,AD∥BC,∴∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△COF+S△BOF+S△COD=S△BCD,∵S△BCD=BC•CD==6,∴S阴影=6.故答案为6.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.典例10:(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.典例11:(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【分析】(1)由四边形ABCD是平行四边形,得∠BAE=∠FDE,而点E是AD的中点,可得△BEA≌△FED(ASA),即知EF=EB,从而四边形ABDF是平行四边形,又∠BDF=90°,即得四边形ABDF 是矩形;=DF•(2)由∠AFD=90°,AB=DF=3,AF=BD,得AF===4,S矩形ABDFAF=12,四边形ABCD是平行四边形,得CD=AB=3,从而S△BCD=BD•CD=6,即可得四边形ABCF 的面积S为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===4,=DF•AF=3×4=12,BD=AF=4,∴S矩形ABDF∵四边形ABCD是平行四边形,∴CD=AB=3,=BD•CD=×4×3=6,∴S△BCD+S△BCD=12+6=18,∴四边形ABCF的面积S=S矩形ABDF答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.典例12:(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠FAO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠FAO=∠EBO=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.典例13:(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.【分析】先证明四边形AECF是菱形,再证明EF=AC,即可得出结论【解答】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∴OE=OF=OA=OC,即EF=AC,∴菱形AECF是正方形.【点评】本题主要考查了菱形的性质与判定,正方形的判定,掌握相关定理是解题基础考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等.(3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).【要点诠释】解决四边形问题常用的方法(1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决.(3)有时也可以运用平移、轴对称来构造图形,解决四边形问题.典例14:(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m【分析】过A作AE⊥BC于E,过D作DF⊥BC于F,则AE=DF,在Rt△DCF中,根据等腰直角三角形的性质和勾股定理求出AE,在Rt△ABE中,根据等腰直角三角形的性质和勾股定理求出AE.【解答】解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.【点评】本题考查了梯形,解直角三角形的应用,正确作出辅助线,构造出直角三角形是解决问题的关键.考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.典例15:(2022•资阳)小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是4答案不唯一.(填一种即可)【分析】分别求出各个多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,正四边形的每个内角是90°,∵3×60°+2×90°=360°,∴正四边形可以,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴正六边形可以,正十二边形的每个内角是150°,∵1×60°+2×150°=360°,∴正十二边形可以,故答案为:4答案不唯一.【点评】本题考查了平面镶嵌问题,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.。
小学数学四边形的分类及性质

添加标题
添加标题
添加标题
添加标题
菱形
定义:一组邻边相等 的平行四边形
判定方法:一组邻边 相等的平行四边形是
菱形
性质:对角线互相垂 直平分,对角线相等
面积公式:S=ab/2, 其中a、b分别为对角
线的长度
04
四边形面积的计算
面积公式
矩形面积:长乘以宽
平行四边形面积:底乘以高
梯形面积:(上底加下底) 乘以高除以2
质
对角相等
定义:四边形的两个对角 线互相平分
性质:对角线平分四边形 的面积
证明:通过三角形全等和 相似来证明
应用:在几何图形中,对 角相等的四边形可以简化
计算和证明
对角线互相平分
定义:四边形的两条对角线互相平分 性质:对角线互相平分的四边形是平行四边形 证明:通过三角形全等和相似来证明 应用:在几何图形的证明和计算中,经常用到对角线互相平分的性质
小学数学四边形的分类及 性质
汇报人:xxx
目录
01 四 边 形 的 分 类 02 四 边 形 的 性 质 03 特 殊 四 边 形 04 四 边 形 面 积 的 计 算 05 四 边 形 在 实 际 生 活 中 的 应 用
01
四边形的分类
按照边长分类
等边四边形:所有边长都相等的四边形 等腰四边形:有两条边长相等的四边形 一般四边形:所有边长都不相等的四边形 特殊四边形:如矩形、菱形、正方形等,具有特定性质的四边形
交通工具中的应用
自行车:车架、车轮、车把 等部件的形状多为四边形
汽车:车身、车窗、车门等 部件的形状多为四边形
飞机:机翼、机身、尾翼等 部件的形状多为四边形
轮船:船体、甲板、船舱等 部件的形状多为四边形
长方形正方形平行四边形三角形圆的特点

长方形正方形平行四边形三角形圆的特点1. 引言1.1 概述在几何学中,长方形、正方形、平行四边形、三角形和圆是最基本且常见的几何图形。
它们具有各自独特的特点和性质,在数学和实际生活中都有广泛的应用。
本篇文章旨在深入探讨长方形、正方形、平行四边形、三角形和圆的特点,包括定义、性质以及相关计算方法,并通过例子来解释其应用。
1.2 文章结构本文将分为五个部分来介绍长方形、正方形、平行四边形、三角形和圆的特点。
首先,我们将从长方形开始,讨论其定义与性质,并介绍如何计算其周长和面积。
然后,我们转向正方形,讲解其特征与性质,并探究对角线关系以及面积的计算与应用。
接下来是平行四边形部分,我们将详细阐述它的定义与特征,并介绍计算周长和面积的方法以及一些相关定理。
最后,我们将研究三角形的基本性质与分类,并探讨圆的相关参数如圆周率以及弧长和扇形面积的计算方法。
1.3 目的本文的目的是帮助读者全面了解长方形、正方形、平行四边形、三角形和圆,掌握它们各自的特点和性质,以及相应的计算方法。
通过对这些基本几何图形的深入研究,读者将能够应用它们解决数学问题,并在日常生活中更好地理解和运用几何概念。
无论是在学术上还是实际应用中,这些几何图形都扮演着重要的角色,因此对其进行系统性的学习与理解对于我们提升数学素养和推动科学发展都具有重要意义。
2. 长方形的特点:2.1 定义与性质:长方形是一种特殊的四边形,具有以下两个关键性质:- 所有角都是直角:这意味着长方形的四个内角都是90度。
- 对边相等且平行:长方形的任意两对相对边长相等且平行。
2.2 周长和面积计算:- 周长计算:长方形的周长可以通过将两条长度相加乘以2来计算,公式为:周长 = 2 * (长度 + 宽度)。
- 面积计算:长方形的面积可以通过长度乘以宽度来计算,公式为:面积 = 长度 * 宽度。
2.3 特殊性质:除了上述定义与性质外,长方形还具有一些其他特殊性质:- 对角线相等且垂直平分:长方形的对角线互相垂直且长度相等。
特殊四边形的性质和判定定理

特殊四边形的性质和判定定理名称 性质判定平行四边形1、对边平行且相等。
2、对角相等。
3、对角线互相平分。
4、是中心对称图形。
5、S=a b (a 、b 分别表示底和这一底上的高)推论:三角形的中位线平行于三角形的第三边.并且等于第三边的一半。
1、两组对边分别平行的四边形叫做平行四边形。
(定义)2、两组对边分别相等的四边形是平行四边形。
3、对角线互相平分的四边形是平行四边形。
4、一组对边平行且相等的四边形叫做平行四边形。
矩形矩形除了具有平行四边形的所有性质外.还有以下性质:1、四个角都是直角。
2、对角线相等。
3、既是中心对称图形.又是轴对称图形。
4、S= a b (a 、b 分别表示长和宽)推论:直角三角形斜边上的中线等于斜边的一半。
1、有一个角是直角的平行四边形叫做矩形。
2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形菱形除了具有平行四边形的所有质外.还有以下性质:1、四条边都相等。
2、两条对角线互相垂直。
并且每一条对角线平分一组对角。
3、既是中心对称图形.又是轴对称图形。
4、S= a b (a 、b 分别表示两条对角线长。
)1、有一组邻边相等的平行四边形叫做菱形。
(定义)2、对角线互相垂直的平行四边形是菱形。
3、边相等到的四边形是菱形。
正方形除了具有平行四边形、矩形、菱形的所有性质外.还有以下性质: 1、对角线和边的夹角是45º。
2、S= a ²(a 表示两边长。
) 1、一组邻边相等的矩形是正方形。
2、有一个是直角的菱形是正方形。
3、对角线相垂直的矩形是正方形。
4、对角线相等的菱形是正方形。
等腰梯形1、两腰相等。
2、同一底上的两个角相等。
3、对角线相等。
4、轴对称图形1、对角线相等的梯形是等腰梯形。
2、同一底上两个角相等的梯形是等腰梯形。
梯形中常见辅助线AB CDABCDABC DABCD A BCD例1 如图.E 、F 分别为正方形ABCD 的边BC 、CD 上的一点.AM ⊥EF.垂足为M.若AM=AB.求证:EF=BE+CF例2 已知:如图.正方形ABCD 中.延长AD 到E.使DE=AD.再延长DE 到F.使DF=BD.连接BF 交CD 于Q.交CE 于P 。
数学中的三角形与四边形应用技巧

数学中的三角形与四边形应用技巧三角形和四边形是数学中常见的几何形状,它们有着广泛的应用。
通过灵活运用数学中的技巧和方法,我们可以解决与三角形和四边形相关的问题。
本文将介绍一些数学中的三角形和四边形应用技巧,帮助读者更好地理解和应用这些概念。
一、三角形应用技巧1. 三角形的面积计算:对于已知三角形的底边和高,我们可以利用面积公式计算三角形的面积。
面积公式为:面积 = 1/2 ×底边 ×高。
通过计算三角形的面积,我们可以解决与地理、建筑等领域相关的问题。
2. 三角形的相似性:当两个三角形的对应角相等时,我们可以认为这两个三角形是相似的。
利用三角形的相似性,我们可以解决一些相关的几何问题,如计算高大楼的高度、计算太阳的直径等。
3. 三角形的勾股定理:勾股定理是三角形中最重要的定理之一。
它表明,在一个直角三角形中,直角边的平方等于两个其他边的平方和。
通过勾股定理,我们可以计算三角形的边长、角度等信息。
4. 三角形的正弦、余弦和正切函数:正弦、余弦和正切函数是三角函数的重要概念。
它们可以帮助我们计算三角形中的各种角度和边长关系。
二、四边形应用技巧1. 四边形的面积计算:对于已知四边形的边长或对角线长度,我们可以利用不同的公式计算四边形的面积。
常见的四边形包括矩形、正方形、梯形等,它们的面积计算公式各不相同。
2. 四边形的对角线关系:四边形的对角线有着特殊的关系。
例如,矩形的对角线相等且互相平分,菱形的对角线互相垂直且平分。
通过利用四边形的对角线关系,我们可以解决一些与建筑、地理等领域相关的问题。
3. 四边形的面积最大化:在给定周长或固定边长条件下,我们可以尝试通过调整四边形的形状来使面积达到最大化。
这需要运用数学中的优化方法和技巧,帮助我们找到最优解。
4. 四边形的相似性:与三角形类似,当两个四边形的对应角相等时,我们可以认为这两个四边形是相似的。
通过四边形的相似性,我们可以解决一些与房屋、地图等有关的问题。
等腰三角形、平行四边形的性质定理和判定定理及其证明

等腰三角形的性质定理和判定定理及其证明平行四边形的性质定理和判定定理及其证明一、一周知识概述1、等腰三角形的性质定理等腰三角形的两个底角相等(简写为“等边对等角”).2、等腰三角形性质定理的推论推论1:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).推论2:等边三角形的各角都相等,并且每一个角都等于60°.3、等腰三角形的判定定理两个角相等的三角形是等腰三角形.4、等腰三角形判定定理的推论推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.5、直角三角形的性质定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.6、平行四边形的性质定理定理1:平行四边形的对边相等.定理2、平行四边形的对角相等.定理3、平行四边形的对角线互相平分.7、平行四边形的判定定理定理1:一组对边平行且相等的四边形是平行四边形.定理2:两组对边分别相等的四边形是平行四边形.定理3:对角线互相平分的四边形是平行四边形.定理4:两组对角分别相等的四边形是平行四边形.8、三角形中位线的性质定理三角形的中位线平行于第三边,并且等于它的一半.二、重难点知识1、要说明一个命题的正确性,需用已学过的公理或定理进行证明,命题证明的步骤:先画图,写出已知、求证,给出严格的证明.2、等腰三角形的性质定理和判定定理及其应用、平行四边形的性质定理和判定定理及其应用是重点也是难点.三、典型例题讲解例1、如图所示,在△ABC中,∠ABC,∠ACB的平分线交于点F,过点F作DE∥BC交AB于D,交AC于E.求证:BD+EC=DE.分析:因为DE=DF+FE,即结论为BD+EC=DF+FE,分别证明BD=DF,CE=FE即可,于是运用“在同一个三角形中,等角对等边”,易证结论成立.证明:∵DE∥BC(已知),∴∠3=∠2(两直线平行,内错角相等).又∵BF平分∠ABC,∴∠1=∠2.∴∠1=∠3.∴DB=DF(等角对等边).同理可证EF=CE.∴BD+EC=DF+EF,即BD+EC=DE.小结:过一个角的平分线上的一点作一边的平行线与另一边相交,所构成的三角形是一个等腰三角形,这是一个常见的构图,应熟练掌握.例2、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF⊥BC.解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.小结:本题证法中运用了等腰三角形的性质定理及其推论、三角形内角和定理、三角形外角的性质等知识,要注意灵活运用与牢固掌握相结合.例3、如图,在△ABC 中,AB=AC=CB ,AE=CD ,AD 、BE 相交于P ,BQ ⊥AD 于Q .求证:BP=2PQ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊的四边形及三角形的定义、性质、判定、相关计算公式平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:(1)平行四边形是中心对称图形,对称中心是两条对角线的交点,不是轴对称图形。
(关于对称性的)(2)平行四边形的对角相等;(关于角的)(3)平行四边形的邻角互补;(关于角的)(4)平行四边形的对边相等;(推论:夹在两条平行线间的平行线段。
)(关于边的)(5)平行四边形的对边平行;(关于边的)(6)平行四边形的对角线互相平分。
(关于对角线的)(7)连接平行四边形各边的中点所得图形是平行四边形。
(关于中点四边形的)3.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(定义判定法)(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形。
4. 相关计算公式:平行四边形的面积公式:底×高;如用“h”表示高,“a”表示底,“s”表示平行四边形面积,则S=ah平行四边形周长:2×(底1+底2);如用“a"表示底1,“b”表示底2,“c“表示平行四边形周长,则C=2(a+b)5.平行四边形中常用辅助线的添法:(1)连结对角线或平移对角线;(2)过顶点作对边的垂线构成直角三角形;(3)连结对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线;(4)连结顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
矩形1.矩形的定义:有一个角是直角的平行四边形是矩形。
2.矩形的性质:(1)矩形是中心对称图形,也是轴对称图形,对称轴是通过对边中点的直线,对称轴共有两条;(关于对称性的)(2)矩形的对角相等;(关于角的)(3)矩形的邻角互补;(关于角的)(4)矩形的对边相等;(关于边的)(5)矩形的对边平行;(关于边的)(6)矩形的对角线互相平分;(关于对角线的)(7)矩形的四个角都是直角;(关于角的)(8)矩形的对角线相等。
(关于对角线的)(9)矩形所在平面内任一点到其两对角线端点的距离的平方和相等3.矩形的判定方法:(1)有一个角是直角的平行四边形是矩形;(定义判定法)(2)对角线相等的平行四边形是矩形;(3)关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形(4)对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形(5)有三个角是直角的四边形是矩形;(6)四个内角都相等的四边形为矩形;(7)对角线互相平分且相等的四边形是矩形;(8)对角线互相平分且有一个内角是直角的四边形是矩形。
4.相关计算公式矩形面积:S=ah(注:a为边长,h为该边上的高)S=ab(注:a为长,b为宽)矩形周长:C=2(a+b)(注:a为长,b为宽)顺次连接矩形各边中点得到的四边形是菱形。
菱形1.菱形的定义:有一组邻边相等的平行四边形是菱形。
2.菱形的性质:(1)菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形;(2)在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。
(3)菱形的对角相等;(关于角的)(4)菱形的邻角互补;(关于角的)(5)菱形的对边相等;(关于边的)(6)菱形的对边平行;(关于边的)(7)菱形的对角线互相平分;(关于对角线的)(8)菱形的四边都相等;(关于边的)(9)菱形的对角线互相垂直,且平分各内角;(关于对角线的)(10)顺次连接菱形各边中点得到的四边形是矩形。
(关于中点四边形的)3.菱形的判定方法:(1)一组邻边相等的平行四边形是菱形;(定义判定法)(2)对角线相互垂直的平行四边形是菱形;(3)关于两条对角线都成轴对称的四边形是菱形;(4)四条边都相等的四边形是菱形。
4. 相关计算公式:菱形的面积:菱形的面积等于两对角线乘积的一半。
(只要是对角线互相垂直的四边形都可用)正方形1.正方形的定义:(1)四条边都相等且四个角都是直角的四边形叫做正方形。
(2)有一组邻边相等的矩形是正方形。
(3)有一组邻边相等且一个角是直角的平行四边形是正方形。
(4)有一个角为直角的菱形是正方形。
(5)对角线平分,垂直且相等,并且交角为直角的四边形为正方形。
2.正方形的性质:(1)既是中心对称图形,又是轴对称图形(有四条对称轴);(关于对称性的)(2)正方形的对角相等;(关于角的)(3)正方形的邻角互补;(关于角的)(4)正方形的对边相等;(关于边的)(5)正方形的相邻边互相垂直;(关于边的)(6)正方形的对边平行;(关于边的)(7)正方形的对角线互相平分;(关于对角线的)(8)正方形的四个角都是直角;(关于角的)(9)正方形的对角线相等。
(关于对角线的)(10)正方形的四边都相等;(关于边的)(11)正方形的对角线互相垂直,且平分各内角。
(关于对角线的)3.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形;(3)有一个角为直角的菱形是正方形;(4)对角线相等的菱形是正方形;(5)一组邻边相等且有一个角是直角的平行四边形是正方形;(6)四边均相等,对角线互相垂直平分且相等的平行四边形是正方形;(7)四边相等,有三个角是直角的四边形是正方形;(8)对角线相互垂直平分且相等的四边形为正方形。
4.相关计算公式:面积计算公式:S=边长×边长或:S=对角线×对角线÷2周长计算公式: C=4×边长顺次连接正方形各边中点得到的四边形是正方形。
等腰三角形1.等腰三角形的定义:有两边相等的三角形是等腰三角形。
2. 等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合;(简写成“三线合一”)(3)等腰三角形的两底角的平分线相等;(两条腰上的中线相等,两条腰上的高相等)(4)等腰三角形底边上的垂直平分线到两条腰的距离相等;(5)等腰三角形的一腰上的高与底边的夹角等于顶角的一半;(6)等腰三角形底边上任意一点到两腰距离之和等于一腰上的高;(需用等面积法证明) (7)等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。
3. 等腰三角形的判定方法:(1)有两条边相等的三角形是等腰三角形(2)有两个角相等的三角形是等腰三角形(简称:等角对等边)等边三角形1.等边三角形的定义:三边都相等的三角形是等边三角形。
等边三角形是特殊的等腰三角形。
(注意:若三角形三边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)2.等边三角形的性质:(1)等边三角形的内角都相等,且为60度;(2)等边三角形底角边上的中线、底角边上高线和所对顶角的角的平分线互相重合;(三线合一)(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3.等边三角形的判定方法:(首先考虑判断三角形是等腰三角形)(1)三边相等的三角形是等边三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60度的等腰三角形是等边三角形;(4)等边三角形是锐角三角形;(5)有两个角等于60度的等腰三角形是等边三角形。
等腰梯形1.等腰梯形的定义:一组对边平行(不相等),另一组对边不平行但相等的四边形是等腰梯形。
2.等腰梯形的性质:(1)等腰梯形只有一条对称轴,上底和下底的中垂线就是它的对称轴;(2)等腰梯形在同一底上的两个角相等;(3)等腰梯形的两腰相等;(4)等腰梯形的两底平行;(5)等腰梯形的两个底角相等;(6)等腰梯形的对角线相等;(7)等腰梯形内接于圆。
3. 等腰梯形的判定方法:(1)一组对边不平行边相等的梯形是等腰梯形;(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形;(4)一组对边平行(不相等),另一组对边相等(不平行)的四边形是等腰梯形;(5)对角线相等,形成两个等腰三角形。
4.相关计算公式等腰梯形的中位线长是上下底边长度和的一半;等腰梯形的面积公式等于上底加下底和一半乘高,也等于中位线乘高。
直角三角形1.直角三角形的定义:有一个角为90°的三角形,叫做直角三角形。
2.直角三角形的性质直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:(1)直角三角形两直角边的平方和等于斜边的平方。
(2)在直角三角形中,两个锐角互余。
(3)在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
(4)直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
(5)在直角三角形中,30°角所对直角边等于斜边的一半。
3.直角三角形的判定方法:(1)有一个角为90°的三角形是直角三角形;(2)一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形;(3)若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形;(勾股定理的逆定理)。
(4)若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形;(5)两个锐角互余的三角形是直角三角形。