第7章 向量代数与空间解析几何 习题 7- (4)
最新7空间解析几何与向量代数习题与答案汇总

7空间解析几何与向量代数习题与答案第七章空间解析几何与向量代数A一、1、平行于向量«Skip Record If...»的单位向量为______________.2、设已知两点«Skip Record If...»,计算向量«Skip Record If...»的模,方向余弦和方向角.3、设«Skip Record If...»,求向量«Skip Record If...»在x轴上的投影,及在y轴上的分向量.二、1、设«Skip Record If...»,求(1)«Skip Record If...»(3)a、b的夹角的余弦.2、知«Skip Record If...»,求与«Skip Record If...»同时垂直的单位向量.3、设«Skip Record If...»,问«Skip Record If...»满足_________时,«Skip Record If...».三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程«Skip Record If...»表示______________曲面.3、1)将xOy坐标面上的«Skip Record If...»绕x轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy坐标面上的«Skip Record If...»绕x轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3)将xOy坐标面上的«Skip Record If...»绕x轴及y轴旋转一周,生成的曲面方程为_____________,曲面名称为_____________________.4)在平面解析几何中«Skip Record If...»表示____________图形。
微积分练习册[第七章]向量代数与空间解析几何
![微积分练习册[第七章]向量代数与空间解析几何](https://img.taocdn.com/s3/m/4513ee35182e453610661ed9ad51f01dc281571a.png)
习题7-1 空间直角坐标系1.填空题(1)下列各点所在象限分别是:a .(1,-2,3)在________________;b .(2,3,-4)在________________;c .(2,-3,-4)在________________;d .(-2,-3,1)在________________。
(2)点P(-3,2,-1)关于平面XOY 的对称点是_______,关于平面YOZ 的对称点是_________,关于平面ZOX 的对称点是__________,关于X 轴的对称点是__________,关于Y 轴的对称点是____________,关于Z 轴的对称点是____________。
(3)点A(-4,3,5)在XOY 平面上的射影点是_________,在YOZ 平面上的射影点是_________,在ZOX 面上的射影点是__________,在X 轴上的射影点是_________,在Y 轴上的射影点是__________,在Z 轴上的射影点是__________。
(4)已知空间直角坐标系下,立方体的4个顶点为A(,,a a a ---),B(,,a a a --),C(,,a a a --)和D (,,a a a ),则其余顶点分别为___________,_____________,___________, ___________。
2.已知三角形的三个顶点A(2,-1,4),B(3,2,-6),C(-5,0,2),求过A、B、C 三点的中线的长度。
3.已知平行四边形ABCD的两个顶点A(2,-3,-5),B(-1,3,2)及它的对角线的交点E(4,-1,7),求顶点C、D的坐标。
4.已知某直线线段AB被点C(2,0,2)及点D(5,-2,0)内分为3等分,求端点A、B的坐标。
5.求点M(-4,3,-5)到各坐标轴的距离。
6.在YOZ面上,求与三个已知点A(3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。
[整理]7空间解析几何与向量代数习题与答案
![[整理]7空间解析几何与向量代数习题与答案](https://img.taocdn.com/s3/m/8953ea7069eae009581bec92.png)
第七章 空间解析几何与向量代数A一、1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ.三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面.3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 _______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z +=(2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程.3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影.五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程.5、求直线⎩⎨⎧=--=++03z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3.7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知a 和b 为两非零向量,问t 取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量n ,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过z 轴,且与平面052=-+z y x 的夹角为3π的平面方程.6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线2l :211zy x =-=平行的平面.8、求在平面π:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为m ).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线L :121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程.4、求两直线1L :1101-=-=-z y x 与直线2L :0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、a 在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j ib a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。
图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。
空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。
在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。
高等数学第七章向量代数与空间解析几何习题

解 ∵ a + b = AC = 2MC = −2MA ,
D
C
b
M
b − a = BD = 2MD = −2MB ,
∴
MA
=
−
1 2
(a
+
b),
MB
=
−
1 2
(b
−
A a ),
a
B
图 7.2
MC
=
1 2
(a
+
b),
MD
=
1 2
(b
−
a ).
10. 用向量的方法证明: 连接三角形两边中点的线段(中位线)平行且等于第三
而
a⋅b =
a
⋅
b
⋅
cos(a,
b)
=
10
×
cos
π 3
=5,
所以
r 2 = 100 − 60 + 36 = 76 ,
故 r = 76 .
3. 已知 a + b + c = 0 , 求证 a × b = b × c = c × a
证 法1
∵a + b + c = 0 ,
所以
c = −(a + b) ,
解 因 a = m − 2n + 3 p = (8i + 5 j + 8k) − 2(2i − 4 j + 7k) + 3(i + j − k) = 7i + 16 j − 9k ,
故沿 x 轴方向的分向量为 axi = 7i ; 沿 y 轴方向的分向量为 ay j = 16 j .
16. 若线段 AB 被点 C(2, 0, 2)和D(5, −2, 0) 三等分, 试求向量 AB 、点 A 及点 B 的
高等数学 向量代数与空间解析几何 (7.4.2)--空间的平面和直线

习题7.41. 判断下列四点是否共面:(1) (1,0,1),(2,4,6),(3,1,2),(6,2,8)A B C D -;(2) (1,2,1),(2,2,3),(1,1,2),(4,5,6)A B C D --.2. 设≠0a ,(1) 若⋅=⋅a b a c , 则是否必有=b c ?(2) 若⨯=⨯a b a c , 则是否必有=b c ?(3) 若⋅=⋅a b a c ,且⨯=⨯a b a c , 则是否必有=b c ?3. 指出下列平面对于坐标轴或坐标面的相对位置:(1) 3210x y -+=; (2) 250x +=; (3) 0x y -=; (4)0Ax Cz +=.4. 求满足下列条件的平面方程:(1) 过点0(1,2,3)M -, 法向量为(2,1,5)=--n ;(2) 在x 轴,y 轴和z 轴上的截距分别为2,3,1-;(3) 过点(5,7,4)-且在x y z 、、轴上截距相等;(4) 过点(3,6,2)P -,且垂直于OP (O 为原点);(5) 过点1(2,1,3)M -,2(5,1,4)M -和3(2,2,4)M -;(6) 过Ox 轴和点(4,3,1)--;(7) 平行于Oy 轴,且通过点(1,5,1)-和(3,2,2)-;(8) 平行于xOz 平面,且通过点(3,2,7)-;(9) 过点(1,3,2)-,且平行于平面520x y z +--=;(10) 过两点(8,3,1),(4,7,2)-,且垂直于平面35210x y z +--=;(11) 平行于平面2250x y z +++=而与三坐标面所构成的四面体的体积为15. 指出下列直线的位置性态:(1) 123102x y z -++==- (2)113100x y z +-+==; (3) 6,5,3x t y t z t =-==-;(4) 12,23,0x t y t z =-=-+=. 6. 求满足下列条件的直线的对称式方程,并将其中(1)~(4)化为参数方程和一般式方程:(1) 过点0(1,2,3)M , 方向向量为(2,1,1)=-s ;(2) 过点0(1,2,0)M -, 方向向量为3-s =i k ;(3) 过点(2,3,8)-,且平行于y 轴;(4) 过点(2,3,8)-,且平行于直线243325x y z --+==-; (5) 过点(1,3,2)-,且垂直于平面520x y z +--=;(6) 过点1(1,2,3)M ,2(2,2,7)M -;(7) 过点(1,3,2)-,且与z 轴垂直相交;(8) 过点(1,2,1)-,且平行于直线210210x y z x y z +--=⎧⎨+-+=⎩(9) 垂直于三点1(1,2,3)M ,2(2,2,7)M -和3(0,1,5)M 所在平面,且过点1M ;(10) 过点(3,4,4)-,且与坐标轴夹角分别为π3,π4,2π3的直线方程.7. 求平面4210x y z -+-=与三个坐标面的交线方程.8. 将下列直线方程化为标准式方程:(1)240,3290;x y z x y z -+=⎧⎨--+=⎩ (2)35,28.x z y z =-⎧⎨=-⎩9. (1) 求点(1,3,2)-到平面32610x y z +--=的距离;(2) 求两平行平面326350,326560x y z x y z +--=+--=间的距离;(3) 求平行于平面221x y z +-=且与其距离为2的平面;(4) 证明:两平行平面120,0Ax By Cz D Ax By Cz D +++=+++=之间的距离是d =10. 求下面各组平面的夹角, 并判断它们是否平行或垂直?(1) 1x z +=,1y z -=;(2) 86210x y z --+-=,430x y z +-=;(3) 26310x y z -+-=,3450x y z --+=;(4) 236120x y z -+-=,2270x y z ++-=.11. 求下面各组直线的夹角,并判断它们是否平行?相交?或异面?在相交情况下求出它们的交点:(1) 1451:243x y z L -+-==-,221:132x y z L -+==; (2) 111:214x y z L --==,222:123x y z L ++==; (3) 1:6,19,3L x t y t z t =-=+=-,2:12,43,L x s y s z s =+=-=;(4) 1:1,2,3L x t y t z t =+=-=,2:2,12,4L x s y s z s =-=+=+.12. 求下面各组直线与平面的夹角,并判断它们是否平行?垂直?相交?在相交情况下求出它们的交点:(1) 34:273x y z L ++==--, :42230x y z ∏---=; (2) :327x y z L ==-, :32731x y z ∏-+=; (3) 223:314x y z L -+-==-, :3x y z ∏++=; (4) 221:312x y z L +-+==,:23380x y z ∏++-=. 13. (1) 求过点(3,2,1)--且垂直于直线11413x y z -+==-的平面; (2) 求点(1,0,1)-到直线51132x y z --==-的距离;(3) 求点(2,3,1)在直线722123x y z +++==上的投影. (4) 求点(3,1,1)--在平面23300x y z ++-=上的投影.14. 证明两直线11112x y z +-==和12134x y z +-==是异面直线,并求它们之间的距离,公垂线方程,及公垂线与两直线的交点.15. 求直线1010x y z x y z +--=⎧⎨-++=⎩在平面0x y z ++=上的投影直线方程. 16. 求过两平面0,20x y z x y z +-=++=的交线l 的两个互相垂直的平面,其中一个平面过点(0,1,1)A -.17. 求满足下列条件的平面方程:(1) 过点(3,2,1)--和直线31212x y z --==. (2) 过点(1,2,3)--,且和两直线25346x y z --==-及21122x y z +-==平行; (3) 过两平行直线31212x y z --==,11212x y z +-==; (4) 包含直线10230x z y z --=⎧⎨+-=⎩且与平面21x y z +-=垂直; (5) 过Ox 轴,且与平面y x =成π3的角度; (6) 过两平面50,40x y z x z ++=-+=的交线,且与平面48120x y z --+=的夹角为π4. 18. 求满足下列条件的直线方程:(1) 在平面1x y z ++=上, 且与直线1,1y z ==-垂直相交;(2) 过点(1,0,4)-,且平行于平面34100x y z -+-=,又与直线13312x y z +-==相交; (3) 过点(1,2,1),且与直线2x y z ==-相交,又垂直于直线11321x y z -+==; 19. 一动点与两定点(2,2,1),(1,3,4)等距离,求此动点轨迹的方程.。
高等数学第七章向量(最新整理)

,
a
5, b
2.若
a
13, b
19,
a
b
24 。则 a
b=
。 。
3.若 (a b )
2
,且
a
1, b
2
。则
a
b
=
。
3
4.已知
a
3, b
26,
a
b
72
,则
a
b
=
。
5.三向量 a, b, c 的混合积[a, b, c] 的几何意义是
。
专业
班级
姓名
学号
成绩
4.过点M1(4,0,-2)和M2(5,1,7)且平行于OX轴的平面方程是 。
5.点P(1,2,1)到平面 x+2y+2z-10=0 的距离是 。
6.当 l =
,及 m=
时,二平面 2x+my+3z-5=0 与 l x-6y-6z+2=0 互相平行。
二、选择题
1.平面 x -2z = 0 的位置是 。
2.XOZ 坐标面上的直线 x=z-1 绕 oz 轴旋转而成的圆锥面的方程是 。
(A)x2+y2=z-1 (B) z 2 =x2+y2+1 (C) (z 1)2 = x2+y2 ( D ) (x 1)2 =y2+z2
3.方程 x=2 在空间表示 。 (A)、YOZ坐标面。 (B)、一个点。 (C)、一条直线。 (D)、与YOZ面平行的平面。
b1 b2 b3
专业
班级
姓名
学号
成绩
时间
91
七、设
AD
为
ABC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 空间直线及其方程习题 7-41. 求过点(1,1,2)−且与平面20x y z +−=垂直的直线方程.解 取已知平面的法向量(1,2,1)=−n 为所求直线的方向向量, 则直线的对称式方程为112.121x y z −+−==− 2. 求过点(1,3,2)−−且平行两平面35202340x y z x y z −++=+−+=及的直 线的方程.解 因为两平面的法向量12(3,1,5)(1,2,3)=−=−n n 与不平行, 所以两平面相交于一直线, 此直线的方向向量为12315(7,14,7)7(1,2,1),123=×=−=−=−−i jks n n 故可取所求直线的方向向量为(1,2,1)−, 由题设, 所求的直线方程为132.121x y z ++−==− 3. 用点向式方程及参数方程表示直线102340x y z x y z +++=⎧⎨−++=⎩. 解 先在直线上找一点.令1x =, 解方程组2,36,y z y z +=−⎧⎨−=⎩ 得0,2y z ==−, 故(1,0,2)−是直线上一点.再求直线的方向向量s .交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==−n n ,12,,⊥⊥s n s n ∵12111(4,1,3),213∴=×==−−−ij ks n n故所给直线的点向式方程为12,413x y z −+==−−参数方程为 14,,23.x t y t z t =+⎧⎪=−⎨⎪=−−⎩4. 求过点(2,0,3)−且与直线2470,35210x y z x y z −+−=⎧⎨+−+=⎩垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取12124(16,14,11),352==×=−=−−i jkn s n n 由点法式可得16(2)14(0)11(3)0,x y z −−+−++=即161411650x y z −−−=为所求的平面方程.5. 求过点(3,1,2)−且通过直线43521x y z−+==的平面的方程. 解 法1所求平面过点0(3,1,2)M −及1(4,3,0)M −, 设其法向量为n , 则01,M M ⊥⊥n n s ,其中(5,2,1)=s .取01(1,4,2)(5,2,1)(8,9,22)M M =×=−×=−n s, 则平面方程为8(3)9(1)22(2)0,x y z −−+−++=即8922590x y z −−−=.法2 直线L 的交面式方程为25230,230,x y y z −−=⎧⎨−+=⎩过L 的平面束方程为(23)(2523)0.y z x y λ−++−−=点(3,1,2)−在平面上, 因此(143)(6523)0λ+++−−=, 解得411λ=, 因此平面的方程为4(23)(2523)0,11y z x y −++−−= 即8922590x y z −−−=. 容易验证25230x y −−=不是所求的平面方程.6. 确定下列直线与直线的位置关系:(1)2111x y z +==−−与2240,230;x y z x y z −+−=⎧⎨−+−=⎩(2) 1421315x y z ++==与19,313,115;3x t y t z t ⎧=−⎪⎪=−⎨⎪⎪=−−⎩ (3) 340,290x z y z +−=⎧⎨+−=⎩与610290.x y y z −+=⎧⎨+−=⎩解 (1) 直线12:111x y z L +==−−的方向向量为 1(1,1,1),=−−s直线22240,:230x y z L x y z −+−=⎧⎨−+−=⎩的方向向量为2212(0,2,2).112=−=−−i j ks1212(1,1,1)(0,2,2)0,,⋅=−−⋅−=∴⊥s s s s ∵因此, 两直线垂直.(2) 直线11421:315x y z L ++==的方向向量为 1(3,1,5),=s直线219,3:13,1153x t L y t z t⎧=−⎪⎪=−⎨⎪⎪=−−⎩的方向向量为2(9,3,15)3(3,1,5).=−−−=−s故21123,//.s s s s =−又因211111(,1,),(,1,)3333L L −∈−∉点但, 因此, 两直线平行.(3) 直线1340,:290x z L y z +−=⎧⎨+−=⎩的方向向量为1301(1,6,3),012==−−i j ks直线2610,:290x y L y z −+=⎧⎨+−=⎩的方向向量为2610(2,12,6)2(1,6,3).012=−=−−=−−i j ks21122,//.=故s s s s又因12(0,1,4),(0,1,4),L L ∈∈点且 因此, 两直线重合.7. 下列直线与平面是否垂直?是否平行?若不平行, 求出它们的夹角.(1) 34273x y z++==−−与42230x y z −−−=;(2) 327x y z==−与641410x y z −++=; (3)234314x y z +−−==−与50x y z ++−=; (4) 10,210x y z x y z +−−=⎧⎨−++=⎩与320x y z −+=. 解 (1) 直线的方向向量为(2,7,3),=−−s平面的法向量为(4,2,2).=−−n81460,,⋅=−+−=∴⊥s n s n ∵从而直线平行于平面或直线在平面上.又因为(3,4,0)−−点在直线上, 但不在平面上, 故此直线与平面平行.(2) 直线的方向向量为(3,2,7),=−s平面的法向量为(6,4,14)2(3,2,7).=−=−n故2=n s , 从而//n s , 故直线与平面垂直.(3) 直线的方向向量为(3,1,4),=−s 平面的法向量为(1,1,1).=n3140,⋅=+−=s n ∵ ,∴⊥s n将直线上的点(2,3,4)−的坐标代入平面方程成立, 故此直线在平面上.(4) 直线的方向向量为111(1,3,2),112=−=−−−i j ks平面的法向量为(3,2,1).=−n36270,0,⋅=+−=≠×≠s n s n ∵ 所以直线与平面相交. sin ϕ⋅==∵s n s n, π6ϕ∴=. 8. B D 和为何值时, 直线20,36270x By z D x y z +−+=⎧⎨+−−=⎩ 过点(0,13,2)且垂直于x 轴? 解 直线的方向向量为12(66,4,3).136B B B =−=−+−−i j ks 因为直线垂直于x 轴, 故有,⊥s i 即(66,4,3)(1,0,0)660,B B B ⋅=−+−⋅=−+=s i 所以 1.B =因点(0,13,2)在直线上, 所以有01340,B D +−+=即 134,B D += 所以9.D =−9. 求直线10,10x y z x y z +−−=⎧⎨−++=⎩ 在平面0x y z ++=上的投影直线的方程. 解 过直线L 的平面束方程为1(1)0,x y z x y z λ+−−+−++=即 (1)(1)(1)(1)0,x y z λλλλ++−+−++−+=其法向量(1,1,1)λλλ=+−−+n . 在平面束中找与已知平面0x y z ++=垂直的平面, 由0(1,1,1)⊥=n n , 得0(1)1(1)1(1)10,λλλ⋅=+⋅+−⋅+−+⋅=n n得1λ=−, 代入平面束方程, 可得与已知平面0x y z ++=垂直的平面方程为10.y z −−=因此投影直线的方程为10,0.y z x y z −−=⎧⎨++=⎩10. 求点(1,2,0)−在平面210x y z +−+=上的投影. 解 过点(1,2,0)−且垂直于已知平面的直线方程为12121x y z+−==−, 该直线与平面的交点即为所求. 解联立方程组210,12,121x y z x y z +−+=⎧⎪⎨+−==⎪⎩−得所求的投影点为522(,,333−. 11. 求点(0,1,1)A −到直线10,270y x z +=⎧⎨+−=⎩的距离.解 已知直线的方向向量为010(2,0,1).102==−i j ks 因为点(7,1,0)−在直线上, 于是直线的方程为71,201x y z−+==− 其参数方程为 72,1,.x t y z t =+⎧⎪=−⎨⎪=−⎩(1)过点(0,1,1)A −作已知直线的垂直平面, 其方程为2(0)0(1)(1)0,x y z −++−−=即 210,x z −+= (2) 将(1)代入(2), 得: 2(72)10t t +++=, 即3t =−, 于是得点A 向已知直线所作垂线的垂足坐标为(1,1,3)−. 由此得点A 到已知直线的距离为d ==12. 设0M 是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s ,试证:点0M 到直线L 的距离为0M M d ×=ss.证 如图7.6, 设向量0M M与直线L 所夹的角为θ, 则000sin sin M M M M d M M θθ×===s sss.13. 过点(2,1,3)且与直线11321x y z+−==−垂直相交的直线的方程. 解 先求两直线的交点.过点(2,1,3)且与已知直线垂直的平面的法向量为(3,2,1)−, 故其方程为3(2)2(1)(3)0;x y z −+−−−= (1)直线11321x y z+−==−的参数方程为 13,12,;x t y t z t =−+⎧⎪=+⎨⎪=−⎩(2)将(2)代入(1), 得3(132)2(121)(3)0,t t t −+−++−−−−=即146,t = 亦即3.7t =故两直线的交点坐标为2133(,,)777−, 由此得所求直线的方向向量为126246(,,)(2,1,4)7777−−=−−, 于是所求的直线方程为θd0M M图7.6213.214x y z −−−==− 14. 在平面0x y z ++=上求与两直线110,:10x y L x y z +−=⎧⎨−++=⎩和2210,:10x y z L x y z −+−=⎧⎨+−+=⎩都相交的直线的方程. 解 将两直线分别化为参数方程为12,0,:1,:,2,1,x t x L y t L y t z t z t ==⎧⎧⎪⎪=−=⎨⎨⎪⎪=−=+⎩⎩将1L 代入平面0,x y z ++= 得1120,2t t t t +−−==, 可得1L 与平面0x y z ++=的交点111(,,1)22M −.同理, 将2L 代入平面0x y z ++=, 得12t =−, 可得2L 与平面0x y z ++=的交点211(0,,)22M −.于是有12131(,1,)(1,2,3)222M M =−−=−− , 因此所求的直线方程为11122.123x y z −−+==−。