山西省2017年专升本选拔考试数学真题
(完整版)2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。
2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
2017年成人高考数学(专升本)试题及答案(三套试卷)

2017年成人高考专升本高等数学模拟试题一一. 选择题(1—10小题,每题4分,共40分)1。
设0lim →x 错误!=7,则a 的值是( ) A 错误! B 1 C 5 D 72。
已知函数f(x )在点x 0处可等,且f ′(x 0)=3,则0lim →h 错误!等于( ) A 3 B 0 C 2 D 63。
当x 0时,sin(x 2+5x 3)与x 2比较是( )A 较高阶无穷小量B 较低阶的无穷小量C 等价无穷小量D 同阶但不等价无穷小量4. 设y=x —5+sinx ,则y ′等于( )A —5x -6+cosxB —5x —4+cosxC —5x —4—cosxD —5x —6—cosx5. 设y=,4—3x 2 ,则f ′(1)等于( )A 0B —1C -3D 36。
错误!等于( )A 2e x +3cosx+cB 2e x +3cosxC 2e x -3cosxD 17. 错误!等于( )A 0B 1C 2π D π 8。
设函数 z=arctan 错误!,则xz ∂∂等于( )y x z ∂∂∂2 A 错误! B 错误! C 错误! D 错误!9。
设y=e 2x+y 则yx z ∂∂∂2=( ) A 2ye 2x+y B 2e 2x+y C e 2x+y D –e 2x+y10. 若事件A 与B 互斥,且P (A )=0。
5 P(AUB )=0。
8,则P (B)等于( )A 0。
3B 0.4C 0.2D 0.1二、填空题(11-20小题,每小题4分,共40分)11. ∞→x lim (1—错误!)2x =12。
设函数f(x)= 在x=0处连续,则 k =13. 函数—e —x 是f(x)的一个原函数,则f (x )=14。
函数y=x-e x 的极值点x=15. 设函数y=cos2x , 求y ″=16。
曲线y=3x 2-x+1在点(0,1)处的切线方程y=17. 错误!=18。
《2017年成人高考专升本《高等数学一》真题及答案

一、选择题:1~10 小题。每小题 4 分,共 40 分.在每个小题给出的四个选 项 中,只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。
第1题
答案:C 第2题
答案:C
第 1 页 共 11 页
第3题
答案:D 第4题
答第 21 题
答案:
第 22 题 答案:
第 7 页 共 11 页
第 23 题 答案:
第 8 页 共 11 页
第 23 题 答案:
第 24 题 答案:
第 9 页 共 11 页
第 25 题 答案:
第 26 题 答案:
第 10 页 共 11 页
第 27 题 答案:
第 28 题 答案:
第 11 页 共 11 页
答案:0 第 15 题
答案: 第 16 题 答案:8
第 5 页 共 11 页
第 17 题 答案: 第 18 题 答案: 第 19 题
答案: 第 20 题 答案:
第 6 页 共 11 页
三、解答题:21~28 题,前 5 小题各 8 分,后 3 小题各 10 分。共 70 分.解答 应写出推理、演算步骤。
答案:B 第6题
答案:B 第7题
答案:A 第8题
答案:A
第 3 页 共 11 页
第9题
答案:C 第 10 题
答案:C 二、填空题:11~20 小题。每小题 4 分,共 40 分.把答案填在题中横线上。
第 11 题 答案:
第 4 页 共 11 页
第 12 题
答案:y=1 第 13 题
答案:f(-2)=28 第 14 题
[专升本(国家)考试密押题库与答案解析]专升本高等数学(二)真题2017年
![[专升本(国家)考试密押题库与答案解析]专升本高等数学(二)真题2017年](https://img.taocdn.com/s3/m/af9f9dcc87c24028905fc314.png)
答案:C[考点] 本题考查了等价无穷小量的知识点.
[解析] 所以xsix与x2等价.
问题:2. 下列函数中,在x=0处不可导的是______
A.
B.
C.y=sinx
D.y=x2
答案:B[考点] 本题考查了函数的可导性的知识点.
[解析] 对于B项,在点x=0处有即导数为无穷大,即在x=0处不可导.
A.0.98
B.0.9
C.0.8
D.0.72
答案:A[考点] 本题考查了概率的知识点.
[解析] 设A为甲射中,B为乙射中,P(A)=0.8.P(B)=0.9.至少一人射中的概率为
第Ⅱ卷(非选择题)
二、填空题
问题:1.
答案:2[考点] 本题考查了极限的知识点.
[解析]
问题:2.
答案:[考点] 本题考查了洛必达法则的知识点.
=1.6,
D(X)=E(X2)-[E(X)]2
=1.6-1=0.6.
问题:6. 已知函数f(x)=x4-4x+1.
(1)求f(x)的单调区间和极值;
(2)求曲线y=f(x)的凹凸区间.
答案:因为f(x)=x4-4x+1,所以
f'(x)=4x3-4,
f"(x)=12x,
令f'(x)=0,x=1,令f"(x)=0,得x=0.
[专升本(国家)考试密押题库与答案解析]专升本高等数学(二)真题2017年
专升本高等数学(二)真题2017年
第Ⅰ卷(选择题)
一、选择题
(在每小题给出的四个选项中,只有一项是符合题目要求的)
问题:1. 当x→0时,下列各无穷小量中与x2等价的是______
2017年《高数(二)》真题

dy dx
1
dy dx
,解出
dy dx
1 ey 1
21.【答案】
解法一:当 x 0 时,分子分母都为零,可以使用洛必达法则
lim x sin x lim sin x x cos x lim cos x cos x x sin x 2
x0 1 cos x x0 sin x
x0
cos x
解法二:当 x 0 时, cos x
z
y
z u
u y
z v
v y
x
1 y2
x2
x2 y x y2
2
x3 x2 y2 x y2 2
dz
z x
dx
z y
dy
x2 y 2xy3 x y2 2
dx
x3 x
x2 y2 y2 2
dy
1 0
arctan
xd
x2 2
x2 2
arctan
x
1 0
1 2
1 x2d arctan x
0
8
1 2
1 0
x
x2 2
dx 1
8
1 2
1 0
x
2 x2
1
1
1dx
8
1 2
1 dx 1
0
2
1 0
1 x2
dx 1
8
1 2
1 2
arctan
x
1 0
4
1 2
Hale Waihona Puke 25.【答案】nEX xi pi 0 0.3 1 0.4 2 0.3 1 i 1
x
取值范围是(0,1),
S
1 0
x3dx
2017成人高考专升本《高等数学》真题及参考答案评分标准

2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为()A.21x B.x2 C.xsin D.()e x +ln 2.=⎪⎭⎫ ⎝⎛+→xx x 21lim 0()A.eB.1-e C.2e D.2-e 3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=()A.0B.21 C.1 D.24.设函数()x x x f ln =,则()='e f ()A.-1B.0C.1D.25.函数()x x x f 33-=的极小值为()A.-2B.0C.2D.46.方程132222=++z y x 表示的二次曲面是()A.圆锥面B.旋转抛物面C.球面D.椭球面7.若()1210=+⎰dx k x ,则常数=k ()A.-2B.-1C.0D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则()A.()0>dx x f ba ⎰ B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba ⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为()A.(3,-1,2)B.(1,-2,3)C.(1,1,-1)D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ()A.发散B.条件收敛C.绝对收敛D.敛散性与a 的取值有关二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________18.设二元函数()y x z +=2ln ,则=∂∂xz_________19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin limx x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy 23.已知x sin 是()x f 的一个原函数,求()⎰'dxx f x24.计算dx x⎰+41125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x 2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x 4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6=''()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f 6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y=的定义城为( )A.{x|x0}B.{x|x1}C.{x|x1}D.{x|0或1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.>D.ac>bc5.若<<,且sin=,则=( )A B. C. D.6.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=是( )A.奇函数,且在(0,+)单调递增B.偶函数,且在(0,+)单调递减C.奇函数,且在(-,0)单调递减D.偶函数,且在(-,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=的图像与直线x+3=0的交点坐标为( )A.(-3,-)B.(-3,)C.(-3,)D.(-3,-)14.双曲线-的焦距为()A.1B.4C.2D.15.已知三角形的两个顶点是椭圆C:+=1的两个焦点,第三个顶点在C上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{}中,若=10,则,+=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A. B. C. D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-<x<},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{}为等差数列,且=8.(1)求{}的公差d;(2)若=2,求{前8项的和.23.(本小题满分12分)设直线y=x+1是曲线y=+3+4x+a的切线,求切点坐标和a的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省2017年专升本选拔考试
一、 单项选择题(每小题4分,共20分)
1()r f x s
、若既约分数是整系数多项式的根,则下列结论中正确的是.)|(1),)|(1)A s r f s r f +--(( .)|(1),)|(1)B s r f s r f ++-((
.)|(1),)|(1)C s r f s r f +--(( .)|(1),)|(1)D s r f s r f ---((
2.,A B n 设、是阶方阵则下列结论正确的个数是
**1=AA A A () ()2T
T T AB B A =() 222+)+2A B A AB B =+(3)( 2(4)()()A E A E A E +-=-
A. 1
B. 2 .C 3 D. 4
3.3=A A 为n 阶方阵,
.3A A .B A .3n C A 3.D n A
4.若向量组中含有零向量,则此向量组
.A 线性相关 .B 线性无关
.C 线性相关或线性无关 .D 不一定
n A A 5、若阶方阵具有不同的特征值是与对角阵相似的
.A 充要条件 .B 充分而不必要条件
.C 必要而不充分条件 .D 既不充分也不必要条件
()3211231232222
1
23420()235152002100200120011=13=,,f x x x x x x x x ax bx cx d a b c a x b x c x d -=-+--⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭
++⎧⎪++⎨⎪++=⎩二、填空题(每小题分,共分)
1、把表示成的多项式是
、设四阶方阵A=,则A 的逆矩阵A 、若方向组有唯一解时,则满足
A =
4、设A 为三阶方阵,其特征值为-1,2,3,则 312125=1,2,3=0,1,2ααα=、在R 中,(),(),则,
三、计算题
43221()36+a ,()()()f x x x x x b g x x f x g x =-++=、设-1,a 与b 是什么数时,能被整除?
1+1111
1112=1
11+11111x
x y y --、计算行列式D
123123123
k 03030x x x x kx x x x x ++=⎧⎪+-=⎨⎪--+=⎩、k 为何值时,齐次线性方程组有非零解?并求出它的一般解。
10014=010100(1)2A A AQ -⎛⎫ ⎪ ⎪ ⎪⎝⎭
Λ=Λ
、设实对称矩阵求出的所有特征值和特征向量
()求一个正交矩阵Q 和对角矩阵,使得Q
四、证明题
1、证明:不含零向量的正交向量组是线性无关的。
()()2x (0)(1)x f f f f 、设是一个整系数多项式,证明:若、都是奇数,则不能有整数根
12221212,,3|,|,,,1,2,a b b a a b V a b F V a b F a b a a a b V V V V ⨯⎧⎧+⎫-⎫⎛⎫⎛⎫⎪⎪=∈=∈⎨⎬⎨⎬ ⎪ ⎪++⎝⎭⎝⎭⎪⎪⎭⎭⎩⎩
、已知F 为数域,,令()证明:是F 的子空间
()求的基
2144,++A A E O E E --=、设n 阶矩阵A 满足-2证明:A 可逆,并求(A )。