权重确定方法

合集下载

权重的确定方法汇总

权重的确定方法汇总

权重的确定方法汇总一、指标权重的确定1.概述目前关于属性权重的确定方法很多,根据计算权重时原始数据的来源不同,可以将这些方法分为三类:主观赋权法、客观赋权法、组合赋权法。

主观权重法是根据决策者(专家)的主观注意力来确定属性权重的方法。

其原始数据由专家根据经验进行主观判断获得。

常用的主观赋权方法有专家调查法(德尔菲法)、层次分析法(AHP)[106-108]、二项系数法、链式比较评分法、最小二乘法等。

本文利用人类经验和知识选择了有序二元比较定量法。

主观赋权法是人们研究较早、较为成熟的方法,主观赋权法的优点是专家可以根据实际的决策问题和专家自身的知识经验合理地确定各属性权重的排序,不至于出现属性权重与属性实际重要程度相悖的情况。

但决策或评价结果具有较强的主观随意性,客观性较差,同时增加了对决策分析者的负担,应用中有很大局限性。

针对主观赋权法的不足,人们提出了客观赋权法。

其原始数据由决策方案中每个属性的实际数据构成。

其基本思想是,属性权重应该是度量属性集中每个属性的变化程度以及对其他属性的影响,权重的原始信息应该直接来自客观环境,信息处理的过程应该是深入探索属性之间的关系和影响,然后根据属性的关联程度或属性提供的信息量确定属性权重。

如果一个属性对所有决策方案没有差异(即每个决策方案的属性值相同),则该属性对方案的识别和排序没有影响,其权重应为0;如果某个属性在所有决策方案的属性值中存在较大差异,则该属性将在方案的识别和排序中发挥重要作用,简而言之,应该给出较大的权重,每个属性的权重应该根据该属性下每个方案的属性值之间的差异来确定。

差异越大,属性的权重就越大,反之亦然。

常用的客观赋权法[109-110]有:主成份分析法、熵值法[111-112]、离差及均方差法、多目标规划法等。

其中熵值法用得较多,这种赋权法所使用的数据是决策矩阵,所确定的属性权重反映了属性值的离散程度。

客观赋权法主要根据原始数据之间的关系确定权重。

第一讲:权重确定方法

第一讲:权重确定方法

∙权重∙确定权重的原则∙权值因子判断表法∙专家直观判定法∙层次分析法∙排序法权重权重是一个相对的概念,是针对某一指标而言。

某一指标的权重是指该指标在整体评价中的相对重要程度。

权重表示在评价过程中,是被评价对象的不同侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。

事实上,没有重点的评价就不算是客观的评价,每个人员的性质和所处的层次不同,其工作的重点也肯定是不能一样的。

因此,相对工作所进行的业绩考评必须对不同内容对目标贡献的重要程度做出估计,即权重的确定。

总之,权重是要从若干评价指标中分出轻重来,一组评价指标体系相对应的权重组成了权重体系。

一组权重体系{Vi|I=1,2,…n},必须满足下述两个条件:(1)0<Vi≤1;i=1,2,…,n。

(2)其中n是权重指标的个数一级指标和二级指标权重的确定:设某一评价的一级指标体系为{wi | i=1,2,…,n},其对应的权重体系为{vi | i=1,2,…,n}则有:(1)1<Vi≤1;i=1,2,…,n(2)如果该评价的二级指标体系为{Wij | i=1,2,…,n,j=1,2,…,m},则其对应的权重体系{Vij | i=1,2,…,n,j=1,2,…,m}应满足:(1)0<Vij≤1(2)(3)对于三级指标、四级指标可以以此类推。

权重体系是相对指标体系来确立的。

首先必须有指标体系,然后才有相应的权重体系。

指标权重的选择,实际也是对系统评价指标进行排序的过程,而且,权重值的构成应符合以上的条件。

确定权重的原则一、系统优化原则在评价指标体系中,每个指标对系统都由它的作用和贡献,对系统而言都有它的重要性。

所以,在确定它们的权重时,不能只从单个指标出发,而是要处理好各评价指标之间的关系,合理分配它们的权重。

应当遵循系统优化原则,把整体最优化作为出发点和追求的目标。

在这个原则指导下,对评价指标体系中各项评价指标进行分析对比,权衡它们各自对整体的作用和效果,然后对它们的相对重要性做出判断。

权重的确定方法

权重的确定方法

权重的确定方法
确定权重的方法有很多,以下是一些常见的方法:
1. 主观赋权:根据专家经验或主观判断,为不同因素或指标赋予不同的权重。

这种方法可以根据具体情况来决定权重的大小,但受个人主观因素影响较大。

2. 比较赋权:通过与其他相似项目或指标进行比较,根据差异性确定权重大小。

这种方法可以从现有数据中获取参考值,减少主观因素的影响。

3. 统计赋权:通过对大量数据进行统计分析,确定不同因素或指标对总体结果的贡献度,从而确定权重。

统计赋权方法可以利用各种分析技术,如回归分析、主成分分析等,以客观的方式确定权重。

4. 层次分析法:层次分析法是一种结构化的分析方法,可以用来确定各个因素或指标之间的权重关系。

通过构建判断矩阵,对各个因素进行多层次比较,最终得出权重。

5. 模糊综合评判:模糊综合评判是一种基于模糊数学理论的权重确定方法。

通过模糊综合运算,将模糊的权重转化为确定的数值权重。

这些方法可以根据具体问题和数据特点选择合适的方法进行权重的确定,以提高分析的准确性和可靠性。

确定权重的7种方法

确定权重的7种方法

确定权重的7种方法主观赋权德尔菲专家法简介依据“德尔菲法”的基本原理,选择企业各方面的专家,采取独立填表选取权数的形式,然后将他们各自选取的权数进行整理和统计分析,最后确定出各因素,各指标的权数。

德尔菲法的主要缺点是过程比较复杂,花费时间较长。

实现方法选择专家。

一般情况下,选本专业领域中既有实际工作经验又有较深理论修养的专家10-30人左右,需征得专家本人同意。

将待定权重的p个指标和有关资料以及统一的确定权重的规则发给选定的各位专家,请他们独立给出各指标的权数值。

回收结果并计算各指标权数的均值和标准差。

将计算的结果及补充资料返还给各位专家,要求所有的专家在新的基础上确定权数。

重复3和4步骤,直至各指标权数与其均值的离差不超过预先给定的标准为止,也就是各专家的意见基本趋于一致,以此时各指标权数的均值作为该指标的权重。

此外,为了使判断更加准确,令评价者了解己确定的权数把握性大小,还可以运用“带有信任度的德尔菲法”,该方法需要在上述第5步每位专家最后给出权数值的同时,标出各自所给权数值的信任度。

这样,如果某一指标权数的任任度较高时,就可以有较大的把握使用它,反之,只能暂时使用或设法改进。

AHP层次分析法简介层次分析法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各指标的重要程度。

但该方法主观因素对判断矩阵的影响很大,当决策者的判断过多地受其主观偏好的影响时,结果不够客观。

实现方法构建层次评价矩阵构造判断矩阵构造判断矩阵就是通过各要素之间相互两两比较,并确定各准则层对目标层的权重。

简单地说,就是把准则层的指标进行两两判断,通常使用Santy的1-9标度方法给出。

对于m 个指标,构建m*m的判断矩阵,并使用确定的标度方法完成该判断矩阵A。

3. 层次单排序根据构成的判断矩阵,求解各个指标的权重。

有两种方式,一种是方根法,一种是和法。

确定权重的7种方法

确定权重的7种方法

确定权重的7种方法表7-1 地质环境质量评价定权方法一览表一、专家打分法专家打分法即是由少数专家直接根据经验并考虑反映某评价观点后定出权重,具体做法和基本步骤如下:第一步选择评价定权值组的成员,并对他们详细说明权重的概念和顺序以及记权的方法。

第二步列表。

列出对应于每个评价因子的权值范围,可用评分法表示。

例如,若有五个值,那么就有五列。

行列对应于权重值,按重要性排列。

第三步发给每个参予评价者一份上述表格,按下述步骤四~九反复核对、填写,直至没有成员进行变动为止。

第四步要求每个成员对每列的每种权值填上记号,得到每种因子的权值分数。

第五步要求所有的成员对作了记号的列逐项比较,看看所评的分数是否能代表他们的意见,如果发现有不妥之处,应重新划记号评分,直至满意为止。

第六步要求每个成员把每个评价因子(或变量)的重要性的评分值相加,得出总数。

第七步每个成员用第六步求得的总数去除分数,即得到每个评价因子的权重。

第八步把每个成员的表格集中起来,求得各种评价因子的平均权重,即为“组平均权重”。

第九步列出每种的平均数,并要求评价者把每组的平均数与自己在第七步得到的权值进行比较。

第十步如有人还想改变评分,就须回到第四步重复整个评分过程。

如果没有异议,则到此为止,各评价因子(或变量)的权值就这样决定了。

二、调查统计法具体作法有下面四种。

1.重要性打分法:重要性打分法是指要求所有被征询者根据自己对各评价因子的重要性的认识分别打分,其步骤如下:a.对被征询者讲清统一的要求,给定打分范围,通常1~5分或1~100分都可。

b.请被征询者按要求打分。

c.搜集所有调查表格并进行统计,给出综合后的权重。

2.列表划勾法:该方法如图7-2所示。

事先给出权值,制成表格。

由被调查者在认为合适的对应空格中打勾。

对应每一评价因子,打勾1~2个,打2个勾表示程度范围。

这样就完成一个样本的调查结果。

在样本调查的基础上,除采用一般的求个样本的均值作为综合结果外,还可采用如下方法:图7-2 列表划勾法示意图备择程因子序号度W 1 2 3 …m-1 m0.2 √√√0.4 √√√0.6 √√0.8 √1.0a.频数截取法频数截取法的主要步骤如下:第一步:列中值频率分布表,见表7-2。

确定权重的方法有哪些

确定权重的方法有哪些

确定权重的方法有哪些确定权重的方法有以下几种:1. 主观评价法:主观评价法是通过主观判断确定权重的方法。

这种方法主要依赖于专家的经验和判断。

可以通过专家讨论、问卷调查、专家打分等方式获取权重。

这种方法的优点是简单、快捷,但由于受个人主观因素的影响较大,可能存在一定的不确定性和误差。

2. 层次分析法(AHP):层次分析法是一种通过层次结构将问题分解为若干个互相关联的属性和准则,再通过对两两比较构建判断矩阵,最终计算权重的方法。

AHP方法综合了专家经验和定量数据,通过对判断矩阵进行运算,可以得出权重的相对大小。

这种方法的优点是结构化、可操作性好,但需要系统性的分析和计算,且对于问题的结构和判断矩阵的构建比较依赖。

3. TOPSIS法:TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)方法是一种将问题转化为离差最小的理想解和离差最大的负理想解的距离,通过计算属性与理想解的相似程度,确定权重的方法。

这种方法通过比较属性与理想解的距离,综合考虑多个属性的影响,确定权重。

TOPSIS方法适用于多属性决策问题,优点是计算相对简单,可以充分考虑各属性的重要性。

4. 熵权法:熵权法是一种根据信息熵原理进行权重确定的方法。

该方法通过计算各属性的信息熵值,反映属性的不确定性和随机性,进而计算出权重。

熵权法的优点是不涉及主观评价,避免了主观偏差,同时可以充分考虑属性的信息量和差异。

5. 模糊数学方法:模糊数学方法是一种基于模糊逻辑的判断和决策方法。

这种方法适用于问题属性之间存在模糊性和不确定性的情况。

通过建立模糊隶属函数,对属性进行模糊化处理,并进行模糊比较和加权,最终确定权重。

模糊数学方法的优点是能够应对复杂的问题和模糊的信息,但计算过程较为复杂。

6. 统计分析方法:统计分析方法是一种利用数据分析和统计方法确定权重的方法。

通过对历史数据或实验数据进行分析和建模,可以得出不同属性的权重。

主成分分析确定权重方法

主成分分析确定权重方法

主成分分析确定权重方法确定权重的方法有很多,下面将介绍几种常用的方法。

1.方差解释率方差解释率是一种常见的确定权重的方法。

在PCA中,数据的每一个主成分都包含一定的方差,而方差解释率衡量了每个主成分所占总方差的比例。

通常,我们希望选择那些具有较高方差解释率的主成分,因为它们可以更好地代表原始数据。

通过排序主成分的方差解释率,可以确定每个主成分的权重。

2.特征值特征值也可以用于确定权重。

在PCA过程中,我们计算协方差矩阵的特征值和特征向量。

特征值表示了数据在对应特征向量方向上的重要性。

通常,特征值较大的特征向量对应的主成分权重较高。

因此,我们可以根据特征值的大小确定权重。

3.贡献度贡献度是用来评估每个主成分对原始数据的贡献程度。

在PCA中,我们可以计算每个主成分的贡献度。

贡献度定义为每个主成分所占总方差的比例。

通过排序主成分的贡献度,可以确定每个主成分的权重。

4.固有值和因子载荷在因子分析中,固有值和因子载荷用于确定因子的权重。

固有值表示了因子对原始变量的解释程度,固有值较大的因子权重较高。

而因子载荷表示了每个因子与原始变量之间的相关性,因子载荷较高的变量在对应因子上的权重较高。

5.方差贡献度方差贡献度是用来判断每个主成分在整个数据集中的重要性程度。

在PCA中,我们可以计算每个主成分的方差贡献度。

方差贡献度定义为每个主成分的方差与总方差的比例。

方差贡献度越大,主成分在整个数据集中的重要性越高。

总之,确定权重是PCA中的关键步骤,它决定了数据在主成分方向上的重要性。

根据实际需求和数据特点,可以选择不同的权重确定方法,如方差解释率、特征值、贡献度、固有值和因子载荷、方差贡献度等。

综合考虑这些方法,可以得到较为准确的主成分权重,从而实现对高维数据的降维和信息保留。

确定权重的7种方法

确定权重的7种方法

确定权重的7种方法1.主观权重法:这是最直观的一种方法,根据个人对目标的重要程度进行评估,通过主观判断来确定权重。

例如,在制定年度目标时,可以根据个人对各个目标的认知和理解程度,以及对目标达成所产生的影响来确定权重。

然而,主观权重法容易受到个人偏见和主观感受的影响,可能导致权重偏差。

2.专家评估法:这种方法是通过专家的判断和意见来确定权重。

根据专家的经验和知识,对目标的重要性进行评估,并由专家组成的小组共同确定权重。

这种方法相对来说更客观一些,但仍然存在一定的主观性。

3.层次分析法:层次分析法是一种结构化的决策方法,通过对目标的层次结构进行分解和比较,确定权重。

该方法首先将目标层次结构化,然后通过两两比较各层目标的重要程度,最终计算权重。

这种方法可以量化和系统地确定权重,但需要耗费大量的时间和人力资源。

4.财务指标法:对于财务目标,可以采用财务指标来确定权重。

根据目标的财务影响和与其他目标的关联性,可以为各个目标分配不同的权重。

例如,对于利润目标,可以计算其在总利润中所占的比例来确定权重。

5.成本效益法:成本效益法是一种以成本和效益为基础来确定权重的方法。

通过对目标所产生的成本和效益进行评估和比较,可以确定目标的权重。

例如,对于一个投资项目,可以根据项目的投资成本和预期收益来确定权重。

6.数据分析法:借助数据分析来确定权重是一种较为客观的方法。

通过收集相关数据,如市场份额、销售额、客户满意度等,通过统计分析和数据建模,可以确定目标的权重。

这种方法能够基于实际数据来确定权重,但需要一定的数据分析能力和工具支持。

7.优先级排序法:这种方法是一种简单直观的确定权重的方法。

将各个目标按照其重要性进行排序,将最重要的目标权重设为最高,最不重要的目标权重设为最低,并按照一定的比例进行分配。

这种方法可以快速确定权重,但在权重间的差异较大时,可能对具体的权重比例不够精确。

综上所述,确定权重的方法有很多,每种方法都有其优缺点,适用于不同的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。







权重
权重是一个相对的概念,是针对某一指标而言。

某一指标的权重是指该指标在整体评价中的相对重要程度。

权重表示在评价过程中,是被评价对象的不同侧面的重要程度的定量分配,对各评价因子在总体评价中的作用进行区别对待。

事实上,没有重点的评价就不算是客观的评价,每个人员的性质和所处的层次不同,其工作的重点也肯定是不能一样的。

因此,相对工作所进行的业绩考评必须对不同内容对目标贡献的重要程度做出估计,即权重的确定。

总之,权重是要从若干评价指标中分出轻重来,一组评价指标体系相对应的权重组成了权重体系。

一组权重体系{Vi|I=1,2,…n},必须满足下述两个条件:
(1)0<Vi≤1;i=1,2,…,n。

(2)其中n是权重指标的个数
一级指标和二级指标权重的确定:
设某一评价的一级指标体系为{wi | i=1,2,…,n},其对应的权重体系为{vi | i=1,2,…,n}则有:
(1)1<Vi≤1;i=1,2,…,n
(2)
如果该评价的二级指标体系为{Wij | i=1,2,…,n,j=1,2,…,m},则其对应的权重体系{Vij | i=1,2,…,n,j=1,2,…,m}应满足:
(1) 0<Vij≤1
(2)
(3)
对于三级指标、四级指标可以以此类推。

权重体系是相对指标体系来确立的。

首先必须有指标体系,然后才有相应的权重体系。

指标权重的选择,实际也是对系统评价指标进行排序的过程,而且,权重值的构成应符合以上的条件。

确定权重的原则
一、系统优化原则
在评价指标体系中,每个指标对系统都由它的作用和贡献,对系统而言都有它的重要性。

所以,在确定它们的权重时,不能只从单个指标出发,而是要处理好各评价指标之间的关系,合理分配它们的权重。

应当遵循系统优化原则,把整体最优化作为出发点和追求的目标。

在这个原则指导下,对评价指标体系中各项评价指标进行分析对比,权衡它们各自对整体的作用和效果,然后对它们的相对重要性做出判断。

确定各自的权重,即不能平均分配,又不能片面强调某个指标、单个指标的最优化,而忽略其他方面的发展。

在实际工作中,应该使每个指标发挥其应有的作用。

二、评价者的主观意图与客观情况相结合的原则
评价指标权重反映了评价者和组织对人员工作的引导意图和价值观念。

当他们觉得某项指标很重要,需要突出它的作用时,就必然各该指标以较大的权数。

但现实情况往往与人们的主观意愿不完全一致,比如,确定权重时要考虑这样几个问题:(1)历史的指标和现实的指标;(2)社会公认的和企业的特殊性;(3)同行业、同工种间的平衡。

所以,必须同时考虑现实情况,把引导意图与现实情况结合起来。

前面已经讲过,评价经营者的经营业绩应该把经济效益和社会效益同时加以考虑。

三、民主与集中相结合的原则
权重是人们对评价指标重要性的认识,是定性判断的量化,往往受个人主观因素的影响。

不同的人对同一件事情都有各自的看法,而且经常是不相同的,其中有合理的成分;也有受个人价值观、能力和态度造成的偏见。

这就需要实行群体决策的原则,集中相关人员的意见互相补充,形成统一的方案。

这个过程有下列好处:
1、考虑问题比较全面,使权重分配比较合理,防止个别人认识和处理问题的片面性。

2、比较客观的协调了评价各方之间意见不统一的矛盾,经过讨论、协商、考察各种具体情况而确定的方案,具有很强的说服力,预先消除了许多不必要的纠纷。

3、这是一种参与管理的方式,在方案讨论的过程中,各方都提出了自己的意见,而且对评价目的和系统目标都有进一步的体会和了解,在日常工作中,可以更好的按原定的目标进行工作。

权值因子判断表法
1、组成评价的专家组。

包括人事部门的人员、评价专家以及相关的其他人员。

根据不同的评价对象和目的,专家构成可以不同。

2、制订评价指标因子判断表。

见下表:
3、专家填写权值因子判断表。

方法如下:将行因子与每列因子相互对比,若采用四分制的时,非常重要的指标为4分,比较重要的指标为3分,同样重要的为2分,不太重要的为1分,相比很不重要的为0分。

4、对各位专家所填权值因子判断表进行统计。

(1)计算每一行评价指标得分值
n --评价指标的项数
--评价指标I与评价指标j相比时,指标得分值;
R --专家序号
(2)求评价指标平均分值
L--专家人数
(3)评价指标权值计算
专家直观判定法
专家直观判定法是最简单的权重确定方法。

它是决策者个人根据自己的经验和对各项评价指标重要程度的认识,或者从引导意图出发,对各项评价指标的权重进行分配。

有时决策者会召集一些人讨论一下,听取大家的意见,然后由决策者确定。

这种方法基本上是个人经验决策,往往带有片面性。

对于比较简单的业绩评价工作,这个办法花费的时间和精力比较少,容易被接受。

现行的许多企业人员业绩考评都采用这种方式。

在应用时,应该注意的问题是要召集利益冲突的各方进行充分讨论,平衡各种不同的意见,避免专断的行为。

层次分析法
层次分析法(AHP法)是对人们主观判断做形式的表达、处理与客观描述,通过判断矩阵计算出相对权重后,要进行判断矩阵的一致性检验,克服两两相比的不足。

AHP法确定权重的步骤:
1、建立树状层次结构模型。

在业绩评价中,该模型就是评价指标体系。

2、确立思维判断定量化的标度。

在两个因素互相比较时,需要有定量的标度,假设使用前面的标度方法,则其含义如上表所示。

3、构造判断句镇。

运用两两比较方法,对各相关元素进行两两比较评分,根据中间层的若干指标,可得到若干两两比较判断矩阵。

按以上标度方法来确定。

4、计算权重
(1)将判断矩阵每列正规化
(2)将正规化后的判断矩阵按行相加(行和构量)
(3)计算权重
(4)计算矩阵的最大特征根
排序法
1、组成评价的专家组。

包括人事部门的人员、评价专家以及相关的其他人员。


据不同的评价对象和目的,专家构成可以不同。

2、制订评价指标排序表:
3、统计排序结果。

由专家根据自己的主观判断对评价对象中一级指标或二级指标对与其相对应的一级指标影响程度的大小,由小到大进行排序、填入表中,回收并进行统计。

然后将统计结果再反馈给专家。

如此进行两三次反复,最后予以确定。

4、将回收结果进行数理统计,计算评价指标的权值,公式如下:
n --评价指标的项数
--第i项指标排在第j位的专家人数
--排序的分值。

一般规定:
C1=n,C2=n-1,…,Cj=n-j+1,…Cn=1。

相关文档
最新文档