(完整word版)整式的乘除题型及典型习题
整式的乘除测试题练习8套(含答案)

整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
(完整版)整式的乘除题型和典型习题.doc

整式的乘除题型和典型习题整式乘除一.典型例题分析:一、同底数幂的乘法1. 下面各式的运算结果为a 14 的是()A. a 3 a 4 a 7 aB. ( a)5 ( a)9C.a 8 ( a)6D. a 7 a 72. 化简 ( x y)3 ( y x)2为 ()A . (x y)5B . ( x y) 6C . ( y x)5D . ( y x) 6二、幂的乘方1. 计算x 2 3的结果是()( )A . x 5B . x 5C . x 6D . x 62. 下列各式计算正确的是( )A . ( x n )3n x 4 nB . (x 2 )3 ( x 3 ) 2 2x 6C . (a 3 )n1a 3n 1D. ( a 2 ) 4 a 8a 16三、积的乘方31.3a 4b 2 等于()A . 9a 12b 6B . 27a 7 b 5C. 9a 12b6D . 27a 12b 62. 下列等式,错误的是()A. (x 2 y 3 ) 2 x 4 y 6B. ( xy) 3xy 3C. (3m 2n 2 ) 2 9m 4n 4D. ( a 2b 3 ) 2 a 4b6四、单项式与多项式的乘法 1、计算 (1) 3a(4 a2b 1)( 2) ( x 2x 2xy).( 3x)(3) ( x 3y)(2 y x)( 4) (a b)( a 2 abb 2 )五、乘法公式(平方差公式)1 / 51. 下列式子可用平方差公式计算的式子是()A . (a b)(b a)B. ( x 1)(x 1)C . ( ab)( a b)D . ( x 1)(x 1)2. 计算 ( a b c)(ab c) 等于()A. (a b c)2B2c 2. (a b )C .a 2(b2D. a 2( b2c )c )3. 化简 ( a 1)2(a1) 2的值为( )A .2B . 4C . 4aD . 2a 22乘法公式(完全平方公式)1. 下列各式计算结果是1 m2 n 2 mn 1的是()4A. (mn 1 )2B.( 1mn 1)222C. ( 1 mn 1)2D.( 1 mn 1)2242. 加上下列单项式后,仍不能使4x 2 1 成为一个整式的完全平方式的是()A . 4x 4B . 4xC . 4xD . 4六、同底数幂的除法1. 下列运算正确的是().4A . a 8 a 4 a 2B15C . x 3 x x 3D. ( m)4( m)2 m 22. 下列计算错误的有()① a 6a 2 a 3 ; ② y 5 y 2 y 7 ;③ a 3 a a 2 ; ④ ( x) 4 ( x) 2x 2 ; ⑤ x 8x 5 x 2x .A .4 个B .3个C .2个D .1个七、单项式与多项式的除法1. 下列各式计算正确的是( )2 / 5A.a2 a a a2 B .a2 a a a2C.a2 a a 1 D .a3 a a a32. ( 5a4 15a2 b3 20a3b) ( 5a2 ) .二.跟踪练习一、填空题1、x2x5 , y2 y y y y .2、合并同类项:2 xy2 3xy 2 .3、2383 2n,则 n .4、a b 5 , ab 5 .则a2 b2 .5、3 2x 3 2 x .6、如果4 x2 mxy 9 y2是一个完全平方式, 则 m 的值为.7、a5 a2 a , (2 x )4 (3 x )3 .8、a b 2 2a b .9、21ab2 2 a2c .710、(6 x3 12 x 2 x ) ( 3 x) .11、边长分别为 a 和2a 的两个正方形按如图(I) 的样式摆放,则图中阴影部分的面积为.12.有一块绿地的形状如图所示,则它的面积表达式经化简后结果为______.13.若( x- 3)( x+1) =x 2+ax+b ,则 b a=________ .14.有一块绿地的形状如图所示,则它的面积表达式经化简后结果为______.15.若 x+y=5 , x- y=1,则 xy=________ .16.计算(- 0.25)2006×42006=________ .17. a2- 3a+_______=( a- _______)2.二、选择题12、下列计算结果正确的是()3 / 5A a2 a4 a 8B x x 0C 2xy 22 y2 D a34a74 x13.下列运算结果错误的是()A x y x y x 2 y2 B2a2 b2 a bC x y x y x 2 y2 x 4 y 4D ( x 2)( x 3) x 2 x 614、给出下列各式①11a 2 10a2 1 ,②20 x 10 x 10 20,③ 5b4 4b3 b ,④ 9 y2 10 y2 y2,⑤c c c c 4c ,⑥a2 a2 a2 3a2.其中运算正确有()A3个B4 个 C 5 个D 6 个15.下列各式中,计算结果是a2 3a 40 的是()A a 4 a 10B a 4 a 10C a 5 a 8D a 5 a 816.下列各式计算中,结果正确的是()A x 2 2 x x 2 2B x 2 3 x 2 3 x 2 4C x y x y x 2 y 2D ab c ab c a 2b2 c217. 在下列各式中,运算结果为 1 2xy 2 x 2 y4的是()A 1 xy 2 21 x2 y221 x2 y221 xy 22 B C D18.下列计算中,正确的是()A8x3x 5 B a b5b4 x a b a4C x 1 6 2 3a 5 a32 x 1 x 1 D a19.( a2)3a5的运算结果正确的是()A a13B a11C a21D a620.若x m y n x 3 y x 2 y ,则有()A m 6, n 2B m 5, n 2C m 5, n 0D m 6, n 0三、计算题21.a4 2a 2322 ab 22 35ab. a 3b4 / 523. 12ab 2a 3 a b 2 b 24 . x 5 x 2 25 x 5 .4 325.2xy 2 2 1 xy .26 2 . x yx y x y .327.应用乘法公式进行计算:2006 20082007 2. .四、解答题28.先化简,再求值: 3 x 2 3 x 2 5x x 1 2 12 x 1 ,其中 x .3 29.解方程:( x2)2( x 4)( x 4) (2 x 1)( x 4).五、应用题30.已知: m为不等于0 的数,且1m 1 ,求代数式 m 2 1 2的值.m m31.已知:x2 xy 12 , xy y2 15 ,求x y 2x y x y 的值.32.( 6 分)如图,某市有一块长为( 3a+b)米,宽为( 2a+b)米的长方形地块, ?规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米? ?并求出当 a=3, b=2 时的绿化面积.5 / 5。
整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。
14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。
18.若3x 5y 3 0, 求8x?32y的值。
19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。
5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。
(完整word版)整式的乘除竞赛题

初二上加深提高部分整式的乘除复习题1、阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a .∵x-y=(a2-a-2)-(a2-a)=-2<0∴x<y看完后,你学到了这种方法吗再亲自试一试吧,你准行!问题:计算1.345×0.345×2.69-1.3453-1.345×0.3452解:设1.345=x,那么:原式=x(x-1)•2x-x3-x(x-1)2,=(2x3-2x2)-x3-x(x2-2x+1),=2x3-2x2-x3-x3+2x2-x,=-1.345.4、我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n•(n-1)•(n-2)…2•1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!= ;(2)(3+2)!-4!= ;(3)用具体数试验一下,看看等式(m+n)!=m!+n!是否成立?12. 小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点,例如:(x-1)(x2+x+1)=x3-1,(2a+b)(4a2-2ab+b2)=8a3+b3,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式”,小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差)”小明说:“还有,我发现左边那个二项式和最后的结果有点像”小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”…亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗?(1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算(-x-2y)(x2-2xy+4y2)吗?2、一个单项式加上多项式9(x-1)2-2x-5后等于一个整式的平方,试求所有这样的单项式.3、化简:(1);(2)多项式x2-xy与另一个整式的和是2x2+xy+3y2,求这一个整式解:(1)原式=2a2-ab+a2-8ab-ab=a2-9ab;(2)(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.∴这个整式是x2+2xy+3y2.点评:(1)关键是去括号.①按5、设,求整式的值.6、已知整式2x2+ax-y+6与整式2bx2-3x+5y-1的差与字母x的值无关,试求代数式7(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)的值.解:(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,因为它们的差与字母x的取值无关,所以2-2b=0,a+3=0,解得a=-3,b=1.2(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)=6a2-4a2b+5ab2+4b3=6×(-3)2-4×(-3)2×1+5×(-3)×1+4×1=7.8。
(完整word版)整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
(完整版)初一《整式的乘除》单元考试题及答案.doc

整式的乘除复习姓名:得分:一、填空题:(每小题 3 分,共 30 分)1、 a 5 a 3 a 2=;x 2 3 x2 2 =。
2、 2 x2 y 3 8 x2 2 x 2 y 3=;3、 c 3 1abc 2 2ac=; 2x322x =;2 41 31 14、x2 y x 2 2xy =;2 5 31 15、 2 0 3=。
2 3.14 26、_______________ 4xy 12x 2 y 8xy =。
7、a2 10 a 2 7 =;若 x2 3x 1 0 ,则 x 1 =。
x8、若x2 n 2 ,则2x3n 2 =;若 64 2 83 2n,则 n =。
9、8 2004 0.125 2005=。
10、已知ab2 3,则ab a2 b5 ab 3 b =。
二、选择题:(每小题 3 分,共 30 分)11、下列各式计算正确的是()A、a2 4 a 4 2 B 、 2 x3 5x 2 10 x 6C、 c 8 c 6 c 2 D 、 ab3 2 ab612、下列各式计算正确的是()A、x 2 y 2x2 4 y 2B、x 5 x 2x 210初一数学试卷第 1页C 、x y 2 x y 2D、 x 2y x 2 y x 2 2y 213、用科学记数法表示的各数正确的是()A 、34500=3. 45× 102B、 0. 000043= 4. 3× 105 C 、- 0. 00048=- 4. 8×10-4D、- 340000= 3. 4×10514、当 a1时,代数式 a4 a 3 a1 a 3 的值为()3A 、34B、- 6 C、0D、 8315、已知 ab 2 , ab3 ,则 a 2 ab b 2的值为()A 、11B、 12 C、13D 、1416、已知 28a 2 b m 4a n b 2 7b 2 ,那么 m 、 n 的值为()A 、 m 4 , n 2B 、 m 4 , n 1C 、 m 1 n 2D、 m 2 , n 2,17、一个正方形边长增加 3cm ,它的面积就增加39cm 2,这个正方形边长是( )A 、8 cmB、 5 cmC、 6cmD、 10 cm18、若 x1 3 ,则 x 21 的值为()xx 2A 、9B、 7 C 、 11D 、 619、若 x 2mxy 9 y 2 是一个完全平方式,则 m 的值是()A 、8 B、 6C、 ±8D、 ± 620、520041.6 20051 2003 =()8A 、5B、5C、8D、88855三、计算题: (每小题 4 分,共 20 分)n 2521221、 0.4an bn 1 b2 n b2 aa4初一数学试卷 第 2页22、1a4x2 1 a3x3 3 a2x4 2 a2x2 2 3 4 323、3x2y 1 3x 2 y 124、x 2 y 2 x 2 y 22x y 2 2x y 2四、先化简,再求值:( 8 分)26、4 x2 y x 2 y 2x222 ,y5 。
整式的乘除测试题练习四套(含答案)

整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
完整word版整式的乘除提高练习

《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。
【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式乘除
一.典型例题分析:
一、同底数幂的乘法
1.下面各式的运算结果为14a 的是( )
A. 347a a a a ⋅⋅⋅
B. 59()()a a -⋅-
C. 86
()a a -⋅- D. 77a a + 2.化简32()()x y y x --为 ( )
A .5()x y -
B .6()x y -
C .5()y x -
D . 6
()y x - 二、幂的乘方
1.计算
23
)x -(的结果是( ) A .5x - B .5x C .6x - D .6x 2.下列各式计算正确的是( )
A .34()
n n n x x = B .23326()()2x x x += C .3131()n n a a ++= D .24816()a a a -⋅=-
三、积的乘方
1. ()3423a b -等于( )
A .1269a b -
B .7527a b -
C .1269a b
D .12627a b - 2. 下列等式,错误的是( )
A.64232)(y x y x =
B.3
3)(xy xy -=-
C.442229)3(n m n m =
D.64232)(b a b a =-
四、单项式与多项式的乘法
1、计算 (1)3(421)a a b -+ (2)2
(2).(3)x x xy x -++-
(3)(3)(2)x y y x -+ (4)22()()a b a ab b +-+
五、乘法公式(平方差公式)
1.下列式子可用平方差公式计算的式子是( )
A .))((a b b a --
B .)1)(1(-+-x x
C .))((b a b a +---
D .)1)(1(+--x x
2. 计算()()a b c a b c -+--等于( )
A. 2()a b c -+ B .22(a b c --)
C .22a b c --()
D .22a b c -+()
3. 化简22(1)(1)a a +--的值为( )
A .2
B .4
C .4a
D .222a +
乘法公式(完全平方公式)
1. 下列各式计算结果是221
14m n mn -+的是( ) A. 21()2mn - B. 2
1
(1)2mn + C. 21
(1)2mn - D. 21
(1)4mn -
2. 加上下列单项式后,仍不能使241x +成为一个整式的完全平方式的是(
)
A .44x
B . 4x
C .4x -
D .4
六、同底数幂的除法
1.下列运算正确的是( )
A .842a a a ÷=
B .0
415⎛⎫
= ⎪⎝⎭
C .33x x x ÷=
D .422()()m m m -÷--
2. 下列计算错误的有( )①623a a a ÷=; ②527y y y ÷=;
③32a a a ÷=; ④422()()x x x -÷-=-; ⑤852x x x x ÷⋅=.
A .4个
B .3个
C .2个
D .1个
七、单项式与多项式的除法
1.下列各式计算正确的是( )
A .22a a a a ÷⨯=
B .22a a a a ÷÷=
C .21a a a ÷⨯=
D .33a a a a ÷÷= 2. 42332(51520)(5)a a b a b a --+÷-= . 二.跟踪练习 一、填空题 1、25x x ⋅= , 2
y y y y y ⋅+⋅⋅= . 2、合并同类项:22
23xy xy -= .
3、33282n ⨯=, 则=n .
4、5a b +=, 5ab =. 则22
a b += .
5、()()3232x x -+= .
6、如果2249x mxy y -+是一个完全平方式, 则m 的值为 .
7、52a a a ÷÷= ,43(2)(3)x x ÷= . 8、()2a b ++ ()2a b =-.
9、222217ab a c ⎛⎫⋅-
= ⎪⎝⎭ . 10、32(612)(3)x x x x -+÷-= .
11、 边长分别为a 和2a 的两个正方形按如图(I)的样式摆放,则图中阴影部分的面积为 .
二、选择题
12、下列计算结果正确的是( )
A 248a a a ⋅=
B 0x x --=
C ()22224xy x y -=
D ()4
37a a -= 13.下列运算结果错误的是( )
A ()()22x y x y x y +-=-
B ()2
22a b a b -=- C ()()()2244x y x y x y x y +-+=- D 2(2)(3)6x x x x +-=--
14、给出下列各式①2211101a a -=,②10102020x x
-=,③4354b b b -=, ④222910y y y -=-,⑤4c c c c c ----=-,⑥22223a a a a ++=.
其中运算正确有( )
A 3个
B 4个
C 5 个
D 6个
15.下列各式中,计算结果是2
340a a --的是( )
A ()()410a a +-
B ()()410a a -+
C ()()58a a -+
D ()()58a a +-
16.下列各式计算中,结果正确的是( )
A ()()2222x x x -+=-
B ()()223234x x x +-=-
C ()()22x y x y x y --+=-
D ()()222ab c ab c a b c -+=- 17. 在下列各式中,运算结果为22412xy x y -+的是( )
A ()221xy -+
B (
)2221x y -- C ()2221x y - D ()221xy -- 18.下列计算中,正确的是( ) A ()()835x x x -÷-= B ()()5
44a b a b a b +÷+=+ C ()()()623111x x x -÷-=- D ()3
52a a a -÷-= 19. 235()a a ⨯的运算结果正确的是( )
A 13a
B 11a
C 21a
D 6a
20. 若32m n x y x y x y ÷=,则有( )
A 6,2m n ==
B 5,2m n ==
C 5,0m n ==
D 6,0m n ==
三、计算题
21. ()()2342a
a -⋅ 22. ()()()23235a
b a b ab ⋅-⋅-
23. 12ab ()⎥⎦⎤⎢⎣⎡+--
b b a a 32432 24. ()()()25255x x x ++-.
25. ()22123
xy
xy -÷. 26. ()()()2x y x y x y --+-.
27. 应用乘法公式进行计算:2200620082007.⨯-.
四、解答题
28. 先化简,再求值:()()()()232325121x x x x x +-----,其中31-=x .
29. 解方程:2(2)(4)(4)(21)(4).x x x x x ++-+=-+
五、应用题
30. 已知:为不等于0的数,且
11m m -=-,求代数式221m m +的值.
31.已知:212x xy +=,215xy y +=,求()()()2
x y x y x y +-+-的值.
大厦巍然屹立,是因为有坚强支柱,理想和信仰就是人生大厦支柱;航船破浪前行,是因为有指示方向罗盘,理想和信仰就是人生航船罗盘;列车奔驰千里,是因为有引导它铁轨,理想和信仰就是人生列车上铁轨。