感应电机现代电磁设计方法
高温超导直线感应电机的设计和电磁分析

————]_
固2高温超导直线感应电机结构目
Flz0
Strwture‘JfIheIrlTSLIM
高温超导材料临界电流的A小直接跌定了高
温超导直线感麻电机的通流能力。B1.2223高温超
导材料在77K温度,白场环境F的临界fn流,.为 98A,制成敢饼线圈后由于弯曲形变的影响f将会
r降5%左打,真止影响,,的是初级栉i漏磁通,f目
高温超导直线感应电机的设计和电磁分析
赵佳1,张威1,方进1,扬中平1,郑琼林‘,刘友梅
(1北京互通大学电气I程学院,北京市海淀区
1 00044】
Design and electromagnetic analysis of HTS Linear Induction
Zhao Jial,ZhangWcil,Fanz Jinl,YanEZhong School ofElectrical
图I高2超导线圈
Fi91
H1S coil
第网膈中国高枝电力电子与电力传动学术年会论文集
,............。!!l,...一—— hF—l
∞∞m ∞m*”
o.........。..,
④
tH
————-!——~——j—一
%“(■#t^&自n)hI—一Pq・*##
一}。。.,..
_一
—————王———一
The
optimal
Secondly themodel Ofthemotor usingthe optimal
o rder
dau should be analyzed wlththefinite e]cmentmelhodin
Io
confi邢[he
acco[acy
高温超导直线感应电机的电磁优化设计

cn utr HT ) ier n u t nmoo L M) A crigt e omua f h o a L M, o o d c ( S l a d ci tr( I . c d t r l o e r l I cm— o n i o o n ohf s t nm
bn dwi e e i ag r h a d tec n tan s h p i l trp rmee s o l eo tie Du ie t g n t lo i m n h o srit ,t eo t h c t ma o a a tr ud b ban d. e mo c
Z HAO i Z Ja, HANG i F We , ANG n, A G h n pn i f Y N Z o g ig,
lo l n Q.Z NG , U o me i HE LJ Y u i
(col f l tcl n ier g B in i tn i rt , e i 0 0 4 C ia S ho o e r a E g ei ,e i J oo gUnv sy B in 10 4 ,hn ) E ci n n jg a ei ig
如今 , 直线感应电机正在得到越来越多的应用 , 如何从设计上提高直线感应电机的性能是很多学者
正在 研究 的 问题 . 随着 高温超 导带 材 的发展 , 高温 超
在直流电机和交流 同步 电机方面 , 高温超导直线电 机 的研究主要集 中在块材直线 电机和永磁同步电机
方面 , 有关 初级绕 组 超 导 的高 温超 导直 线 感 应 电 机
高温 超 导 直 线 感 应 电机 的 电磁 优 化 设 计
赵 佳, 张 威, 方 进 , 中平 , 杨 郑琼林 , 刘友梅
电机电磁设计方法

电机电磁设计方法电机电磁设计就像是一场精心的魔法创作呢。
咱们先来说说电机电磁设计的基础——电磁理论。
这就好比魔法的咒语一样,像什么法拉第电磁感应定律啦,这可是非常关键的。
这个定律告诉我们,当导体在磁场中运动或者磁场发生变化时,就会产生感应电动势。
在电机里呀,这个原理可是到处都在起作用的。
比如说,电机的转子在磁场里转动的时候,就会产生感应电动势,然后就有电流啦,这电流又和磁场相互作用,让电机能欢快地转起来。
再聊聊电机的磁路设计。
磁路就像是电机里的魔法通道,我们得让磁力线乖乖地按照我们想要的路线走。
这就需要合理地选择铁芯材料哦。
好的铁芯材料就像一个听话的小助手,能让磁力线顺畅通过,而且还能减少能量的损耗。
就像我们挑东西一样,要挑那种磁导率高的材料,这样磁力线就更容易通过啦。
同时呢,磁路的长度和截面积也得好好设计,要是磁路太长,磁力线走起来就累,能量损耗就大;截面积要是不合适,也会有各种问题。
绕组设计也是电机电磁设计里很有趣的一部分。
绕组就像是电机的神经脉络。
绕组的匝数、线径这些都得好好考虑。
匝数要是多了,感应电动势会大,但是电阻也大了,电流就可能受影响;线径要是小了,电阻大,发热就严重,电机可能就会像个生病的小娃娃,没力气干活。
而且绕组的连接方式也很重要呢,不同的连接方式会让电机有不同的性能表现。
还有气隙这个小细节。
气隙虽然看起来就是个小小的间隙,但它对电机的性能影响可不小。
气隙要是太大,就像两个人之间距离太远,磁场的相互作用就弱了,电机的转矩就小了。
气隙太小呢,又容易让转子和定子“打架”,也就是发生摩擦,这可不好。
电机电磁设计其实就是要在这么多因素之间找到一个最佳的平衡。
就像走钢丝一样,要小心翼翼地调整每个参数,让电机既能高效地工作,又能稳定可靠地运行。
这需要我们不断地学习、尝试,有时候可能要失败几次才能找到那个最合适的设计方法。
不过只要有耐心,就像照顾小宠物一样细心地对待电机的电磁设计,一定能设计出很棒的电机的。
现代永磁电机基本理论和设计

图1-2(a) 退磁曲线
磁感应强度矫顽力,简称矫顽 力 ,常简写为 ,单位为A/m (习惯单位为Oe,1Oe=1000/ (4 )A/m=79.577A/m 80A/m )。
退磁曲线的特点:永磁体是一个磁源。 为表述方便起见,实用上常取 的绝对值,或者说,把 轴 的正方向改变,负轴改为正轴。
图1-2(b) 退磁曲线
2)不可逆损失
不可恢复损失 可恢复损失
1)可逆损失是不可避免的。各种永磁材料的剩余磁感应强度 随温度可逆变化的程度可用温度系数 (%/K)表示。
(1-8)
同样,还常用 可逆变化的程度。
(%/K)表示永磁材料的内禀矫顽力随温度
(1-9)
2)不可逆损失是温度恢复后磁性能不能恢复到原有值的部分。通 常以其损失率 (%)表示。
拐点:有的永磁材料,如部分铁氧体永磁的退磁曲线 的上半部分为直线,当退磁磁场强度超过一定值后, 退磁曲线就急剧下降,开始拐弯的点称为拐点(见图 2全部为直线,回复线与退磁 曲线相重合,可以使永磁电机 的磁性能在运行过程中保持稳 定,这是在电机中使用是最理 想的退磁曲线。
理论分析和实践证明,一种永磁材料在工作温度时的 内禀矫顽力 越大,内禀退磁曲线的矩形越好(或者说
越大),则这种永磁材料的磁稳定性越高,即抗外磁 场干扰能力越强。
当 和 大于某定值后,退磁曲线全部为直线,回 复线与退磁曲线重合,在外施退磁磁场强度作用下,永 磁体的工作点在回复线上来回变化,不会造成不可逆退 磁。
研究表明,它与材料的内禀矫顽力 和永磁体 尺寸比 有关。
对永磁材料而言,在一定温度下随时间的磁通损 失与所经历时间的对数基本上成线性关系。
总结
1、退磁曲线
剩磁密度 矫顽力
最大磁能积
三相笼型感应电动机系列电磁设计(课程设计)

一、设计任务的依据《电机设计》的课程设计是电气工程及其自动化专业电机电器及其控制方向(本科)、电机制造(专科)专业的一个重要实践性教学环节,通过电机设计的学习及课程设计的训练,为今后从事电机设计工作、维护的人才打下良好的基础。
电机设计课程设计的目的:一是让学生在学完该课程后,对电机设计工作过程有一个全面的、系统的了解。
另一个是在设计过程培养学生分析问题、解决问题的能力,培养学生查阅表格、资料的能力,训练学生的绘图阅图能力,为今后从事电机设计技术工作打下坚实的基础。
根据用户对产品提出的技术要求及使用特点,结合设计和制造的可能性而编制。
1设计的指导思想设计一般用途的全封闭自扇冷、笼型三相异步电动机,应具有高效节能、起动转矩大、性能好、噪声低、振动小、可靠性高,功率等级和安装尺寸符合IEC标准及使用维护方便等优点。
2产品的用途环境条件:海拔不超过1000米,环境空气温度随季节而变化,但不超过400C。
适用于不含易燃、易爆或腐蚀性气体的一般场所和无特殊要求的机械上。
3.额定数据型号Y100L1额定容量 1.5KW额定电压220V额定电流 5.03A额定转速1430r/m4.主要性能指标效率0.81功率因数0.82起动电流倍数7起动转矩倍数 2最大转矩倍数 2.34.工作方式连续(SI)制5.结构与安装尺寸外壳防护等级IP44 安装结构B3绝缘等级B级外型L1*b/h转子结构铸铝热套安装A*B/6.主要标准(1)Y系列三相电动机产品目录(2)Y系列三相异步电动机技术条件二、设计内容:1.在查阅有关资料的基础上,确定电机主要尺寸、槽配合,定、转子槽形及槽形尺寸。
2.确定定、转子绕组方案。
3.完成电机电磁设计计算方案。
4.用计算机(手画也可以)画出定、转子冲片图,电机结构图。
三、课程设计的基本要求1.求每位同学独立完成一种型号规格电机的全部电磁方案计算过程,并根据所算结果绘出定、转子冲片图、电机总装图。
2.要求计算准确,绘出图形正确、整洁。
感应电机设计

目录1、型号Y132M—4感应电动机的电磁计算 (3)1.1 额定数据及主要尺寸 (3)1.2 磁路计算 (5)1.3 参数计算 (7)1.4 运行性能计算 (9)2、数据分析 (11)3、参考文献 (14)4、附图 (15)一、型号Y132M—4感应电动机的电磁计算1.1 额定数据及主要尺寸1、型号:Y132M—42、输出功率:3、相数:m=34、接法:连接5、相电压:380V6、功电流:7、极对数:p=28、定子槽数:9、转子槽数:10、定子每极:11、定转子冲片尺寸:(见附图二)定子外径定子内径转子外径转子内径定子槽形:半闭口圆底槽定子槽尺寸转子槽形:梯形槽转子槽尺寸12、极距:13、定子齿距:14、转子齿距:15、气隙长度:16、转子斜槽距:17、铁心长度:18、铁心有效长度:无径向通风道19、净铁心长:无径向通道其中铁心叠压系数为20、绕组型式:单层交叉式(见附图一)21、并联路数22、节距:y为1~9、2~10、11~1823、每槽导线数:24、导线并绕根数、线径25、每根导线截面积:26、槽有效面积:式中槽楔厚度h=2mm槽绝缘厚度Ci=0.03cm其中27、槽满率:式中d——绝缘外径(cm)(d=)28、每相串联导线数29、绕组分布系数式中q1=(对60度相带)30、绕组短距系数31、绕组系数:1.2 磁路计算32、每极主磁通式中33、每极下定子齿面积34、每极下转子齿面积式中=,=,假设,=1.5T,=1.5T35、定子轭截面积式中=1.877cm(圆底槽轭的高处高度)36、转子轭截面=30.458式中=2.016cm(平底槽轭的计算高度)——转子轴向通风孔直径37、空气隙面积=38、波幅系数:先假定39、定子齿磁密:,本算例中<5%,符合精度要求40、转子齿磁密:,本算例中<5%符合精度要求41、定子轭磁密:42、转子轭磁密:43、气隙磁密:,本算例中<5%符合精度要求44、定子齿磁场45、转子齿磁场46、定子轭磁场47、转子轭磁场48、定子齿磁路计算长度=1.597cm(圆底槽)49、转子齿磁路计算长度=2.3cm(平底槽)50、定子轭磁路计算长度51、转子轭磁路计算长度52、气隙磁路计算长度其中=1.308;=1.03153、定子齿磁位降54、转子齿磁位降55、定子轭磁位降其中C1=0.48——定子轭磁路校正系数,查附图56、转子轭磁位降其中C2=0.382——转子轭磁路校正系数,查附图57、气隙轭磁位降58、饱和系数=1.346本算例中<5%符合精度要求59、总磁位降F60、励磁电流61、励磁电流标62、励磁电抗标幺值==1.9011.3 参数计算63、线圈平均半匝长度64、线圈端部平均长度65、阻抗折算系数=14376.3566、定子相电阻=1.561标幺值=0.02767、转子导条电阻标幺值68、转子端环电阻标幺值=0.005769、转子电阻标幺值70、漏抗系数71、定子槽漏磁导其中=1,槽上部节距漏抗系数=1,槽下部节距漏抗系数=0.4097,槽上部漏磁导72、定子槽漏抗73、定子谐波漏磁导,经查书上的附图,得74、定子谐波漏抗75、定子端部漏磁导(对单层交叉式绕组)76、定子端部漏抗77、定子漏抗标幺值78、转子槽漏磁导79、转子槽漏抗80、转子谐波漏磁导81、转子谐波漏抗82、转子端部漏磁导83、转子端部漏抗84、转子斜槽漏抗85、转子漏抗标幺值86、运行总漏抗1.4 运行性能计算87、满载电流有功分量计算时先按设计要求假定88、满载电抗电流2]=0.1837式中89、满载电流无功分量90、满载电动势比值=0.9259此值应与32项假定值相差小于一定精度要求,否则需重新假定值,本例中误差为=0.314%<5%符合精度要求91、定子电流I*=I1=I1*I w=8.8138A92、转子导条电流I2*=I2=I2*I w K1=I2*I w其中为电流折算系数93、转子端环电流I R=94、定子电密J1=/mm295、线负荷A1=96、热负荷AJ1=A1J1=1260.913A/cm97、转子导条电密J B=A/mm298、转子端环电密J R=A/mm299、空载电动势比值K EO=1-I m*X1*=0.9679100、空载定子齿磁密B t10=B t1=1.6122T101、空载定子轭磁密B j10=B j1=1.4877T102、定子齿单位铁损耗p t1由B t10查硅钢片损耗曲线,得p t1=45.71*10-3W/cm3103、定子轭单位铁损耗p j1由B j10查硅钢片损耗曲线,得p t1=39.18*10-3W/cm3104、定子齿体积V t1=2pA t1h t1’=484.489cm3105、定子轭体积V j1=4pA j1l j1’=1703.026cm3106、铁损耗p F1=k1p t1V t1+k2p j1V j1=188.831W式中k1k2为铁损校正系数,一般对半闭口槽取k1=2.5,k22 标幺值p F1*==0.0252107、基本铁损耗p Fe1*==0.0119108、定子电阻损耗p cu1*=I1*2R1*=0.0485p cu1= p cu1**p N*103=363.865W109、转子电阻损耗p cu2*=I2*2R2*=0.0485p cu2= p cu2**p N*103=363.758W110、风摩损耗p fv= p N*103=70W其中p jv*参考实验值确定:0.0093111、杂散损耗p s=p s*p N*103=150W其中p S*参考实验值确定:0.02112、总损耗=p cu1*+p cu2*+p Fe*+ p jv*+ p S*=0.1350113、输入功率p1*=1+=1.1350114、满载效率=0.8810此值应与88项假定值相差小于一定精度要求,否则需重新假定值,本例中误差为=0.119%<5%符合精度要求115、功率因数116、满载转差率s N=式中为气隙电磁功率,=p1*-p cu1*-p Fe1*117、额定转速n N==1455.296r/min118、最大转矩倍数T max*==2.955二、数据分析:本算例与书上的算例的计算结果比较,如下表(见下页)所示:由上表数据可知:当铁芯长度和槽导线数一起减小时,电机的满载效率增大,功率因数cos减小,额定转矩nN增大,最大转矩倍数Tmax 增大。
永磁同步电机的电磁设计方案

永磁同步电机的电磁设计方案1 永磁同步电机的基本原理和特点永磁同步电机是一种新型的高效电动机,具有高效率、高功率密度、快速响应等优点。
它是由永磁体和电磁线圈组成的,通过电磁线圈与永磁体之间的作用产生转矩。
与传统的异步电机相比,永磁同步电机的效率更高、速度更稳定,特别适合用于高精度控制等场合。
2 永磁同步电机的电磁设计要点永磁同步电机的电磁设计是实现高效率、稳定运行的关键。
其中,电磁线圈的参数包括绕组数、导线截面积、绕组方式、铁芯形状等。
以下是具体要点:2.1 绕组数和绕组方式永磁同步电机的电磁线圈绕组数一般较少,一般少于异步电机的绕组数。
而采用多相绕组的方式,能够显著提高电机的功率密度和效率。
另外,对于高功率密度的永磁同步电机,可以采用三绕组式结构,使电机的相序和匝数更加紧凑。
2.2 导线截面积电磁线圈导线的截面积是影响永磁同步电机性能的重要参数之一。
截面积过小会导致电流密度过大,产生过多的电流损耗和温升,进而影响电机效率和寿命,而截面积过大则会使电机结构过于复杂,增加成本和体积。
因此,需要根据电机的功率和运行条件确定合适的导线截面积。
2.3 铁芯形状永磁同步电机的铁芯形状对电机的功率密度和效率影响较大。
对于高功率密度的电机,可以采用扇形铁芯或双球面铁芯结构。
此外,还可以通过添加铁磁材料或采用不同的接头结构等方法改善电磁线圈的磁通分布,减小铁芯损耗和噪音。
3 永磁同步电机的优化设计方法为了实现永磁同步电机的高效率、高性能运行,可以采用以下优化设计方法:3.1 磁场分析和模拟通过磁场分析和模拟软件(如ANSYS、COMSOL等),可以快速计算电机的磁场分布、磁通密度等参数,进而优化电机的结构和参数选取,提升电机的性能。
3.2 合理的控制策略电机的控制策略对电机效率和性能影响很大。
常见的控制方法有矢量控制、直接转矩控制等,需要根据具体应用场景选择合适的控制策略。
3.3 多因素综合考虑永磁同步电机的电磁设计需要考虑多个因素的综合影响,如电机的功率密度、效率、噪音、成本等。
电动机的电磁设计与性能优化方法

电动机的电磁设计与性能优化方法电动机作为一种能够将电能转化为机械能的装置,广泛应用于各个领域。
在电动机的设计过程中,电磁设计是其中至关重要的一环,它直接决定了电动机的性能。
本文将介绍电动机的电磁设计原理,并探讨几种常用的性能优化方法。
一、电磁设计原理电动机的电磁设计是根据电动机工作原理和要求,通过合理配置导磁、绕组和气隙等参数,使电动机能够产生所需的磁场和转矩。
下面将介绍几个影响电动机性能的关键参数。
1.1 导磁材料导磁材料的选择对电动机的性能有着直接的影响。
常见的导磁材料有硅钢片、铁氧体和软磁复合材料等。
硅钢片具有低磁滞损耗和低铁损耗的特性,适合用于低频电磁设备。
而铁氧体材料的饱和磁感应强度高,适合用于高频电磁设备。
软磁复合材料是一种新型材料,具有优异的导磁性能和机械性能,是未来电动机设计的发展方向之一。
1.2 绕组设计绕组是电动机中起到传递电能和产生磁场的关键部件。
在绕组设计中,需要合理选择导线截面积和绕组方式,并考虑电压、电流和导线阻抗等参数。
合理的绕组设计可以提高电动机的效率和输出功率。
1.3 气隙设计气隙是指转子和定子之间的间隙,对电动机的磁路和转矩产生重要影响。
合理设计气隙可以提高电动机的输出功率和转矩密度。
在气隙设计中,需要考虑转速、负载和绕组参数等因素,通过数值模拟和实验验证,得出最佳的气隙设计参数。
二、性能优化方法在电动机的设计过程中,为了提高其性能,常常需要采取一些优化方法。
下面将介绍几种常见的性能优化方法。
2.1 材料优化通过选择合适的导磁材料和绝缘材料,可以提高电动机的效率和输出功率。
例如,在高频电磁设备中,可以选用高频导磁材料来减小磁损耗。
在绝缘材料方面,可以选择高温耐受性好的材料,以提高电动机的工作温度。
2.2 结构优化电动机的结构优化可以通过改变导磁路径、绕组结构和定子转子结构等方式进行。
例如,在电动机的铁芯结构中采用分段式绕组,可以减小铁芯的磁滞损耗。
同时,对于大型电动机来说,可以采用分段定子的结构,以提高绕组的散热性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
0 1 6 5 0
0 7 0 o 8
t / a
[ 5 】B. C . Me c r o w, A. G. J a c k , D. J . At k i n s o n a n d s . R. Gr e e n . De s i g n
a nd t e s t i ng o f a f o u r - ph a s e f a ul t - - t o l e r a n t pe r ma n e n t ・ - ma g ne t
图l 4 在0 . 0 4 s 时Al 、 B l 和cl 绕组同时发生开路故障 前后A 2 、 B 2 和c 2 绕组的电流波形
ma c h i n e f o r a n e n g i n e f u e l p u mp [ J ] . I E E E T r a n s a c t i o n s o n E n —
e r g y Co n v e r s i o n . 2 0 0 4 , 1 9( 4 ) : 6 7 1 - 6 7 8 .
[ 9 】齐 蓉 , 陈明. 多 电飞机 容 错 作 动 系统 拓 扑 结 构 分析 [ J 】 . 航 空 计 算技术 , 2 0 0 5 ( 3 ) : 8 2 . 8 5 .
[ 1 O 】齐蓉 , 陈峥 , 林辉 . 永磁容错 电机解耦控制研究[ J 1 . 西北工业
a p p l i c a t i o n [ J ] .I E E P r o c e e d i n g s o n E l e c t r i c P o w e r Ap p l i c a -
t i o n s . 1 9 9 8 , 1 4 5 ( 5 ) : 4 4 1 . 4 4 8 .
5 结语
双绕 组三相永磁容错 电机 具有结构 简单 、 控制 方便 、 可靠性高 的特点 。 本文建 立了该 电机 的解耦控制数学模型 , 研究了该电机的直接转矩
控制技术 。 仿真研究结果 表明, 建立 的双绕组三 相永磁容错 电机直接转矩 控制 系统 能够在 系统
【 6 】T . G o p a l a r a t h n a m, H. A. T o l i y a t , a n d J . C . Mo r e i r a . Mu l t i - p h a s e f a u l t — t o l e r a n t b r u s h l e s s DC mo t o r d r i v e s [ J ] . Co n f e r e n c e R e —
[ 8 ]K. At a l l a h , J . Wa n g a n d D. H o we . T o r q u e — r i p p l e mi n i mi z a t i o n i n mo d u l a r u s h l e s s ma c h i n e s [ J ] . I E E E
f a u l t — t o l e r a n t p e r ma n e n t ma g n e t b r u s h l e s s ma c h i n e s [ J ] . I E E E
Tr a ns a c t i o n s o n Ma g n e t i c s .2 0 0 3 ,3 9 :2 9 6 2 — 2 9 6 4 .
[ 4 】J . A. Ha y l o c k , B . C . Me c r o w, A. G. J a c k a n d D. J . At k i n s o n . Op —
鲫 m 0 加 珈
e r a t i o n o f a f a u l t t o l e r a n t PM d r i v e or f a n a e r o s p a c e f u e l p u mp
c o r d o f 2 0 0 0 I EEE I n d u s t r y Ap p l i c a t i o n s Co n f e r e n c e ,2 0 0 0: 1 6 8 3 — 1 6 8 8 .
[ 7 ]J . Wa n g , K. At a l l a h a n d D. Ho we . Op t i ma l t o r q u e c o n t r o l o f
现代驱动与控嗣
p e r ma n e n t ma g n e t ma c h i n e d r i v e s [ J ] . I E E P r o c e e d i n g s — E l e c ・ t r i c P o we r Ap p l i c a t i o n s , 1 9 9 6 , 1 4 3( 6 ) : 4 3 7 — 4 4 2 .
Tr a ns a c t i o n s o n I n d us t r y Ap p l i c a t i o n s .20 0 3 ,3 9 :1 6 8 9 - 1 6 9 5 .
无 故障和发生不同绕组开路故障的条件下’ 对电
机 的转速和转矩进行控制, 系统运行稳定后 , 电 机的转矩脉动小于1 . 2 3 %。 本文建 立的双绕组三 相永磁容错 电机 的数学模 型和直接 转矩控制算