一元一次不等式的实际应用教案

合集下载

人教版七年级数学下册9.2.1一元一次不等式优秀教学案例

人教版七年级数学下册9.2.1一元一次不等式优秀教学案例
4.关注学生个体差异,实施个性化指导
在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。

教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。

为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。

在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。

最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。

教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。

〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。

重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。

课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。

2.学生理解、巩固一元一次不等式的解法。

3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。

4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。

(二)过程与方法目标:1.介绍一元一次不等式的概念。

2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。

3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。

4.学生将文字表达转化为数学语言,从而解决实际问题。

5.练习巩固,将本节和上节内容联系起来。

(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。

2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。

3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。

4.通过本节的学习,学生体会不等式解集的奇异的数学美。

二、教学重、难点:1.掌握一元一次不等式的`解法。

2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。

3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。

三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。

在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。

在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。

四、教具:计算机辅助教学。

五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。

不等式的解法举例教案

不等式的解法举例教案

不等式的解法举例教案一、教学目标1. 让学生掌握不等式的基本性质,能够熟练地解一元一次不等式。

2. 培养学生运用不等式的解法解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容1. 不等式的基本性质2. 一元一次不等式的解法3. 不等式应用题的解答三、教学重点与难点1. 教学重点:不等式的基本性质,一元一次不等式的解法。

2. 教学难点:不等式应用题的解答。

四、教学方法1. 采用讲授法讲解不等式的基本性质和一元一次不等式的解法。

2. 运用案例分析法讲解不等式应用题的解答。

3. 运用讨论法引导学生探讨不等式解法的规律。

五、教学过程1. 导入:通过复习相关知识点,引入不等式的概念和基本性质。

2. 讲解:讲解一元一次不等式的解法,并列举典型例题进行分析。

3. 练习:让学生独立解一些一元一次不等式,并及时给予指导和反馈。

4. 应用:运用不等式的解法解决实际问题,如分配问题、排序问题等。

5. 总结:总结不等式的解法步骤和注意事项,强调解题方法的重要性。

6. 作业布置:布置一些不等式的练习题,巩固所学知识。

六、教学评估1. 课堂练习:通过课堂练习,观察学生对不等式解法的掌握程度。

2. 作业批改:对学生的作业进行批改,了解学生对不等式解法的熟练程度。

3. 学生提问:鼓励学生提问,及时解答学生的疑问,帮助学生巩固知识。

七、教学拓展1. 对比等式和解不等式的异同,让学生理解不等式的解法实质。

2. 引导学生探讨不等式的解法规律,提高学生的逻辑思维能力。

3. 引入更复杂的不等式类型,如绝对值不等式、分式不等式等,让学生尝试解决。

八、教学反思1. 反思教学过程,检查教学方法是否适合学生的学习需求。

2. 反思教学内容,确保教学内容完整、系统,便于学生掌握。

3. 反思教学效果,针对学生的掌握情况,调整教学策略,提高教学质量。

九、教学评价1. 学生自评:让学生对自己的学习情况进行评价,总结收获和不足。

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。

本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。

通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。

但他们对一元一次不等式的定义、解法和应用还不够了解。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。

三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。

2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。

2.难点:一元一次不等式的解法。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。

六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。

2.准备PPT,用于呈现知识点和示例。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。

例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。

2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。

讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。

讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。

同时,展示一些实例,让学生理解一元一次不等式的应用。

人教版初中数学七年级下册9.2.2《一元一次不等式的应用》教案设计

人教版初中数学七年级下册9.2.2《一元一次不等式的应用》教案设计

课题:9.2实际问题与一元一次不等式教材:人教版义务教育课程标准实验教科书七年级下册【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3.情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

【重点难点】:重点:一元一次不等式在实际问题中的应用。

难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。

注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。

【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。

在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。

本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。

让学生充分进行讨论交流,在活动中体会不等式的应用。

在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动问题2:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.启发提问:我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。

一元一次不等式组教案

一元一次不等式组教案

一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。

二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。

是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。

2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2.了解一元一次不等式组及解集的概念。

3.会利用数轴解较简单的一元一次不等式组。

4.培养学生分析、解决实际问题的能力。

5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。

培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。

3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。

三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。

但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。

这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)

《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。

(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。

2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。

根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。

二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。

2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。

3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22 ∴解得: a 3
5 ∴a 的取值范围为 a 3
5
设计意图
巩固带有参数的一元 一次方程的解法,并且让 学生学会找出当中的不等 量关系,为后面实际应用 找不等量关系奠定基础。
教学内容
活动 2 回顾:列一元一次方程
解决实际问题的一般步骤
活动 3
一辆匀速行驶的汽车 在 11:20 距离 A 地 50km, 要在 12:00 之前驶过 A 地, 则车速应满足什么条件?
9.2 一元一次不等式的实际应用
(第 2 课时) 汕头市东厦中学 郑佳佳
知识技能 ( 1)使学生能够从实际问题中抽象出不等式的知识进而解决问题

( 2)总结归纳列一元一次不等式解决实际问题的一般步骤
学 目
过程方法
学生在列和解不等式的过程中,掌握把文字转换成数学知识的技 能,并形成用不等式的意识

情感态度 使学生体会数学问题和实际生活的密切联系
自主练习: 某工程队计划在 10 天
内修路 6km,施工前 2 天修 完 1.2km 后,计划发生变 化,准备提前 2 天完成修路 任务,以后几天内平均每天 至少要修路多少?
活动 4
去年某市空气质量良 好(二级以上) 的天数与全 年 天 数 ( 365) 之 比 达 到 60%,如果明年( 365 天) 这样的比值要超过 70%,那 么明年空气质量良好的天 数要比去年至少增加多 少?
解:设车速为 x km/ h,依题意得: 2 x 50 3
解得: x 75 答:要在 12:00 之前驶过 A 地,则 车速要超过 75 km/ h。
学生自主完成作答过程,再请 学生分析,最后教师再完善分析过 程。 解:设以后几天内平均每天修路
xkm,依题意得:
1.2 (10 2 2) x 6
解得: x 0.8 答:以后几天内平均每天修路 0.8 km
∵x 必须为正整数
∴ x 13
答:他至少要答对 13 道题。
提问:此题的关键词和不等量关系是什
么?
活动 5
学生回答:把 300 吨物资装运完。 不等量关系是: 物资的重量要大于或等于
某物流公司,要将 300
300。
吨物资运往某地,现有
A,
教师分析:此题与前面的题目的不同之处 在于它的不等量关系是隐含
教学内容
师生交流
学生自主完成作答过程, 再请学生分
自主练习:
析,最后教师再完善分析过程。 解:设他要答对 x 道题,依题意得:
某次知识竞赛共有 20
道题,每一题答对得 10 分, 10x 5(20 x) 90
答错或不答都扣 5 分,小明 得分要超过 90 分,他至少 要答对多少道题?
解得: x 12 1 3
师生交流 学生回答:列一元一次方程解决实 际问题的一般步骤是: 审、找、设、列、解、验、答
引导学生类比列一元一次方程 解决实际问题的一般步骤解决此 题。
通过审题找出此题的关键词— —“之前”。因此得出不等量关系, 并且让学生思考“之前”这个不等 量关系能不能刚好等于?
最后利用不等量关系列出不等 式。
B 两种型号的车可供调用,
的,没有特别显眼的关键词,
已知 A 型车每辆可装 20 吨,B 型车每辆可装 15 吨, 在每辆车不超载的条件下,
但是从实际生活出发, 我们知 道运货肯定是要不低于原先
把 300 吨物资装运完, 在已
引导学生思考并回答以下三个 问题:
①、去年该市空气质量良好的 天数是多少?
②、用 x 表示明年增加的空气 质量良好的天数,则明年该市空气 质量良好的天数是多少?
③、本题的关键词以及不等量 关系是什么?
设计意图 回顾列一元一 次方程解决 实际 问 题的步骤, 类比可以 得出列一元 一次 不 等式解决实 际问 题 的步骤。
学生回答。 教师总结:“至少”后面都是跟 一个具体的数,如果在设的时候把 “至少”加进去,那就将变成是列 方程,就不是列不等式。因此对于 不等式的实际应用,一旦问题出现 “至少”,“最多”,“超过”等字眼 时,在设的时候省略。
设计这道例题, 关键是让学 生要 考 虑问题的实际意义, 对算出来的 结果 要 进行检验是 否符 合 实际,并且在设未知 数的这一步骤时, 要 省略“至少” ,“最 多”,“超过”等字眼。
让学生初步感 知不等量关 系如 何 转化为不等式
对于关键词 “10 天内”的理解,其实 就相当于例题的 “之 前”
教学内容
师生交流 学生回答: ①、去年该市空气质量良好的天数 是 365×60% ②、明年年北京空气质量良好的天 数是 x+365×55% ③、关键词是:比值“超过” 70%不 等量关系是 :
365 60% x 70%
365 解得: x 36.5
再次引导学生思考:这是本题 的答案吗?为什么?
学生回答:不是,因为 x 指的 是天数,所以必须为正整数。
∴x≥37 答:明年空气质量良好的天数要比 去年至少增加 37 天。
最后让学生再回顾整个题目, 提醒学生注意本题的设。
师:以前列一元一次方程解决 实际问题时,一般都提倡问什么就 直接设什么,但这道题的设,我们 把问题中的“至少”省略了,那能 否把“至少”也照抄进去呢?
师生交流 学生独立完成,让学生发 现其中的不等量关系“方程的 解是负数”,从而得到一道关 于 a 的一元一次不等式。 解:依题意,先解关于 x 的方 程:
3x (2a 3) 5x (3a 6)
3x 2a 3 5x 3a 6
3x 5x 3a 6 2a 3
2x 5a 3
x 5a 3 22
∵方程的解是负数 ∴x<0 ∴ 5a 0
设计意图
明年空气质量良好的天数 明年全年的天数
70%
活动 4
去年某市空气质量良 好(二级以上) 的天数与全 年 天 数 ( 365) 之 比 达 到 60%,如果明年( 365 天) 这样的比值要超过 70%,那 么明年空气质量良好的天 数要比去年至少增加多 少?
解:设明年空气质量良好的天数比 去年增加 x 天,依题意得:
重 掌握列一元一次不等式解决实际问题的一般步骤,并且根据已知的基本数量 点 关系,列出不等式。 难 有关“之前”“超过”“不足”“最多”等语言如何转化为相应的不等式的符号 点 语言
教学过程
教学内容
活动 1 课前练习:
已知关于 x 的方程 3x (2a 3) 5x (3a 6) 的解是负数,求 a 的取值范 围。
相关文档
最新文档