大变形问题的有限元分析概要
有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。
有限元实验报告

有限元实验报告一、实验目的本实验旨在通过有限元方法对一个复杂的工程问题进行数值模拟和分析,从而验证理论模型的正确性,优化设计方案,提高设计效率。
二、实验原理有限元方法是一种广泛应用于工程领域中的数值分析方法。
它通过将连续的求解域离散化为由有限个单元组成的集合,从而将复杂的偏微分方程转化为一系列线性方程组进行求解。
本实验将采用有限元方法对一个具体的工程问题进行数值模拟和分析。
三、实验步骤1、问题建模:首先对实际问题进行抽象和简化,建立合适的数学模型。
本实验将以一个简化的桥梁结构为例,分析其在承受载荷下的应力分布和变形情况。
2、划分网格:将连续的求解域离散化为由有限个单元组成的集合。
本实验将采用三维四面体单元对桥梁结构进行划分,以获得更精确的数值解。
3、施加载荷:根据实际工况,对模型施加相应的载荷,包括重力、风载、地震等。
本实验将模拟桥梁在车辆载荷作用下的应力分布和变形情况。
4、求解方程:利用有限元方法,将偏微分方程转化为线性方程组进行求解。
本实验将采用商业软件ANSYS进行有限元分析。
5、结果后处理:对求解结果进行可视化处理和分析。
本实验将采用ANSYS的图形界面展示应力分布和变形情况,并进行相应的数据处理和分析。
四、实验结果及分析1、应力分布:通过有限元分析,我们得到了桥梁在不同工况下的应力分布情况。
如图1所示,桥梁的最大应力出现在支撑部位,这与理论模型预测的结果相符。
同时,通过对比不同工况下的应力分布情况,我们可以发现,随着载荷的增加,最大应力值逐渐增大。
2、变形情况:有限元分析还给出了桥梁在不同工况下的变形情况。
如图2所示,桥梁的最大变形发生在桥面中央部位。
与理论模型相比,有限元分析的结果更为精确,因为在实际工程中,结构的应力分布和变形情况往往受到多种因素的影响,如材料属性、边界条件等。
通过对比不同工况下的变形情况,我们可以发现,随着载荷的增加,最大变形量逐渐增大。
3、结果分析:通过有限元分析,我们验证了理论模型的正确性,得到了更精确的应力分布和变形情况。
1有限元分析概述

• 项目挑战
– 初始设计的扭转变形钢片几乎 没有信号输出,无法实现扭矩
传感
电子助力转向系统
• 解决方案
– 通过结构分析发现原始设计的 缺陷 – 第一次改进设计,效果很好, 但由于结构尺寸过大,基本不 实用 – 经过30多次方案改进,最后获 得了一个非常满意的设计(传 感器电路仿真也在ANSYS里一 起完成)
– 用于F-15飞机的弹射座椅改进设计 – 需要计算在弹射和前向碰撞两种最 大载荷状态下的座椅可靠性
• 项目挑战
– 100多个零部件,模型极其复杂 – 载荷施加非常困难
• 解决方案
– 在Workbench环境下使用 Mechanical软件,利用其双向参数 链接功能输入CAD模型,并自动创 建零部件的装配接触 – 利用Workbench高级网格处理能力 – 利用Workbench先进的加载功能 (如空间质量点、远程等效力等) – 与CAD协同进行结构改进和优化设 计
(3)
式中,F e 和 F e 分别为作用于单元e的结点i和结点j的结点力。 j i 式(3)写成矩阵形式为
xj x i x e L x xi j x e L
(2)
3.单元方程(单元结点位移与结点力的关系) 由等截面杆变形与拉力的关系(虎克定律)得到:
A e E e e e e i j Fi Le e e A E e e e j i Fj Le
最终设计
第一次 改进设计
第一次改进设计的应变分布状态非常良好(基 本上只有第一主应变,其它主应变很小),扭 转引起的电阻变化很大,传感效果好。但结构 宽度太大,无法集成在转向系统中,实用性差
大变形问题的基本方程分解

第五章 大变形问题的基本方程和Lagrangion 表示法(列式法)§5-1物体的运动分析和应变度量严格来说任何一个变形过程都是非线性的,因为平衡状态和变形有关。
但在小变形情况下,以物体变形的平衡方程可始终建立在初始构形上,而与实际情况相差不大,足够满足工程要求。
而研究大变形物体的变形过程,,必须在变形之后的物体构形上建立平衡方程。
研究方法:把连续的的变形过程分为若干个增量步,在每个增量步内建立它的增量运动方程——即变形体内质点的运动规律。
要选取某一坐标系:初始(initial )坐标系; 相邻(adjacent, neighboring )坐标系; 瞬时(current )坐标系.1. 物体运动方程:物体构形(configuration )内一点P 的增量运动方程。
选择两个固定坐标系,以t 时刻物体构形作为参考构形的坐标系a i , 以+t t 时刻物体构形作为参考构形的坐标系x i研究(t t t →+)具有普遍意义.t 时刻 ()i P a ; t t + 时刻 '()i P x △t 增量步内,P 的变形i i i u x a =- (1)研究t 时间步内物体内一点P 的变形。
最简便的办法是将两个坐标系重合在一起。
2. 应变度量研究P 点附近线素变形 在 t t t →+ 时间步内 ''PQ P Q →线素变形 i i i du dx da =- (1)’将i du 在i a 坐标系中,在P 点处作一阶泰勒展开并考虑到()=i P du O 得ii j ju du da a ∂=∂ 代入(1)’ 式得 ()ii ij j ju dx da a δ∂=+∂ (2) 同理将i du 在x i 坐标系中,在P ’点处作一阶泰勒展开,并考虑到()'=i P du O 得ii j ju du dx x ∂=∂代入(1)’ 式 ()ii ij j ju da dx x δ∂=-∂ (2)’ --------------------------------------------------------------------------------------------------- 附:若位移i du 是坐标i a 的单值连续函数,则可在i a 空间中p 点处展成泰勒级数. 123123()⎫⎛∂∂∂∂=+++=⎪ ⎪∂∂∂∂⎝⎭i i i i i i p j ju u uu du du da da da da a a a x i.e 111111231232222212312333333123123()()()p p p u u u du du da da da a a a u u u du du da da da a a a u u u du du da da da a a a ⎧⎫⎛∂∂∂=+++⎪⎪ ⎪∂∂∂⎝⎪⎭⎪⎫⎛∂∂∂⎪=+++⎪⎨ ⎪∂∂∂⎝⎭⎪⎪⎫⎛∂∂∂⎪=+++⎪ ⎪⎪∂∂∂⎝⎭⎩ 代入(1)式 i ii d x d a du =+ 写成张量形式: ii ij j j udx da a δ⎛⎫∂=+ ⎪ ⎪∂⎝⎭(2) 同理若将位移i du 在i x 坐标系中p ’点处展成泰勒级数并取一阶项:123123()⎫⎛∂∂∂∂=+++=⎪ ⎪∂∂∂∂⎝⎭i i i i i i p j u u uu du du dx dx dx x x x x 代入(1)得ii ij j j uda dx x δ⎛⎫∂=- ⎪ ⎪∂⎝⎭(2)’ ------------------------------------------------------------------------------------------------------- 上两式中 i i j j u du da a ∂=∂ i i j judu dx x ∂=∂ 其中i j u a ∂∂和i jux ∂∂ 可分别记为,i j u 和,i j u ,可称为相对位移张量(不对称张量),而且可将,i j u 分解成对称部分和反对称部分。
恒阻大变形锚杆冲击拉伸实验及其有限元分析

或15 m/s(撞击40次)的轴向初速度撞击托盘。
(7) 模型中所有接触面设定自动面接触。
(8) 其他相关参数设定。
上述前处理工作完成后投入LS-DYNA 软件进行计算并通过LSPREPOST 软件进行结果分析。
其中,网格模型缩略图和模型参数分别见图9和表3。
图9 1/4模型网格缩略示意图Fig.9 Schematic of partial meshing of 1/4 of model 表3 模型参数Table 3 Parameters of model介质 密度/ (kg ·m -3) 弹性模 量/GPa 泊松比屈服强度/MPa 单元 数量 单元尺寸节点数量冲击杆 7 850 206 0.300400 10 152 5 12 922托盘 7 850 206 0.300400 32 414235 380螺栓 7 850 206 0.300400 6 287 1,27 718恒阻套筒 7 800 210 0.269255 33 695 1 46 128杆体 7 850 206 0.300400 1 564 2 2 115子弹 7 850 206 0.300400 32 414 2 35 380 5 有限元结果分析与比较 5.1 膨胀量分析图10为单次冲击后选取的恒阻套筒外螺纹凹凸处参考单元示意图,图11为参考单元的径向位移(即膨胀量)曲线,其中,点A 为外螺纹凹处参考点,点B 为外螺纹凸处参考点。
图10 恒阻套筒参考单元示意图Fig.10 Sketch of selected elements of sleeve pipe0.00.10.20.30.40.50.60.70.80.9径向位移/m m时间/ms 图11 参考单元径向位移曲线Fig.11 Radial displacement of curves selected elements 从图11中可以看出:(1) 无论外螺纹凹处还是凸处,锚杆试样经受冲击后均表现出弹性回落,其中以凸处最为明显。
有限元法概述

(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
有限元分析ppt

分 片 近 似位
移 函 数
m(xm ym ) Fmy
vm um
vi i(xi yi )
Fmx ui
vj
y
Fix x
Fiy
uj
j(xj yj)
单 元 平 衡单
刚 方 程
整 体 平 衡总
刚 方 程
方
程
求 解
节 点 位
移
函
数
阶梯轴(梁)
A E (1)
(1)
A E (2) (2)
F
1
2
3
3
Φ1
Φ2
Φ3
l(1)
ui
vi
u
v
j j
um
vm
Fxi
Fyi
F
Fxj Fyj
Fxm Fym
y
vm
m
um vj
vi
j uj
i
ui
Fym
m
Fyi
i
Fxm Fyj
j Fxj Fxi
x
平面应变板单元
1.2.3 .1 单元刚度的概念 单元分析的主要工作是:通过研究单元力和单元位移
之间关系,建立单元刚度矩阵。 对任意单元而言,描述单元力和单元位移之间关系的
l(2)
F1
F2
F3
分为两个单元,共有三个节点。整体结构中,节点 载荷F及节点位移Φ都用大写。其脚标为节点在总体 结构中的编码,简称为总码。
1.1 有限元法概述
二.一个简单的应用实例
1. 离散化
① 局部码:各单元内,节点的编码; ② 各节点的位移分量及载荷分量分别用小写φ及f标记 ③ 所有节点位移的集合为该单元节点位移矢量{φ},节
CAE课有限元分析理论基础

类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* * Dij eij
现时Green应变的线性部分
可以证明,这两个率都与转动无关
* ij
2018/8/2
1 vi v j 旋转率 2 x x j i
12
大变形分析中的本构关系(5/5)
三种本构关系间的关系
对于实际的大变形问题,上述三种本构关系并不等价。可以证明,弹性 材料是一种特殊的次弹性材料,超弹性材料是一种特殊的弹性材料。
虚功方程:
t 时刻:
t t
V
t S t ut bt dV 0 ut t t dS 0 ut Pt 0
T T T T S
e
时刻:
t t T S tt u tt V
*eij *ij
2018/8/2
线性部分
非线性部分
5
大变形问题的应变描述(4/4)
应变增量:(续)-对于大变形小应变情形 Green应变增量退化成:
IJ 1 1 KJ uK , J uK , I KI uK , I uK , J uK , I uK , J 2 2 eIJ IJ
AIJKL KL
坐标变换
一阶近似
2018/8/2
现时构型时材料的密 度-随变形变化。
总之,对于一般的大变形 问题,在连续介质力学中 不能简化! 常用超弹性来表征材料的 本构关系。
11
大变形分析中的本构关系(4/5)
次弹性材料 若应力率与变形率之间成线性变化规律,这类材料称为次弹性材料。但 本构关系描述时要求“率”为与刚体转动无关的客观时间导数。
线性部分
非线性部分
二者之间满足张 量变换关系!
xm xn * mn X I X J
现时(Updated)Green应变增量:
* ij 1 ui u j 1 uk uk 2 x x i j 2 xi x j
IJ
研究现状:大变形问题有限元分析的理论和方法存在不同学派间的 争鸣,尚未得到一个权威性的结论。随之并发的其它问题,如 解的稳定性、收敛性及收敛率等,都有待进一步深入研究。
2018/8/2 2
大变形问题的应变描述(1/4)
问题的特点:由于变形较大,使得不同时刻物体具有差别不能 忽略的不同构型,这是大变形问题分析的基本出发点。
Case-1
SIJ AIJKL KL
同乘以时间增量 t
增量形式 …
Case-2
*J * Sij Aijkl Dkl
可以证明,这两个率都与转动无关
1 vi v j 2 x j xi
Jaumann 应力率
*J * * * * Sij Sij Sik kj S * jk ki
xi
XI
yi
(a)
(b)
(c)
初始构型(0时刻)
现时构型(t 时刻)
当前构型( t t 时刻)
连续介质力学理论对物体经历大变形后的变形有严格的定义 和推导。这里不准备过多引入复杂的概念和符号,而是与小变形 理论对照,介绍进行大变形分析时必需的几个概念和术语。
2018/8/2
大变形问题的分析方法:增量法。
3
大变形问题的应变描述(2/4)
描述的出发点:物体的变形描述建立在确定的参考构型上。 Green应变张量:以初始构型为参考构型所定义的应变,数学 表示为
KL
1 u K , L u L , K uM , K uM , L 2
现时(Updated)Green应变张量:以现时构型为参考构 型所定义的应变,数学表示为
2018/8/2 7
大变形问题的应力描述(2/2)
Kirchhoff、现时Kirchhoff及Euler应力(增量)间的关系:
*Sij ij * Sij
现时Kirchhoff应力增量
现时Kirchhoff应力 t t 时刻
Euler应力 t 时刻
特点:以现时构型为参考。
根据张量的坐标变换规则,它们之间还有以下关系
D
* N 1
y1 , y2 , y3 yi x1 , x2 , x3 x j
2018/8/2
8
大变形分析中的本构关系(1/5)
本构关系的客观性要求:需要选取合适的应力-应变共轭对描 述材料的本构关系。 弹性材料:加载曲线与卸载曲线相同的材料。
,
本构关系有三种形式
2018/8/2
16
大变形问题有限元方程的建立 (4/6)
UL法有限元方程的建立
UL法:Updated Lagrangian Description (ULD) 特点:总以t 时刻(即现时构型)为参考构型,也就是说参考构型是变化的,因 而,采用现时Kirchhoff应力(增量)和现时Green应变(增量)。 优点:可以处理加载方式更为复杂的问题,亦可处理边界非线性问题等。
1
引言
几何线性问题: 位移与应变成线性 (微分)关系;
几何非线性问题:位移与应变成非线性(微分意义上)关系。 物理现象:将位移(转动)和/或应变较大的问题统称为大变形 问题,有时称为有限变形问题。这类问题又分为大位移
(转动)小应变问题及大位移大应变问题两大类。 研究意义:和材料非线性问题一样重要。例如,平板的弯曲问题, 大挠度理论分析结果更符合实际情况;薄壳的屈曲,非线性理 论的预测值更好。又例如,对于橡皮型材料,大变形还必须考 虑本构关系的变化,这与纯粹的材料非线性又有区别。
ij Aijkl kl
W ij ij
ij t Aijkl kl t
(大变形分析中) 线弹性材料 (elasticity) 超弹性材料 (hyperelasticity) 次弹性材料 (hypoelasticity)
Aijkl
为常数
1 W ij Aijkl kl 2
kl
1 uk ,l ul ,k um,k um,l 2
注意:我们用下标的大小写表示坐标的大小写,对应于不同的构型。 大变形分析由于采用增量方法,需经常用到它们的增量形式。
2018/8/2 4
大变形问题的应变描述(3/4)
应变增量: Green应变增量:
IJ 1 1 KJ uK , J uK , I KI uK , I uK , J uK , I uK , J 2 2 eIJ IJ
T T V T T
0
T
S
e
te dS 0
u
T
P P 0
15
大变形问题有限元方程的建立 (3/6)
TL法有限元方程的建立(续)
将有限元位移插值、初始构型下的几何关系和本构关系引入后,得到
t t K S IJ U F S IJ
次 弹 性 材 料
弹性 材料
超弹性 材料
实际材料所遵守的本构关系,只有通过实验测试才能得以确定。
2018/8/2 13
大变形问题有限元方程的建立 (1/6)
与塑性力学有限元方法的异同
相似:都采用增量方法,都不显含时间。 区别:塑性力学的本构关系随加载变化,而大变形问题的构型随加载变化。
导致分析方法、应力应变描述、本构关系、控制方程的变化。
从当前构型中取出微元体,在其上定义的应力称为Euler应力,用 表示。Euler应力代表物体的真实应力。然而,当前构型是待求的未知构型, 因而,有必要通过已知构型上的微元体再对应力进行描述。
Kirchhoff应力:
通过初时构型上的微元体定义的应力称为Kirchhoff应力,用 S 表示; 通过现时构型的微元体定义的应力称为现时(Updated)Kirchhoff 应力, * 用 表示。 S
线性部分
非线性部分是高阶小量 对于小变形情形
IJ * ij 1 ui u j 2 X i X j ij
现时(Updated)Green应变增量退化成:
* ij 1 ui u j 1 uk uk 2 x x j i 2 xi x j
TL?UL? 本节讨论
构型对应
客观性描述
构型相关,本节讨论 。。。
2018/8/2
14
大变形问题有限元方程的建立 (2/6)
TL法有限元方程的建立
TL法:Total Lagrangian Description (TLD) 特点:始终以初始(0时刻)构型做为应力与应变描述的参考构型,因而,采用 Kirchhoff应力(增量)和Green应变(增量)。 优点:参考构型不发生变化,本构关系与虚功方程描述形式简单。
形式较复杂,因问题的类型而不同。
刚度矩阵
载荷向量
TL法的求解步骤:
Step 1:利用有限元方程求出 t ~ t t 间隔内的位移增量 U I ; Step 2:利用几何关系,计算Green应变增量 IJ ; Step 3:利用本构关系,计算Kirchhoff应力增量 SIJ ; Step 4:更新当前时刻 t t t ;更新当前应力 SIJ SIJ SIJ ; 计算当前刚度矩阵和载荷向量。 Step 5:转到Step 1,进入下一个时间间隔计算。
1 xi x j Sij N Skl D X K X L
*
ij ij
1 D
* N 1
yi y j kl *Skl xk xl
D
N
x1 , x2 , x3 xi X 1 , X 2 , X 3 X J
*eij *ij
2018/8/2
线性部分