2020年东北三校高三一模理科综合试题(含答案和解析)(哈师大附中、东北师大附中、辽宁省实验中学)

合集下载

东北师大附中2020 届高三年级“高考全真模拟”理科综合试卷

东北师大附中2020 届高三年级“高考全真模拟”理科综合试卷

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127第I 卷 选择题一、选择题:本大题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请仔细审题,认真做答1.结构与功能相适应是生物学的基本观点,下列有关叙述不正确的是( )A. 哺乳动物成熟的红细胞内没有细胞核,利于携带氧气B. 蛋白质合成旺盛的细胞中核糖体数量明显增加C. 大量合成蛋白质的胰腺细胞中光面内质网发达D. 细胞中线粒体的形状、大小随代谢条件的不同而不同2.下面关于酶和ATP 的叙述正确的是( )A.同一种酶不可存在于分化程度不同的活细胞中B.ATP 水解释放的能量可用于细胞内的放能反应C. 酶既可以作为催化剂,也可以作为另一个反应的底物D. 细胞质中消耗的ATP 均来源于线粒体和叶绿体3.Na +-K +泵是一种常见的ATP-驱动泵(如图所示),一种在动物细胞的能量系统中起主要作用的载体,也是一种能催化ATP 水解的酶。

这种泵每消耗1分子的ATP ,就逆浓度梯度将3分子的Na +泵出细胞外,将2分子的K +泵入细胞内。

由此可知( )博学笃志,银鱼鳞甲跃龙门 遥亘千里,独占鳌头展乾坤 2020届高三年级“高考全真模拟”理科综合试卷考试时间: 150分钟 试卷满分:300分命题人:高三 理综组 审题人:高三 理综组A. 该载体不一定能催化ATP水解,但一定能促进物质的转运B. 图中,Na+跨膜运输方式是主动运输,K+的跨膜运输方式是协助扩散C. 葡萄糖进入红细胞的方式与图中Na+的跨膜运输的方式相同D. Na+-K+泵对维持动物细胞的渗透压平衡起着非常重要的作用4.某玉米品种含一对等位基因A和a,其中a基因纯合的植株花粉败育,即不能产生花粉,含A基因的植株完全正常。

东北三省三校(哈师大附中 东北师大附中 辽宁省实验)2020届高三第三次联合模拟考试理综 含详细答案

东北三省三校(哈师大附中 东北师大附中 辽宁省实验)2020届高三第三次联合模拟考试理综 含详细答案

东北三省三校2020届高三第三次联合模拟考试理科综合试卷考生注意:1.本试卷满分300分,考试时间150分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

3.做选考题时,考生须按照题目要求作答,并用2B铅笔在答题卡上把所选题目的题号涂黑。

可能用到的相对原子质量:H1C12N14O16Na23S32K39Zn65一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.细胞代谢的过程需要酶的催化,下列叙述正确的是A.激素都是通过影响细胞内酶活性来调节细胞的代谢活动B.探究pH对酶活性的影响时,酶与底物混合前要调节pHC.在线粒体的基质中存在着大量的分解葡萄糖的酶D.在真核细胞中,核外没有DNA合成酶与RNA合成酶2.研究发现,来自胎盘的称为Cdk2细胞的干细胞能够在心脏病发作后再生健康的心脏细胞,Cdk2细胞除了具有胚胎干细胞的所有蛋白,还具有其他的蛋白,这使得它们能够直接迁移到损伤部位。

下列叙述错误的是A.Cdk2细胞仍然保留有分裂和分化的能力B.Cdk2细胞中蛋白质的合成需多种核酸—蛋白质复合物参与C.Cdk2细胞的迁移过程可能与细胞骨架有关系D.肌细胞能代替Cdk2细胞培养出健康的心脏细胞3.下列关于正常人体生命活动调节与内环境及稳态关系的叙述,正确的是A.如果内环境中的血浆、淋巴、组织液等成分稳定,则机体一定处于稳态B.寒冷环境中机体通过多种途径减少散热、增加产热来维持体温相对恒定C.人体免疫系统中的吞噬细胞只参与特异性免疫,不参与非特异性免疫D.注射等渗透压的5%葡萄糖溶液,血浆中胰岛索/胰高血糖素的比值将减小4.取某动物(XY型,2n=8)的一个精原细胞,在含3H标记的胸腺嘧啶的培养基中完成一个有丝分裂周期后形成两个相同的精原细胞,将所得子细胞全部转移至普通培养基中完成减数分裂(不考虑染色体片段交换、实验误差和质DNA)。

东北三省三校(哈尔滨师大附中、东北师大附中)2020年高三第一次联合模拟考试理科数学试题(含评分细则

东北三省三校(哈尔滨师大附中、东北师大附中)2020年高三第一次联合模拟考试理科数学试题(含评分细则

2020年高三第一次联合模拟考试理科数学第Ⅰ卷(选择题 共 60 分)、选择题:本题共 12小题,每小题 5 分.在每小题给出的四个选项中,只有一项是符合题 目要求的 .A.( , 1) (3,B.( , 1] [3,D.( , 1] [1,4.大约在 20 世纪 30 年代,世界上许多国家都流传着这样一个题目:任取一个正整数 n ,如果它是偶数,则除以 2;如果它是奇数,则将它乘以 3 加 1,这样反复运算,最后结果必然 是1 ,这个题目在东方称为“角谷猜想” ,世界一流的大数学家都被其卷入其中,用尽了各 种方法,甚至动用了最先进的电子计算机, 验算到对 700 亿以内的自然数上述结论均为正确 的,但却给不出一般性的证明,例如取 n 13,则要想算出结果 1,共需要经过的运算步数 是( )A.9B.10C.11D.125.已知 a ln3,b log 3 e,c log e (注:e 为自然对数的底数),则下列关系正确的是 ( )A.b acB.c b aC.b c aD.a b c6.已知在边长为 3 的等边 ABC 的中,1BD DC ,则 AD AC =( )2A.6B.9C.12D. 61.已知集合 A x 22x,B11 则 C R (A B) ( ) x2.已知复数 za bi(a,b R), z i1 是实数,那么复数 z 的实部与虚部满足的关系式为 A.a B.a b C.a 2b 0 D.a 2b 0 3.已知 是两个不同的平面,直线 m ,下列命题中正确的是( A.若 ,则 m ∥ B.若 ,则 m C.若 m∥,则 ∥D.若 m ,则C.[3, )7.如图,四边形 ABCD 是边长为 2 的正方形, ED 平面 ABCD , FC 平面 ABCD ,y 轴对称,则2nb n 为数阵从左至右的 n 列,从上到下的 n 行共 n 2个数的和,则数列的前 2020 项和为bnED 2FC 2 ,则四面体 A BEF 的体积为( )1 A.32 B. 3C.14 D.38.已知函数 f (x)sin2x 3 cos2x 的图像向右平移 (02)个单位后,其图像关于A.12B.6C.35 D. 122x9.已知椭圆 2a2yb 21(a b 0) 的右焦点为 F(c,0) ,上顶点为A(0,b) ,直线2 ax 上 c存在一点 P 满足 (FP FA) AP 0 ,则椭圆的离心率取值范围为(1A.[12,1) 2 B.[ 22 ,1) 51 C.[ 52 1,1) D.(0, 2 ]10. 已 知 定 义 在 R 上的函 数 f (x) , 满 足 f(1 x) f (1 x) , 当[1, ) 时f(x)1 x 2,xx12f ( 2 ),x[1,3) [3, ),则函数 f(x) 的图像与函数 g(x)ln x,xln(2 x),x 1的图像在区间 [ 5,7] 上所有交点的横坐标之和为(A.5B.6C.7D.911.已知数 a n 列的通项公式为 a n 2n2 ,将这个数列中的项摆放成如图所示的数阵,记第Ⅱ卷(非选择题 共 90 分)4 小题,每小题5 分,共 20 分 .把答案填写在答题纸相应位置上13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增 大.动力蓄电池技术作为新能源汽车的核心技术, 它的 不断成熟也是推动新能源汽车发展的主要动力 .假定现在市售的某款新能源汽车上, 车载动力蓄电池充放电循环次数达到 2000 次 的概率为 85%,充放电循环次数达到 2500 次的概率为 35%.若某用户的自用新能源汽车已经 经过了 2000 次充电,那么他的车能够充电 2500 次的概率为 .14.已知函数 f (x ) e x ae x 在[ 0,1]上不单调,则实数 a 的取值范围为.2*15.数列 a n 满足 a 1 1,a n (2S n 1) 2S n 2(n 2,n N *),则 a n =.16.已知函数 f (x ) (x 2 a )2 3x 2 1 b ,当 时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可)一)必考题:共 60 分 .17. (本小题满分 12 分)在 ABC 中,内角 A,B,C 的对边分别为 a,b,c ,已知 2bcosC 2a c (Ⅰ)求 B ;(Ⅱ)若 a 2, D 为AC 的中点,且 BD 3,求 c .18. (本小题满分 12 分)如图,三棱柱 A 1B 1C 1 ABC 中, BB 1 平面 ABC , AB BC , AB 2,BC 1,1011 A.20202019 B.20202020 C.2021 1010 D.202112.已知双曲线2y1 的 左 、 右 焦 点 分 别 为 F 1、F2 , 点3 1 2P 在双曲线上,且 F 1PF 2 120 ,F 1PF 2 的平分线交 x 轴于点 A ,则 PA ( )A. 55B.2 5 5C.3 55D. 5二、填空题:本题共 1①a2⑤ 4 个极小值35② a ③ a 1, 2 b 0 22⑥1 个极小值点⑦6 个零点④ a 1, 9 b4⑧4 个零点三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤2或 b 01 (Ⅱ)F 是线段CC1上一点,且直线AF 与平面ABB1A1所成角的正弦值为3,求二3 面角F BA1 A 的余弦值.19. (本小题满分12 分)为了研究55 岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100 万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下:数据1:出现A症状人数为8.5 万,出现B症状人数为9.3 万,出现C 症状人数为 6.5万,其中含AB症状同时出现 1.8 万人,AC症状同时出现1万人,BC症状同时出现2万人,ABC症状同时出现0.5 万人;数据2:同时有失眠症状和患心脑血管病的人数为5 万人,没有失眠症状且无心脑血管病的人数为73 万人.(Ⅰ)依据上述数据试分析55 岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?n(ad bc)2参考公式:K2(a b)(c d)(a c)(b d)20. (本小题满分12 分)1 2 2 1已知以动点P为圆心的⊙ P与直线l: x 相切,与定圆⊙ F:(x 1)2 y2相24 外切.(Ⅰ)求动圆圆心P的轨迹方程C ;(Ⅱ)过曲线C上位于x轴两侧的点M、N (MN 不与x轴垂直)分别作直线l 的垂线,垂足记为M 1、N1 ,直线l 交x轴于点A,记AMM 1、AMN、ANN 1的面积分别为S1、S2、S3 ,且S22 4S1S3 ,证明:直线MN过定点.21. (本小题满分12 分)12已知函数f(x) (x 1) ln( x 1)- ax2 x(a R) .2(Ⅰ)设f (x)为函数f(x) 的导函数,求函数f ( x)的单调区间;(Ⅱ)若函数f(x)在(0, )上有最大值,求实数a 的取值范围.二)选考题:共 10 分,请考生在第 22、23 题中任取一题作答 .如果多做,则按所做的第 题计分,作答时用 2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分 10 分.22. [选修 4-4:坐标系与参数方程 ]Ⅰ)求曲线 C 的普通方程及曲线 D 的直角坐标方程;Ⅱ)设 M 、N 分别为曲线 C 和曲线 D 上的动点,求 MN 的最小值 .23. [选修 4-5:不等式选将 ]设函数 f (x ) x 2 x 3(Ⅰ)求不等式 f (x ) 9的解集;(Ⅱ)过关于 x 的不等式 f (x ) 3m 2 有解,求实数 m 的取值范围一模答案、填空题1, n 113. 14. 15. a n2 16. ①⑥、② ,n 22n 1 2n 3⑤、③⑦、④⑧均可三、解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤.17.解析:(Ⅰ)由正弦定理得 2sin BcosC 2sin A sinC ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2⋯分⋯在直角坐标系 xOy 中,参数方程x cos (其中 y sin为参数)的曲线经过伸缩变换2x得到曲线 C ,以原点 O 为极点, yx 轴正半轴为极轴建立极坐标系,曲线 D 的极坐标方程为 sin (3 10 2又由sin A sin(B C) sin BcosC cosB sin C ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.4⋯分⋯得2cos B sin C sinC 0 ,因为0 C ,所以sinC0,所以cosB1.因为0 B ,所以2.2B.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6⋯分⋯3uuur uuur uuur(Ⅱ)因为D 为AC 的中点,所以BA BC2BD ,⋯⋯⋯⋯⋯⋯⋯.8⋯分⋯uuu r uuur 2 uuur 2所以BC)2 (2BD)2,即a2 2 c ac12,⋯⋯⋯⋯⋯⋯⋯.1⋯0 ⋯分因为a 2,解方程c22c 8 0,得c 4 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分18. 解析:(I )连结AB1交A1B于O,连结EO , OC11Q OA OB, AE EB, OE BB1, OE //BB1, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯分⋯21又DC1BB1,DC1// BB1,2OE/ /DC 1 ,因此,四边形DEOC 1为平行四边形,即ED / /OC1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2⋯分⋯Q OC1 面C1AB, ED 面C1AB, DE // 平面C1BA1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.5⋯分⋯z(II )建立空间直角坐标系B xyz ,如图过F 作FH BB1 ,连结AHQ BB1 面ABC,AB 面ABC, AB BB1Q AB BC,BC I BB1, AB 面CBB1C1Q AB 面BAA1 B1 , 面BAA1B1 面CBB1C1,Q FH 面CBB1C1, FH BB1, 面BAA1B1 I 面CBB1C1 BB1, FH 面BAA1B1,即FAH 为直线AF 与平面ABB1 A1 所成角,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.7⋯分⋯11记为,sin , AF 3,AF 3在Rt ACF 中,5 AC 2 CF 2 AF 2 CF 2 9, CF 2,uuur uuurF(0,2,1), A1(2,3,0), BF (0,2,1), BA1 (2,3,0),20.解析:ur 设平面 BAC 1的法向量 m (x, y,z ),ur m ur m uuur BF 2y uuur BA 1 2x3y 0 ur ,取 y 2,m ( 3,2, 4) 0 平面 BAA 1 的法向量 n (0,0,1) ,⋯⋯ur r |cos m,n |4 ⋯⋯⋯.1⋯1 ⋯分 29 1因此,二面角 F BA 1 A 的余弦值 429 .⋯29 19. 解析:设 A {出现 A 症状的人} 、 B 示有限集合元素个数) 根据数 .1⋯0 ⋯分.1⋯2分⋯出现 B 症状的人}、 C {出现 C 症状的人}( card 表 1 可 知card AI B 1.8,card AI C 1,card BI C 2,card AI BI C 0.5,所以 card AUBUC card A card B card card AI B card AI C card B I C card=8.5+9.3+6.5 1.8 1 0.5 20 1.3 6.2 0.5 40.51.5失眠人数(万)不失眠人数(万)患病人数(万) 5 7 12 不患病人数(万)15 73 882080100得患病总人数为 20 万人,比例大约为 20%.⋯⋯.4⋯分⋯ ⋯分⋯.9⋯分22100 5 73 15 7k 24.001 3.841.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯1 ⋯分12 88 80 20有 95%的把握说明失眠与中风或心脏病存在 “强关联 ” . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分Ⅰ)设P x,y ,e P 半径为 R ,则R x 1, PF 21R 1 ,所以点 P 到直线 x2 1的 距离与到 F 1,0 的距离相等,故点 P 的轨迹方程 C 为 y 2 4x . .4⋯分⋯Ⅱ)设 M x 1, y 1 N x 2, y 2 ,则 M 1 2,y 11 N 12,y2 设直线 MN : x ty n t 22 0 代入 y 2 4x 中得 y 2 4ty 4n 0 y 1 y 2 4t, y 1y 2 4n 0. .6⋯分⋯Q S 1 2 x 1y 1 、 S 3 x 2 4S 1S 31 ty 1 n2ty 2n 1 2y 1y 221t y 1y 2 n2t y 1y2n22211 4nt 24t2nn22x12x 1 2 y 1y 24n214n222t 2 n 1 4n2 又 S 2 11 n y 1 y2 1 1 n y122 2 2 22 2 1 1 2 1 S 22 n 16t 2 16n 4 n 24 2 2 2 S 22 4S 1S 3 8nt 2 4 n 1 t 2 2n2y 24y 1y 22t 2 n . ⋯⋯⋯⋯⋯⋯.1⋯0 ⋯分21 1⋯⋯nn⋯⋯⋯⋯⋯⋯⋯⋯.1⋯1 ⋯分22 .⋯⋯.8⋯分⋯直线 MN 恒过 1,0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分 221.解析: (Ⅰ) f x ln x 1 ax2 x .令 h xln x 1 ax ,1 fxhxa ; .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯分⋯x 11o当 a0时 ,h x 0 ,f 'x在 1, 上 递 增 ,无减 区间hx 0.⋯⋯⋯⋯⋯⋯⋯.3⋯分⋯2o当a0时,令 hx011 x 1,a令 h x0x11a所以, f 'x 在 1,11 上单调递增, 在 11, 上单调递减; .⋯⋯⋯ ⋯⋯⋯.5⋯aa分(Ⅱ)由(Ⅰ)可知,当 a 0 时,f ' x在 0, 上递增, f ' xf ' 0 0在 0,上递增,无最大值, 不合题意;x所以,当x0时,h x 2 x 1 ax 2 x 1 a x 1 x 12ax1.取t4211,则t 1 ,且h t t 1 2 a t 10.a a又因为h11h0 0,所以由零点存在性定理,存在x01 1,t ,使得a ah x00;⋯⋯⋯⋯⋯.1⋯1 ⋯分当x0, x0时,h x0 ,即f x 0;当x x0 ,时,h x0 ,即f x0;所以, f x 在0, x0上单调递增,在x0 ,上单调递减,在0,上有最大值f x0 .综上,0a1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.1⋯2 ⋯分在第22、23 题中任选一题做答,如果多做,则按所做的第一题记分,做答时用2.B.铅.笔.在答题卡上把所选题目对应的题号涂黑。

2020年东北三省三校高三第一次模拟考理科数学试卷含解析

2020年东北三省三校高三第一次模拟考理科数学试卷含解析

D.VS
第 H 卷(非选择题 共90分)
二、填空题:本题共4小题,每小题5分 ,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力
蓄电池技术作为新能源、汽车的核心技术,它的不断成熟也是推动新能源、汽车发展的主要动力. 假定现在市售的某款新能源汽车上,车载动力蓄电池 充放电循环次数达到2000次的概率为 85字号,充放电循环次数达到2500次的概率为 35%.若某用户的自用新能源汽车已经经过了 2000次充电,那么他的车能够充电 2500次的概率为
f(x
)=
I ri

一 lx-21,xξ[1,3)
/工 ← 1\
\2f(丁),巾,+∞)
’ 则函数
f(x )的图象与函数
rlnx,x二三1 g(x)=j\ln(2,--x)以1的图象
在区间[-5,7]上所有交点的横坐标之和为
A. 5
B. 6
C. 7
11.己知数列{a"}的通项公式为ι = 2η十2,将这个数列中的项摆
AB_lBC,AB = 2,BC二 l,BB I 二3,D是CC1 的中点,
E是AB 的中点.
C I )证明:DE//平面C1 BA1 ;
t C II) F是线段CC1 上一 点,且直线 AF与平面ABB1 A1 所成角的正弦值为 ,求二面角F BAi A的余 A
弦值.
D
C1
19.(本小题满分12分) 为了研究 55 岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽 取了100万个样本,调查 了他们每周是否至少三个晚上出现了三种失眠症状, A 症状:人睡困 难;B症状:醒得太早;C症状:不能深度入睡或做梦,得到的调查数据如下: 数据l:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C症状人数为6. 5万,其中 含 AB 症状同时出现1.8万人,AC症状同时出现1 万人,BC症状同时出现2万人,ABC症状 同时出现0.5万人; 数据2:同时有失眠症状和忠心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人 数为73万人.

2020届东北三省三校高三第一次联合模拟考试理综物理试题(哈尔滨、东北师大附中-)及答案

2020届东北三省三校高三第一次联合模拟考试理综物理试题(哈尔滨、东北师大附中-)及答案

哈尔滨师大附中、东北师大附中、辽宁省实验中学2020年高三第一次联合模拟考试理科综合能力测试一、选择题1.在超导托卡马克实验装置中,质量为1m 的21H 与质量为2m 的31H 发生核聚变反应,放出质量为3m 的10n ,并生成质量为4m 的新核。

若已知真空中的光速为c ,则下列说法正确的是( ) A. 新核的中子数为2,且该新核是32He 的同位素 B. 该过程属于α衰变C. 该反应释放的核能为()23412m m m m c +--D. 核反应前后系统动量不守恒2.如图所示,绕地球做匀速圆周运动的卫星P 的角速度为ω,对地球的张角为θ弧度,万有引力常量为G 。

则下列说法正确的是( )A. 卫星的运动属于匀变速曲线运动B. 张角θ越小的卫星,其角速度ω越大C. 根据已知量可以求地球质量D. 根据已知量可求地球的平均密度3.如图,倾角为α=45°的斜面ABC 固定在水平面上,质量为m 的小球从顶点A 先后以初速度v 0和2v o 向左水平抛出,分别落在斜面上的P 1、P 2点,经历的时间分别为t 1、t 2;A 点与P 1、P l 与P 2之间的距离分别为l 1和l 2,不计空气阻力影响。

下列说法正确的是( )A. t 1:t 2=1:1B. l l :l 2=1:2C. 两球刚落到斜面上时的速度比为1:4D. 两球落到斜面上时的速度与斜面的夹角正切值的比为1:1 4.在两个边长为L的正方形区域内(包括四周的边界)有大小相等、方向相反的匀强磁场,磁感应强度大小为B 。

一个质量为m ,带电量为q +的粒子从F 点沿着FE 的方向射入磁场,恰好从C 点射出。

则该粒子速度大小为( )A.2BqLmB.BqLmC.54BqLmD.52BqLm5.、、AB C 三点构成等边三角形,边长为2cm ,匀强电场方向与ABC 构成的平面夹角30°,电势4V A B ϕϕ==,1V C ϕ=,下列说法正确的是( )A. 场强大小为150V /mB. 场强大小200V /mC. 将一个正电荷从A 点沿直线移到C 点,它的电势能一直增大D. 将一个正电荷从A 点沿直线移到B 点,它的电势能先增大后减小6.如图所示为形状相同的两个劈形物体,它们之间的接触面光滑,两物体与地面的接触面均粗糙,现对A 施加水平向右的力F,两物体均保持静止,则物体B的受力个数可能是()A. 2个B. 3个C. 4个D. 5个7.如图甲所示,一木块沿固定斜面由静止开始下滑,下滑过程中木块的机械能和动能随位移变化的关系图线如图乙所示,则下列说法正确的是()A. 在位移从0增大到x的过程中,木块的重力势能减少了EB. 在位移从0增大到x的过程中,木块的重力势能减少了2EC. 图线a斜率的绝对值表示木块所受的合力大小D. 图线b斜率的绝对值表示木块所受的合力大小8.平行金属板PQ、MN与电源和滑线变阻器如图所示连接,电源的电动势为E,内电阻为零;靠近金属板P 的S处有一粒子源能够连续不断地产生质量为m,电荷量+q,初速度为零的粒子,粒子在加速电场PQ的作用下穿过Q板的小孔F,紧贴N板水平进入偏转电场MN;改变滑片p的位置可改变加速电场的电压U l和偏转电场的电压U2,且所有粒子都能够从偏转电场飞出,下列说法正确的是()A. 粒子的竖直偏转距离与U2成正比B. 滑片p向右滑动的过程中从偏转电场飞出的粒子的偏转角逐渐减小C. 2Eq mD.飞出偏转电场的粒子的最大速率Eqm二、非选择题9.一位同学为验证机械能守恒定律,利用光电门等装置设计了如下实验。

2020年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)

2020年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)

2020年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合2{|230}A x x x =--<,1|1B x x ⎧⎫=>⎨⎬⎩⎭,则()(R A B =U ð )A .(-∞,1)(3-⋃,)+∞B .(-∞,1][3-U ,)+∞C .[3,)+∞D .(-∞,1][1-U ,)+∞2.(5分)已知复数(,)z a bi a b R =+∈,1zi +是实数,那么复数z 的实部与虚部满足的关系式为( ) A .0a b +=B .0a b -=C .20a b -=D .20a b +=3.(5分)已知α,β是两个不同的平面,直线m α⊂,下列命题中正确的是( ) A .若αβ⊥,则//m βB .若αβ⊥,则m β⊥C .若//m β,则//αβ D .若m β⊥,则αβ⊥4.(5分)大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13n =,则要想算出结果1,共需要经过的运算步数是( ) A .9B .10C .11D .125.(5分)已知3a ln =,3log b e =,log c e π=(注:e 为自然对数的底数),则下列关系正确的是( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<6.(5分)已知在边长为3的等边ABC ∆的中,12BD DC =u u u r u u u r ,则(AD AC =u u u r u u u r g )A .6B .9C .12D .6-7.(5分)如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,22ED FC ==,则四面体A BEF -的体积为( )A.13B.23C.1D.438.(5分)已知函数()sin23cos2f x x x=+的图象向右平移(0)2πϕϕ<<个单位后,其图象关于y轴对称,则(ϕ=)A.12πB.6πC.3πD.512π9.(5分)已知椭圆22221(0)x ya ba b+=>>的右焦点为(,0)F c,上顶点为(0,)A b,直线2axc=上存在一点P满足()0FP FA AP+=u u u r u u u r u u u rg,则椭圆的离心率取值范围为() A.1[,1)2B.2[,1)C.51[,1)-D.2(0,] 10.(5分)已知定义在R上的函数()f x,满足(1)(1)f x f x+=-,当[1x∈,)+∞时,1|2|,[1,3)()12(),[3,)2x xf x xf x--∈⎧⎪=⎨-∈+∞⎪⎩,则函数()f x的图象与函数,1()(2),1lnx xg xln x x⎧=⎨-<⎩…的图象在区间[5-,7]上所有交点的横坐标之和为()A.5B.6C.7D.911.(5分)已知数列{}na的通项公式为22na n=+,将这个数列中的项摆放成如图所示的数阵,记nb为数阵从左至右的n列,从上到下的n行共2n个数的和,则数列nnb⎧⎫⎨⎬⎩⎭的前2020项和为()A.10112020B.20192020C.20202021D.1010202112.(5分)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,点P 在双曲线上,且12120F PF ∠=︒,12F PF ∠的平分线交x 轴于点A ,则||(PA = )A B C D二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.(5分)近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大,动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为 . 14.(5分)已知函数()x x f x e ae -=+在[0,1]上不单调,则实数a 的取值范围为 .15.(5分)数列{}n a 满足11a =,2*(21)2(2,)n n na S S n n N -=∈…,则n a = . 16.(5分)已知函数222()()3|1|f x x a xb =----,当 时(从①②③④中选出一个作为条件)函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可) ①12a -„②3522a <<③1a =,20b -<<④1a =,924b -<<-或0b =⑤4个极小值点⑥1个极小值点⑦6个零点⑧4个零点三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分. 17.(12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2b C a c =+. (Ⅰ)求B ;(Ⅱ)若2a =,D 为AC 的中点,且BD =c .18.(12分)如图,三棱柱111A B C ABC -中,1BB ⊥平面ABC ,AB BC ⊥,2AB =,1BC =,13BB =,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明://DE 平面11C BA ;(Ⅱ)F 是线段1CC 上一点,且直线AF 与平面11ABB A 所成角的正弦值为13,求二面角1F BA A --的余弦值.19.(12分)为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下:数据1:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C 症状人数为6.5万,其中含AB 症状同时出现1.8万人,AC 症状同时出现1万人,BC 症状同时出现2万人,ABC 症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如表列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?失眠 不失眠 合计 患心脑血管疾病 不患心脑血管疾病合计参考数据如表:20()P K k …0.50 0.40 0.25 0.15 0.10 0k0.455 0.708 1.323 2.072 2.706 20()P K k …0.05 0.025 0.010 0.005 0.001 0k3.8415.0246.6357.87910.828参考公式:22()()()()()n ad bc K a b c d a c b d -=++++.20.(12分)已知以动点P 为圆心的P e 与直线1:2l x =-相切,与定圆221:(1)4F x y -+=e 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点M 、(N MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为1M 、1N ,直线l 交x 轴于点A ,记1AMM ∆、AMN ∆、1ANN ∆的面积分别为1S 、2S 、3S ,且22134S S S =,证明:直线MN 过定点. 21.(12分)已知函数21()(1)(1)()2f x x ln x ax x a R =++--∈.(Ⅰ)设()f x '为函数()f x 的导函数,求函数()f x '的单调区间; (Ⅱ)若函数()f x 在(0,)∞上有最大值,求实数a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,参数方程cos sin x y θθ=⎧⎨=⎩(其中θ为参数)的曲线经过伸缩变换2:x xy yϕ'=⎧⎨'=⎩得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为sin()4πρθ+=(Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求||MN 的最小值. [选修4-5:不等式选讲] 23.设函数()|2||3|f x x x =++- (Ⅰ)求不等式()9f x >的解集;(Ⅱ)过关于x 的不等式()|32|f x m -…有解,求实数m 的取值范围.2020年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合2{|230}A x x x =--<,1|1B x x ⎧⎫=>⎨⎬⎩⎭,则()(R A B =U ð )A .(-∞,1)(3-⋃,)+∞B .(-∞,1][3-U ,)+∞C .[3,)+∞D .(-∞,1][1-U ,)+∞【解答】解:集合2{|230}(1,3)A x x x =--<=-, 1|1(0,1)B x x ⎧⎫=>=⎨⎬⎩⎭,A B B =U ,则()(R A B =-∞U ð,1][3-U ,)+∞ 故选:B .2.(5分)已知复数(,)z a bi a b R =+∈,1zi +是实数,那么复数z 的实部与虚部满足的关系式为( ) A .0a b +=B .0a b -=C .20a b -=D .20a b +=【解答】解:由(,)z a bi a b R =+∈, 得()(1)11(1)(1)22z a bi a bi i a b b a i i i i i ++-+-===++++-, 由题意,0b a -=. 故选:B .3.(5分)已知α,β是两个不同的平面,直线m α⊂,下列命题中正确的是( ) A .若αβ⊥,则//m βB .若αβ⊥,则m β⊥C .若//m β,则//αβ D .若m β⊥,则αβ⊥【解答】解:对于选项A :若αβ⊥,则//m β也可能m β⊥,故错误. 对于选项B :若αβ⊥,则m β⊥也可能//m β,故错误. 对于选项C :若//m β,则//αβ也可能α与β相交,故错误.对于选项D ,直线m α⊂,m β⊥,则αβ⊥是面面垂直的判定,故正确. 故选:D .4.(5分)大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13n =,则要想算出结果1,共需要经过的运算步数是( ) A .9B .10C .11D .12【解答】解:由题意任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,第一步:13n =为奇数,则133140n =⨯+=, 第二步,40n =为偶数,则40202n ==, 第三步,20n =为偶数,则20102n ==, 第四步,10n =为偶数,则1052n ==, 第五步,5n =为奇数,则53116n =⨯+=, 第六步,16n =为偶数,则1682n ==, 第七步,8n =为偶数,则842n ==, 第八步,4n =为偶数,则422n ==, 第九步,2n =为偶数,则212n ==. ∴取13n =,要想算出结果1,共需要经过的运算步数是9.故选:A .5.(5分)已知3a ln =,3log b e =,log c e π=(注:e 为自然对数的底数),则下列关系正确的是( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<【解答】解:331log log a ln b e c e π=>>=>=, a b c ∴>>,故选:B.6.(5分)已知在边长为3的等边ABC∆的中,12 BD DC=u u u r u u u r,则(AD AC=u u u r u u u rg) A.6B.9C.12D.6-【解答】解:Q22222()()333cos1206333AD AC AC CD AC AC CB AC AC AC CB=+=+=+=+⨯⨯⨯︒=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g g;故选:A.7.(5分)如图,四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,22ED FC==,则四面体A BEF-的体积为()A.13B.23C.1D.43【解答】解:Q四边形ABCD是边长为2的正方形,ED⊥平面ABCD,FC⊥平面ABCD,22ED FC==,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,(2A,0,0),(2B,2,0),(0E,0,2),(0F,2,1),(0BA=u u u r,2-,0),(2BF=-u u u r,0,1),(2BE=-u u u r,2-,2),BA BF=u u u r u u u rg,11||||25522ABFS BA BF∆∴=⨯⨯=⨯=u u u r u u u r,设平面ABF的法向量(n x=r,y,)z,则2020n BA yn BF x z⎧=-=⎪⎨=-+=⎪⎩u u u rrgu u u rrg,取1x=,得(1n=r,0,2),E∴到平面ABF的距离||||5n BEdn==u u u rrgr∴四面体A BEF -的体积为:11253335A BEF E ABF ABF V V S d --∆==⨯⨯=⨯⨯=.故选:B .8.(5分)已知函数()sin 232f x x x =的图象向右平移(0)2πϕϕ<<个单位后,其图象关于y 轴对称,则(ϕ= ) A .12πB .6π C .3π D .512π 【解答】解:把函数()sin 23cos22sin(2)3f x x x x π==+的图象向右平移(0)2πϕϕ<<个单位后,可得2sin(22)3y x πϕ=-+的图象,根据所得图象关于y 轴对称,可得232k ππϕπ-+=+,k Z ∈.即212k ππϕ=--,再令1k =-,可得512πϕ=, 故选:D .9.(5分)已知椭圆22221(0)x y a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c =上存在一点P 满足()0FP FA AP +=u u u r u u u r u u u rg ,则椭圆的离心率取值范围为( )A .1[,1)2B .2[C .51[-D .2] 【解答】解:设2(a P c ,)y ,由()0FP FA AP +=u u u r u u u r u u u r g ,则2(a FP FA c c +=-u u u r u u u r ,)(y c +-,2)(2a b c c=-,)y b +,2(a AP c=u u u r ,)y b -,所以由()0FP FA AP +=u u u r u u u r u u u r g ,可得:22(2)()()0a a c y b y b c c -++-=g ,可得:4222 22aa b yc--=-„,整理可得:4222222()0a a c a c c---„,即42310e e-+„,解得:23535e-+剟,即5151e-+剟,由于椭圆的离心率小于1,所以511e-<„,故选:C.10.(5分)已知定义在R上的函数()f x,满足(1)(1)f x f x+=-,当[1x∈,)+∞时,1|2|,[1,3)()12(),[3,)2x xf x xf x--∈⎧⎪=⎨-∈+∞⎪⎩,则函数()f x的图象与函数,1()(2),1lnx xg xln x x⎧=⎨-<⎩…的图象在区间[5-,7]上所有交点的横坐标之和为()A.5B.6C.7D.9【解答】解:根据题意,函数()f x满足(1)(1)f x f x+=-,则()f x的图象关于直线1x=对称,而函数,1()(2),1lnx xg xln x x⎧=⎨-<⎩…的图象也关于直线1x=对称,作出函数()f x和()g x图象如图:由图可知,所以交点横坐标之和3217=⨯+=,故选:C.11.(5分)已知数列{}na的通项公式为22na n=+,将这个数列中的项摆放成如图所示的数阵,记nb为数阵从左至右的n列,从上到下的n行共2n个数的和,则数列nnb⎧⎫⎨⎬⎩⎭的前2020项和为()A .10112020B .20192020C .20202021D .10102021【解答】解:由题意,设数列{}n a 的前n 项和为n S . Q 数列{}n a 的通项公式为22n a n =+,∴数列{}n a 是以4为首项,2为公差的等差数列. ∴第1行的所有项的和即为:212(1)4232n n n n a a a S n n n -++⋯+==+=+g . 则第2行的所有项的和为:23112()()()n n n a a a a d a d a d S nd +++⋯+=++++⋯++=+;第3行的所有项的和为:34212(2)(2)(2)2n n n a a a a d a d a d S nd +++⋯+=++++⋯++=+;g g g第n 行的所有项的和为:12112[(1)][(1)][(1)](1)n n n n n a a a a n d a n d a n d S n nd +-++⋯+=+-+++-+⋯++-=+-; 12231342121()()()()n n n n n n n b a a a a a a a a a a a a +++-∴=++⋯++++⋯++++⋯++⋯+++⋯+ ()(2)[(1)]n n n n S S nd S nd S n nd =+++++⋯++- [12(1)]n nS n nd =+++⋯+-g2(1)(3)22n nn n n n -=++g g 22(1)n n =+.21111()2(1)2(1)21n n n b n n n n n n ===-+++. ∴数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为122020122020b b b ++⋯+11111111(1)()()22223220202021=-+-+⋯+- 111111(1)222320202021=-+-+⋯+- 11(1)22021=- 10102021=. 故选:D .12.(5分)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,点P 在双曲线上,且12120F PF ∠=︒,12F PF ∠的平分线交x 轴于点A ,则||(PA = )ABCD【解答】解:由题意可得21a =,23b =,在三角形12PF F 中,设P 在右支上,由余弦定理可得22221212121212122cos120()2F F PF PF PF PF PF PF PF PF PF PF =+-︒=-++g gg , 即2212443c a PF PF =+,所以可得222124()4434333c a b PF PF -⨯====,1222PF PF a -==,可得11PF =,21PF =,所以121211sin120422PF F S PF PF =︒=⨯=V g g 因为PA 为角平分线,所以1260F PA F PA ∠=∠=︒,而1212121211(sin 60sin 60)()11)22PF F PF A PF A S S S PF PA PF PA PA PF PF =+=︒+︒=+V V V g g g g ,PA,所以PA =, 故选:B .二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.(5分)近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大,动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为 717. 【解答】解:设事件A :车载动力蓄电池充放电循环次数达到2000次, 事件B :车载动力蓄电池充放电循环次数达到2500次, 则P (A )85100=,35()100P AB =, 所以若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为35()357100(|)85()8517100P AB P A B P B ====, 故答案为:717. 14.(5分)已知函数()x x f x e ae -=+在[0,1]上不单调,则实数a 的取值范围为 2(1,)e . 【解答】解:由题意可得,()0x xaf x e e '=-=在[0,1]上有变号零点, 故2x a e =在[0,1]上有变号零点,因为2x y e =在[0,1]上单调,2[1x e ∈,2]e , 故21a e <<, 故答案为:2(1,)e15.(5分)数列{}n a 满足11a =,2*(21)2(2,)n n na S S n n N -=∈…,则n a = 21,12,2483n n n n =⎧⎪-⎨⎪-+⎩… . 【解答】解:2*(21)2(2,)n n na S S n n N -=∈Q …, 21()(21)2n n n n S S S S -∴--=,整理得:*112(2,)n n n n S S S S n n N ---=-∈g …, ∴*1112(2,)n n n n N S S --=∈… ∴数列1{}nS 是以1为首项,2为公差的等差数列, ∴11(1)221nn n S =+-⨯=-, 121n S n ∴=-,∴当2n …时,121122123483n n n a S S n n n n --=-=-=---+, 21,12,2483n n a n n n =⎧⎪∴=-⎨⎪-+⎩…. 故答案为:21,12,2483n n n n =⎧⎪-⎨⎪-+⎩…. 16.(5分)已知函数222()()3|1|f x x a x b =----,当 ③1a =,20b -<< 时(从①②③④中选出一个作为条件)函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可) ①12a -„②3522a <<③1a =,20b -<<④1a =,924b -<<-或0b =⑤4个极小值点⑥1个极小值点⑦6个零点⑧4个零点【解答】解:可选③1a =,20b -<<,由222()(1)3|1|f x x x b =----, 令()0f x =,可得222(1)3|1|b x x =---,即222|1|3|1|b x x =---, 可令2|1|t x =-,可得23b t t =-,可设2()3g t t t =-,分别画出()y g t =和2|1|t x =-的图象, 由2230t t -<-<,即2232030t t t t ⎧-+>⎨-<⎩.可得01t <<或23t <<,当01t <<时,2|1|t x =-有4个零点;23t <<时,2|1|t x =-有2个零点, 则函数()f x 共有6个零点.故答案为:③1a =,20b -<<,⑦6个零点.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分. 17.(12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2b C a c =+. (Ⅰ)求B ;(Ⅱ)若2a =,D 为AC 的中点,且3BD =,求c . 【解答】解:()I 由已知以及正弦定理,可得:2sin cos 2sin sin 2sin()sin 2sin 2cos sin sin B C A C B C C BcoC B C C =+=++=++, 所以:2cos sin sin 0B C C +=, 由于:0C π<<,sin 0C ≠, 1cos 2B =-,因为(0,)B π∈, 解得:23B π=; (Ⅱ)如图所示:,D Q 为AC 的中点,∴2BA BC BD +=u u u ru u u ru u u r,两边平方得:22()4||BA BC BD +=u u u r u u u r u u u r , ∴222||2||4||BA BA BC BC BD ++=u u u r u u u r u u u r u u u r u u u rg ,∴224cos4433c c π+⨯+=⨯, 整理得:2280c c --=, 解得:4c =.18.(12分)如图,三棱柱111A B C ABC -中,1BB ⊥平面ABC ,AB BC ⊥,2AB =,1BC =,13BB =,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明://DE 平面11C BA ;(Ⅱ)F 是线段1CC 上一点,且直线AF 与平面11ABB A所成角的正弦值为13,求二面角1F BA A --的余弦值.【解答】解:(Ⅰ)取?AA 的中点G ,连接DG ,EG , 则//??DG A C ,E ,G 为中点,所以//?EG BA ,DG ⊂/平面??BA C ,??A C ⊂平面??BA C ,故//DG 平面??BA C ,同理//EG 平面??BA C , 又DG EG G =I ,故平面//DEG 平面??BA C ,DE ⊂平面EDG , 所以//??DE BA C ;()II 以B 为原点,BA ,?BB ,BC 分别为x ,y ,z 轴建立空间直角坐标系, ?(0B ,3,0),?(2A ,3,0),(0C ,0,1),?(0C ,3,1), 设(0F ,a ,1),(2A ,0,0),(2,,1)AF a =-u u u r, 平面11ABB A 所的法向量为(0,0,1)BC =u u u r,由21cos ,35AF BC a <>==+u u u r u u u r,2a =, 故(0F ,2,1),(0BF =u u u r ,2,1),1(2BA =u u u r,3,0),设平面?FBA 的法向量为(,,)m x y z =r, 由120230m BF y z m BA x y ⎧=+=⎪⎨=+=⎪⎩u u u r r g u u u r r g ,得(3,2,4)m =-r ,由429cos ,29m BC <>==u u ur r , 由于二面角为钝角,故所求二面角余弦值为429-.19.(12分)为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下:数据1:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C 症状人数为6.5万,其中含AB 症状同时出现1.8万人,AC 症状同时出现1万人,BC 症状同时出现2万人,ABC 症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如表列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?失眠 不失眠 合计 患心脑血管疾病 不患心脑血管疾病合计参考数据如表:20()P K k …0.50 0.40 0.25 0.15 0.10参考公式:2()()()()()n ad bc K a b c d a c b d -=++++.【解答】解:(Ⅰ)设{A =出现A 症状的人},{B =出现B 症状的人},{C =出现C 症状的人},card 表示有限集合元素的个数,根据数据1,可知() 1.8card A B =I 万,()1card A C =I 万,()2card B C =I 万,()0.5card A B C =I I 万,所以()[()()()]()8.59.3 6.5(1.812)0.520card A B C cardA cardB cardC card A B card A C card B C card A B C =++-+++=++-+++=U U I I I I I 万,所以55岁左右的中国人患有失眠症的比例大约为20%; (Ⅱ)根据题意,22⨯列联表如下:所以2100(573157) 4.001 3.84112888020K ⨯⨯-⨯=≈>⨯⨯⨯,故有95%的把握说明失眠与心脑血管病存在“强关联”.20.(12分)已知以动点P 为圆心的P e 与直线1:2l x =-相切,与定圆221:(1)4F x y -+=e 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点M 、(N MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为1M 、1N ,直线l 交x 轴于点A ,记1AMM ∆、AMN ∆、1ANN ∆的面积分别为1S 、2S 、3S ,且22134S S S =,证明:直线MN 过定点. 【解答】解:(Ⅰ)定圆221:(1)4F x y -+=e ,圆心(1,0)F ,半径为12,设点(,)P x y ,由动圆P 既与直线1:2l x =-相切,又与定圆F 相外切,知12x >-,∴1122x =++, 化简得:24y x =,∴动圆圆心P 的轨迹C 的方程为:24y x =;(Ⅱ)证明:由题意可知,直线MN 的斜率存在,设直线MN 的方程为:(0)y kx m k =+≠, 设1(M x ,1)y ,2(N x ,2)y ,不妨设点M 在x 轴上方,点N 在x 轴下方, 联立方程24y kx my x=+⎧⎨=⎩,消去y 得,222(24)0k x km x m +-+=,∴12242kmx x k -+=,2122m x x k =,22121212124()()()my y kx m kx m k x x km x x m k∴=++=+++=, 11111()22S y x =⨯⨯+Q ,32211()()22S y x =⨯-⨯+,131212114()()()22S S y y x x ∴=-++1212411[()]24m x x x x k =-⨯+++ 22244844m m km k k k +-+=-⨯322316321644m m km mk k --+-=, Q 直线MN 的方程为:y kx m =+,设直线MN 与x 轴的交点为点B ,令0y =得,m x k =-,(mB k∴-,0), 21211()()22m S y y k ∴=⨯-+⨯-,∴22221211()()42m S y y k =-+- 222211222144(2)44k m mk y y y y k+-=⨯⨯-+ 2221122144[4()2]44k m mk x x y y k +-=⨯⨯+- 2222144161644k m mk km k k +--=⨯⨯ 232322444161616164k k m m km mk k m k -+--+=,22134S S S =Q ,232322322344161616161632164k k m m km mk k m km km k m k m ∴-+--+=--+-, 22416160k m mk ∴++=,即22440k m km ++=,2(2)0k m ∴+=, 2k m ∴=-,∴直线MN 的方程为:122()2y mx m m x =-+=--, ∴直线MN 过定点1(2,0).21.(12分)已知函数21()(1)(1)()2f x x ln x ax x a R =++--∈.(Ⅰ)设()f x '为函数()f x 的导函数,求函数()f x '的单调区间; (Ⅱ)若函数()f x 在(0,)∞上有最大值,求实数a 的取值范围. 【解答】解:(Ⅰ)()(1)()f x ln x ax g x '=+-=,((1,))x ∈-+∞. 1()1g x a x '=-+, 0a …时,()0g x '>,函数()f x '在(0,)+∞上单调递增.0a >时,1()()1aa x a g x x ---'=+, ()f x '∴在1(1,1)a --上单调递增;在1(1,)a-+∞上单调递减;(Ⅱ)函数()f x 在(0,)+∞上有最大值,可得()f x 在(0,)+∞上不单调,有极大值点. 由()I 可得:0a >,(0)0f '=. 令(1)0ln x ax +-=, 化为:(1)()ln x a h x x+==, 2(1)(1)()(1)x x ln x h x x x -++'=+.令()(1)(1)u x x x ln x =-++,(0,)x ∈+∞.(0)0u =. ()1(1)1(1)0u x ln x ln x '=-+-=-+<. ()(0)0u x u ∴<=. ()0h x ∴'<,函数()h x 在(0,)x ∈+∞上单调递减.0x +→时,11()11x h x +→=.x →+∞时,()0h x →. 01a ∴<<.(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy 中,参数方程cos sin x y θθ=⎧⎨=⎩(其中θ为参数)的曲线经过伸缩变换2:x x y y ϕ'=⎧⎨'=⎩得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为sin()4πρθ+= (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求||MN 的最小值.【解答】解:(Ⅰ)参数方程cos sin x y θθ=⎧⎨=⎩(其中θ为参数)的曲线经过伸缩变换2:x x y y ϕ'=⎧⎨'=⎩得到曲线22:14x C y +=; 曲线D的极坐标方程为sin()4πρθ+0x y +-=; (Ⅱ)设点(2cos ,sin )P θθ到直线0x y +-=的距离d ==, 当sin()1θα+=时,min d =.[选修4-5:不等式选讲]23.设函数()|2||3|f x x x =++-(Ⅰ)求不等式()9f x >的解集;(Ⅱ)过关于x 的不等式()|32|f x m -…有解,求实数m 的取值范围.【解答】解:(Ⅰ)21,3()|2||3|5,2321,2x x f x x x x x x ->⎧⎪=++-=-⎨⎪-+<-⎩剟.()9f x >Q ,∴2193x x ->⎧⎨>⎩或2192x x -+>⎧⎨<-⎩, 5x ∴>或4x <-, ∴不等式的解集为{|5x x >或4}x <- (Ⅱ)由(Ⅰ)知,()5min f x =. Q 不等式()|32|f x m -„有解, |32|()5min m f x ∴-=…, 325m ∴-…或325m --„, ∴713m m -或剠, m ∴的取值范围为7(,1][,)3-∞-+∞U。

东北三省三校理综一模

东北三省三校理综一模

B.场 强 大 小 为 200V/m
C.将一个正电荷从 犃 点沿直线移到犆 点,它的电势能一直增大
D.将一个正电荷从 犃 点沿直线移到犅 点,它的电势能先增大后减小
19.如图所示为形状相同的两个劈形物体,它们之间的接触面光滑,两物体与地面的接触 面均粗糙,
现对 犃 施加水平向右的力犉,两物体均保持静止,则物体 犅 的受力个数可能是
10.新型锂空气电池具有使用寿命长、可在自然 空 气 环 境 下 工 作 的 优 点。其 原 理 如 图 所 示 (电 解 质
为 离 子 液 体 和 二 甲 基 亚 砜 ),电 池 总 反 应 为 :
2Li+O2
Li2O2,
下列说法不正确的是
A.充电时电子由 Li电极经外电路流入 Li2O2 B.放电时正极反应式为 2Li+ +O2+2e- = Li2O2 C.充电时 Li电极与电源的负极相连 D.碳酸锂涂 层 既 可 阻 止 锂 电 极 的 氧 化 又 能 让 锂 离 子

中加入一小块 MnSO4 固体
液迅速褪色
化剂
D 将浓硫酸滴入蔗糖中并搅拌
得到黑色蓬松的固体并产 该过程中浓硫酸仅体现了
生有刺激性气味的气体
吸水性和脱水性
12.短周期主族元素 X、Y、Z、W、Q 原子序数依次增大,Y 元 素最 外 层电 子数 是其 电子 层数 的3 倍, Q 与 Y 同主族,X 与 Y 构成的化合物可引起光 化 学 烟 雾,Z、W、Q 的 最 高 价 氧 化 物 的 水 化 物 两 两之间均能发生反应。下列说法正确的是
一、选择题:本题共13小题,每小题6分,共78 分。 在 每 小 题 给 出 的 四 个 选 项 中,只 有 一 项 是 符 合
题目要求的。

2020届东北三省三校(哈尔滨师大附中 )2020届高三第一次联合模拟考试理综物理试题解析

2020届东北三省三校(哈尔滨师大附中 )2020届高三第一次联合模拟考试理综物理试题解析

哈尔滨师大附中、东北师大附中、辽宁省实验中学2020年高三第一次联合模拟考试理科综合能力测试一、选择题1.在超导托卡马克实验装置中,质量为1m 的21H 与质量为2m 的31H 发生核聚变反应,放出质量为3m 的10n ,并生成质量为4m 的新核。

若已知真空中的光速为c ,则下列说法正确的是( )A.新核的中子数为2,且该新核是32He 的同位素 B.该过程属于α衰变C.该反应释放的核能为()23412m m m m c +--D.核反应前后系统动量不守恒 答案:A解:A .由质量数守恒和电荷数守恒可知新核的质量数和电荷数分别为4和2,新核是24He ,是32He 的同位素,中子数为2,故A 正确;B .该过程是核聚变反应,不属于α衰变,故B 错误;C .该反应释放的核能为()221234E mc m m m m c ∆=∆=+--故C 错误;D .核反应前后系统动量守恒,故D 错误。

故选A 。

2.如图所示,绕地球做匀速圆周运动的卫星P 的角速度为ω,对地球的张角为θ弧度,万有引力常量为G 。

则下列说法正确的是( )A.卫星的运动属于匀变速曲线运动B.张角θ越小的卫星,其角速度ω越大C.根据已知量可以求地球质量D.根据已知量可求地球的平均密度 答案:D解:A .卫星的加速度方向一直改变,故加速度一直改变,不属于匀变速曲线运动,故A 错误; B .设地球的半径为R ,卫星做匀速圆周运动的半径为r ,由几何知识得sin2Rrθ=可知张角越小,r 越大,根据22Mm Gm r rω= 得ω=可知r 越大,角速度ω越小,故B 错误; C .根据万有引力提供向心力,则有22MmGm r rω= 解得地球质量为23r M Gω=因为r 未知,所以由上面的式子可知无法求地球质量,故C 错误; D .地球的平均密度343M R ρπ=则2334sin 2G ωρθπ=知可以求出地球的平均密度,故D 正确。

故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档