动态路由协议RIP与OSPF的配置

合集下载

rip协议与ospf协议

rip协议与ospf协议

rip协议与ospf协议协议名称:RIP协议与OSPF协议协议概述:RIP(Routing Information Protocol)和OSPF(Open Shortest Path First)是两种常用的动态路由协议,用于在计算机网络中实现路由选择和数据包转发。

本协议旨在详细介绍RIP协议和OSPF协议的定义、特点、工作原理、应用场景以及优缺点。

一、RIP协议1. 定义:RIP协议是一种距离向量路由协议,用于在小型网络中实现动态路由选择。

它通过交换路由信息来确定最佳路径,并使用跳数(hop count)作为度量标准。

2. 特点:- RIP协议使用UDP协议进行路由信息的交换,使用端口号520。

- RIP协议支持最大15跳的路由,超过15跳的路由会被认为是不可达。

- RIP协议每30秒广播一次路由表,以更新网络中的路由信息。

- RIP协议使用跳数作为度量标准,即选择跳数最少的路径作为最佳路径。

3. 工作原理:- RIP协议通过路由器之间的RIP消息交换来更新路由表。

- 路由器会周期性地广播自己的路由表给相邻的路由器,同时接收相邻路由器发送的路由表。

- 路由器根据接收到的路由表更新自己的路由表,并选择最佳路径。

- 当网络拓扑发生变化时,路由器会重新计算路由表。

4. 应用场景:- RIP协议适用于小型网络环境,如家庭网络、办公室网络等。

- 由于RIP协议的简单性和易于配置,它在一些简单的网络中仍然广泛使用。

5. 优缺点:- 优点:RIP协议配置简单,适用于小型网络环境,具有较好的兼容性。

- 缺点:RIP协议的收敛速度较慢,对于大型网络环境不适用,且容易产生路由环路。

二、OSPF协议1. 定义:OSPF协议是一种链路状态路由协议,用于在大型网络中实现动态路由选择。

它通过交换链路状态信息来确定最佳路径,并使用带宽、延迟等作为度量标准。

2. 特点:- OSPF协议使用IP协议进行路由信息的交换,使用标准的IP协议号89。

路由器的OSPF和RIP动态路由配置

路由器的OSPF和RIP动态路由配置

实验八路由器的OSPF和RIP动态路由配置实验课程:计算机网络工程实验项目:路由器的OSPF和RIP动态路由配置系:计算机系班级:08网络工程姓名:熊江红学号:200810803050一、实训目的和要求1、掌握路由器动态路由的概念、动态路由与静态路由的区别、动态路由的发现方法。

2、掌握路由器RIP和OSPF动态路由的基本配置命令和配置方法。

二.实验环境计算机2台路由器2至3台WINDOWS2000/XP三.网络拓扑图四、实训步骤(1)路由器接口ip配置并激活Router1的配置:Router(config)#int fa0/0Router(config-if)#ip add 192.168.1.1 255.255.255.0Router(config-if)#no shutRouter(config-if)#exitRouter(config)#int s2/0Router(config-if)#ip add 192.168.2.1 255.255.255.0 Router(config-if)#no shutRouter0的配置:Router(config)#interface Serial2/0Router(config-if)#ip address 192.168.2.2 255.255.255.0 Router(config-if)#no shutRouter(config)#int s3/0Router(config-if)#ip add 172.16.1.1 255.255.255.0 Router(config-if)#Router(config-if)#no shutRouter2的配置:Router(config)#int s2/0Router(config-if)#ip add 172.16.1.2 255.255.255.0 Router(config-if)#no shutRouter(config)#int fa0/0Router(config-if)#Router(config-if)#ip add 172.16.2.1 255.255.255.0 Router(config-if)#no shut(2)路由器同步串行端口的同步时钟频率配置Router(config-if)#clock rate 56000Router(config-if)#clock rate 56000Router(config-if)#clock rate 56000Router(config-if)#clock rate 56000(3)配置OSPF协议Router(config)#router ospf 10Router(config-router)#network 192.168.1.0 0.0.0.255 area 0 Router(config-router)#network 192.168.2.0 0.0.0.255 area 0Router(config)#router ospf 10Router(config-router)#network 192.168.2.0 0.0.0.255 area 0 Router(config-router)#network 172.16.1.0 0.0.0.255 area 1Router(config)#router ospf 10Router(config-router)#network 172.16.1.0 0.0.0.255 area 1 Router(config-router)#network 172.16.1.0 0.0.0.255 area 1运行实验结果。

路由器动态路由的配置方法

路由器动态路由的配置方法

路由器动态路由的配置⽅法⼀、实验⽬的:1.理解动态路由的⼯作原理;2. 学习并掌握动态路由协议RIP的配置;3.学习并掌握动态路由协议OSPF的配置;4.进⼀步学习路由器的配置命令。

⼆、实验原理:RIP:Routing Information Protocol,路由信息协议,是应⽤较早、使⽤较普遍的IGP内部⽹关协议,适⽤于⼩型同类⽹络,是典型的距离⽮量协议。

RIP协议跳数作为衡量路径开销的,RIP协议⾥规定最⼤跳数为15。

RIP协议有两个版本RIPv1和RIPv2。

RIPv1属于有类路由协议,不⽀持VLSM(变长⼦⽹掩码),RIPv1是以⼴播的形式进⾏路由信息的更新的;更新周期为30秒。

RIPv2属于⽆类路由协议,⽀持VLSM(变长⼦⽹掩码),RIPv2是以组播的形式进⾏路由信息的更新的,组播地址是224.0.0.9。

RIPv2还⽀持基于端⼝的认证,提⾼⽹络的安全性。

OSPF协议⽤链路状态来评估路由,可⽤于规模很⼤的⽹络。

OSPF可通过区域划分⽹络,对于规模较⼩的⽹络⼀般只设置⼀个区域0,对于规模较⼤的⽹络,可划分多个区域,其中区域0是必不可少的,它⽤于连接其它各区域。

OSPF协议采⽤组播⽅式进⾏OSPF包交换,组播地址为224.0.0.5(全部OSPF路由器)和224.0.06(指定路由器)。

OSPF协议的管理距离是110,低于RIP协议的120,所以如果设备同时运⾏OSPF协议和RIP协议,则OSPF协议产⽣的路由优先级⾼。

三、实验设备:Pc机、路由器、三层交换机四、实验拓扑图:五、实验过程:1、基本配置1)三层交换机的基本配置Switch(config)#vlan 10 !新建VLAN10Switch(config)#interface fastethernet0/1 !将F0/1放⼊VLAN10Switch(config-if)#switchport access vlan 10Switch(config)#vlan 50 !新建VLAN50Switch(config)#interface fastethernet0/5 !将F0/5放⼊VLAN50Switch(config-if)#switchport access vlan 50Switch(config-if)#exitSwitch(config)#interface vlan 10Switch(config-if)#ip address 192.168.1.2 255.255.255.0Switch(config-if)#no shutdown !创建VLAN 10虚拟接⼝,并配置IP Switch(config-if)#exitSwitch(config)#interface vlan 50Switch(config-if)#ip address 192.168.5.1 255.255.255.0Switch(config-if)#no shutdown !创建VLAN 50虚拟接⼝,并配置IP2)路由器基本配置在路由器A上配置端⼝IPRA(config)#interface fastethernet 1/0RA(config-if)#ip address 192.168.1.1 255.255.255.0RA(config-if)#no shutdownRA(config)#interface serial 2/0RA(config-if)#ip address 192.168.2.1 255.255.255.0RA(config-if)# Clock rate 64000 !配置其时钟频率64000RA(config-if)#no shutdown在路由器B上配置端⼝IPRB(config)#interface fastethernet 1/0RB(config-if)#ip address 192.168.3.1 255.255.255.0RB(config-if)#no shutdownRB(config)#interface serial 2/0RB(config-if)#ip address 192.168.2.2 255.255.255.0RB(config-if)#no shutdown2、配置RIPv2路由协议1)三层交换机配置RIP协议Switch(config)#router ripSwitch(config-router)#network 192.168.1.0 !申明本设备的直连⽹段Switch(config-router)#network 192.168.5.0Switch(config-router)#version 22)RA配置RIP v2协议RA(config)#router ripRA(config-router)#network 192.168.1.0RA(config-router)#network 192.168.2.0RA(config-router)#version 2RA(config-router)#no auto-summary !关闭路由信息的⾃动汇总功能3)RB配置RIP v2协议RB(config)#router ripRB(config-router)#network 192.168.2.0RB(config-router)#network 192.168.3.0RB(config-router)#version 2RB(config-router)#no auto-summary3、验证三台路由设备的路由表,查看是否⾃动学习了其他⽹段的路由信息。

动态路由协议:RIP与OSPF

动态路由协议:RIP与OSPF

动态路由协议:RIP 与OSPF1. 动态路由特点:减少管理任务、增加网络带宽。

2. 动态路由协议概述:路由器之间用来交换信息的语言。

3. 度量值:带宽、跳数、负载、时延、可靠性、成本。

4. 收敛:使所有路由表都达到一致状态的过程动态路由分类:自治系统(AS )内部网关协议(EIGRP 、RIP 、OSPF 、IGP )外部网关协议(EGP )按照路由执行的算法分类:距离矢量路由协议(RIP )链路状态路由协议(OSPF )两种结合(EIFRP )RIP :RIP 是距离矢量路由协议。

RIP 基本概念:定期更新(30秒)、邻居、广播更新、全路由表更新 RIP 最大跳数为15跳,16跳为不可达RIP 使用水平分割,防止路由环路:从一个接口学习到的路由信息,不再从这个接口发出去RIPv1:有类路由、RIPv2:无类路由OSPF :OSPF 是链路状态路由协议。

Router ID 是OSPF 区域内唯一标识路由器的IP 地址。

Router ID 选取规则:先选取路由器lookback 接口上最高的IP 地址,如果没有lookback 接口,就选取物理接口上的最高IP 地址。

也可以使用Router-id 命令手动指定。

OSPF 有三张表:邻接关系表、链路状态数据库、路由表》》首先建立邻接关系,然后建立链路数据库,最后通过SPF 算法算出最短路径树,最终形成路由表 OSPF 的度量值为COST (代价):COST=10^8/BW接口类型 代价(108/BW )Fast Ethernet 1Ethernet 1056K 1785OSPF 和RIP 的比较:OSPF RIP v1 RIP v2链路状态路由协议 距离矢量路由协议没有跳数的限制 RIP 的15跳限制,超过15跳的路由被认为不可达支持可变长子网掩码 (VLSM ) 不支持可变长子网掩码(VLSM ) 支持可变长子网掩码(VLSM )收敛速度快 收敛速度慢使用组播发送链路状态更新,在链路状态变化时使用触发更新,提高了带宽的利周期性广播整个路由表,在低速链路及广域网中应用将产生很大问题用率OSPF区域:为了适应大型的网络,OSPF在AS内划分多个区域,每个OSPF路由器只维护所在区域的完整链路状态信息。

交换机动态路由RIPOSPF实验报告

交换机动态路由RIPOSPF实验报告

交换机动态路由RIPOSPF实验报告一、引言动态路由协议是计算机网络中的重要组成部分,它负责实现网络之间的路由选择和转发功能。

RIPOSPF(Routing Information Protocol Open Shortest Path First)动态路由协议是一种基于开放最短路径优先算法的协议,用于在交换机网络中实现动态路由功能。

本实验旨在通过搭建网络拓扑,配置RIPOSPF协议并进行实际测试,验证其性能和可行性。

二、实验环境1.硬件环境:使用3台交换机,每台交换机具有4个端口,用于连接不同网络设备。

2.软件环境:搭建基于RIPOSPF协议的动态路由实验环境,使用Tcl脚本进行配置和控制。

三、实验步骤1.网络拓扑设计根据实验需求,设计一个适当的网络拓扑,包括多台交换机和端设备,使其形成一个较复杂的网络结构。

确保每台交换机都能与其他交换机进行通信。

2.配置RIPOSPF协议在每个交换机上配置RIPOSPF协议,包括路由器ID、网络连接、接口地址等。

确保配置的信息准确无误。

3.启动RIPOSPF协议使用Tcl脚本进行RIPOSPF协议的启动和控制,确保协议能够正常运行。

观察控制台输出,确保没有错误消息。

4.测试网络连通性在实验环境中添加一些端设备,通过ping命令测试不同网络设备之间的连通性。

观察ping结果,验证RIPOSPF协议是否能够正确选择路由。

5.模拟故障状况在实验过程中,模拟网络故障,例如断开某个网络连接或关闭某台交换机。

观察RIPOSPF协议的表现,验证其具备故障恢复和自适应能力。

6.性能评估通过实际测试和观察,评估RIPOSPF协议在实验环境中的性能。

可以统计路由更新时间、网络收敛时间等指标,分析协议的可靠性和实用性。

四、实验结果与分析在本次实验中,成功搭建了基于RIPOSPF协议的动态路由网络,实现了交换机之间的路由选择和通信功能。

经过测试,RIPOSPF协议表现出较好的性能和稳定性。

实验六 RIP动态路由信息协议配置

实验六  RIP动态路由信息协议配置

实验六RIP动态路由信息协议配置1.实验目的●理解通过传播、分析、挑选路由, 来实现路由发现、路由选择、路由切换等功能;●掌握RIP——路由信息协议配置方法;2。

实验前的准备●Internet上现在大量运行的路由协议有RIP、OSPF和BGP。

RIP、OSPF是内部网关协议,适用于单个ISP的统一路由协议的运行,由一个ISP运营的网络称为一个自治系统(AS)。

BGP是自治系统间的路由协议,是一种外部网关协议。

RIP是推出时间最长的路由协议,也是最简单的路由协议。

它是“路由信息协议”的缩写,主要传递路由信息(路由表)来广播路由:每隔30秒,广播一次路由表,维护相邻路由器的关系,同时根据收到的路由表计算自己的路由表。

RIP运行简单,适用于小型网络,Internet上还在部分使用着RIP。

OSPF协议是“开放式最短路优先”的缩写。

“开放”是针对当时某些厂家的“私有”路由协议而言,而正是为协议开放性,才造成OSPF今天强大的生命力和广泛的用途。

它通过传递链路状态(连接信息)来得到同网络信息,维护一张网络有向拓朴图,利用最小生成树算法(SPF算法)得到路由表。

OSPF是一种相对复杂的路由协议。

总的来说,OSPF、RIP都是自治系统内部的路由协议,适用于单一的ISP(自治系统)使用。

一般说来,整个Internet并不适合跑路由协议,因为各ISP有自己的利益,不愿意提供自身网络详细的路由信息。

为了保证各ISP利益,标准化组织制定了ISP间的路由协议BGP。

BGP是“边界网关协议”的缩写,处理各ISP之间的路由传递。

其特点是有丰富的路由策略,这是RIP、OSPF等协议无法做到的,因为它们需要全局的信息计算路由表。

BGP 通过ISP边界的路由器加上一定的策略,选择过滤路由,把RIP、OSPF、BGP等的路由发送对方。

全局范围的、广泛的Internet是BGP处理多个ISP间的路由的实例。

BGP的出现,引起了Internet的重大变革,它把多个ISP有机的连接起来,真正成为全球范围内的网络。

HCSE路由知识补充:静默接口在RIP和OSPF中效果的区分

HCSE路由知识补充:静默接口在RIP和OSPF中效果的区分

H3CSE路由知识补充:静默接口在RIP和OSPF中效果的区分H3CSE路由知识补充:静默接口在RIP和OSPF中效果的区分,静默接口技术是网络中一个常用的路由过滤的技术,静默接口的特点是只可以接收路由协议报文,但是不能发送路由协议报文。

但是静默接口在RIP和OSPF中呈现的效果是不一样的,今天的技术帖我们就给大家介绍一下这个技术。

拓扑图如下图所示:需求:RT1和RT2配置动态路由协议(RIP或者OSPF),在RT1上的G0/0/0接口配置成静默接口,查看接口消息和路由学习的过程。

RIP协议的配置:RT1的配置[RT1]rip[RT1-rip-1]version 2[RT1-rip-1]undo summary[RT1-rip-1]network 192.168.1.1[RT1-rip-1]network 192.168.2.0[RT1]rip[RT1-rip-1]silent-interface GigabitEthernet 0/0/0//把RT1连接RT2的G0/0/0接口配置成静默接口RT2的RIP配置与RT1类似,此处省略思路:RT1的G0/0/0接口配置静默接口,如果配置RIP协议,RT1的G0/0/0接口只接收RIP协议报文,不发送RIP协议报文。

因为RIP协议没有发送hello报文寻找邻居的过程,RIP会直接进行路由协议报文的交互,所以RT1不会发送路由协议报文给RT2,但是RT1可以从G0/0/0接口接收到路由协议报文。

所以RT1的路由表中有RT2的路由,RT2的路由表中没有RT1的路由。

在RT2设备上使用debug命令查看,在没有配置静默接口之前,RT2可以接收到RT1发送的报文,如下图所示:但是配置静默接口之后,RT2只能发送RIP协议报文,但是RT1没有发送报文给RT2,所以RT2的接口收不到协议报文,如下图所示:RT2的路由表没有RT1的路由,如下图所示:RT1的路由表有RT2的路由,如下图所示:OSPF的静默接口配置:RT1的配置[RT1]ospf[RT1-ospf-1]area 0[RT1-ospf-1-area-0.0.0.0]network 192.168.1.1 0.0.0.0[RT1-ospf-1-area-0.0.0.0]network 192.168.2.0 0.0.0.255[RT1-ospf-1]silent-interface GigabitEthernet 0/0/0//RT1的G0/0/0接口配置静默接口RT2的配置与RT1类似,此处省略思路:OSPF在工作过程中首先会发送hello报文寻找邻居,所以没有配置静默接口之前,RT2是可以接收到RT1的hello报文,如下图所示:但是RT1的G0/0/0接口配置静默接口,那么RT1的G0/0/0接口就不会发送hello报文给RT2,此时使用debug命令发现RT2只有发送的hello报文,没有接收的hello报文,如下图所示:此时RT1和RT2的邻居关系已经解除了,如下图所示:因为邻居关系都没有正常形成,更不能进行LSA的交互,此时RT1和RT2都没有对方的路由信息,如下图所示:南京建策科技股份有限公司于2004年成立,是IT教育培训中心。

RIP.RIGRP.OSPF协议对比

RIP.RIGRP.OSPF协议对比

路由协议(RIP、OSPF、EIGRP和BGP) 整理对于路由器而言,要找出最优的数据传输路径是一件比较有意义却很复杂的工作。

最优路径有可能会有赖于节点间的转发次数、当前的网络运行状态、不可用的连接、数据传输速率和拓扑结构。

为了找出最优路径,各个路由器间要通过路由协议来相互通信。

需要区别的一点是:路由协议与可路由的协议是不是等同的。

如TCP/IP和IPX/SPX,尽管它们可能处于可路由的协议的顶端。

路由协议只用于收集关于网络当前状态的数据并负责寻找最优传输路径。

根据这些数据,路由器就可以创建路由表来用于以后的数据包转发。

除了寻找最优路径的能力之外,路由协议还可以用收敛时间—路由器在网络发生变化或断线时寻找出最优传输路径所耗费的时间来表征。

带宽开销—运行中的网络为支持路由协议所需要的带宽,也是一个较显著的特征。

尽管并不需要精确地知道路由协议的工作原理,你还是应该对最常见的路由协议有所了解:RIP、OSPF、EIGRP和BGP(还有更多的其他路由协议,但它们使用得并不广泛)此外还IGRP路由选择协议,它是Cisco公司设备专用协议,其它非Cisco设备不能使用这样协议。

对这四种常见的路由协议描述如下。

(1) 为IP和IPX设计的RIP(路由信息协议):RIP是一种最早先的路由协议,但现在仍然被广泛使用,这是由于它在选择两点间的最优路径时只考虑节点间的中继次数这个原因的缘故。

例如,它不考虑网络的拥塞状况和连接速率这些因素。

使用RIP的路由器每30秒钟向其他路由器广播一次自己的路由表。

这种广播会造成极大的数据传输量,特别是网络中存在有大量的路由器时。

如果路由表改变了,新的信息要传输到网络中较远的地方,可能就会花费几分钟的时间;所以RIP的收敛时间是非常长的。

而且,RIP还限制中继次数不能超过16跳(经过16台路由器设备)。

所以,在一个大型网络中,如果数据要被中继16跳以上,它就不能再传输了。

而且,与其他类型的路由协议相比,RIP还要慢一些,而安全性却差一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南大学信息科学技术学院实验报告实验名称:动态路由协议RIP与OSPF的配置学号:20151681310139 姓名:李新宇班级:电子信息类05班一、实验目的1、熟悉CISCO IOS和CLI命令模式的使用;2、了解和掌握路由器基本配置命令的使用;3、掌握动态路由协议的配置;4、掌握VLAN中路由器的设置;3.掌握RIP与OSPF路由协议及其配置。

二、实验设备与环境Windows 2000 Server/Advance Server主机局域网、CISCO Catalyst 2950交换机和2600系列路由器,Cisco Packet Tracer 7.0软件。

三、实验内容3.1 课内实验任务(2)实验过程0)创建拓扑图1)采用配置PC1和PC2的IP地址和子网掩码。

2)连接到路由器Router3,配置路由器的RIP,命令如下:Router>enableRouter#conf terminalRouter(config)#hostname R3R3(config)#interface FastEthernet 0/0R3(config-if)#ip address 11.0.0.1 255.255.255.0R3(config-if)#no shutdownR3(config-if)#interface FastEthernet 0/1R3(config-if)#ip address 12.0.0.1 255.255.255.0R3(config-if)#no shutdownR3(config-if)#interface serial 0R3(config-if)#ip address 10.0.0.1 255.255.255.0R3(config-if)#bandwidth 128 //设置链路带宽为128kbit/sR3(config-if)#clock rate 64000 //设置DCE设备的时钟速率R3(config-if)#no shutdownR3(config-if)#exit-------------设置路由器R3的RIP -------------------------------------- R3(config)#router rip //设置RIPR3(config-router)#network 10.0.0.0 //设置接口S0连接的网络地址R3(config-router)#network 11.0.0.0//设置接口E0连接的网络地址R3(config-router)#network 12.0.0.0 //设置接口E1连接的网络地址R3(config-router)#endR3(config)#router rip//设置RIPR3(config-router)#network 10.0.0.0//设置接口S0连接的网络地址R3(config-router)#network 11.0.0.0//设置接口E0连接的网络地址R3(config-router)#network 12.0.0.0//设置接口E1连接的网络地址R3(config-router)#endR3#%SYS-5-CONFIG_I: Configured from console by console//配置过程不再列出5)按照步骤(3)分别完成对路由器R1、R2、R4的RIP配置。

R1(config)#router rip //设置路由器R1的RIPR1(config-router)#network 11.0.0.0R1(config-router)#endR1(config)#router rip //设置路由器R1的RIPR1(config-router)#network 11.0.0.0R1(config-router)#endR1#%SYS-5-CONFIG_I: Configured from console by console------------设置路由器R2的RIP ---------------------------------------R2(config)#router rip //设置路由器R2的RIPR2(config-router)#network 12.0.0.0R2(config-router)#endR2(config)#router rip //设置R2的RIPR2(config-router)#network 12.0.0.0R2(config-router)#endR2#%SYS-5-CONFIG_I: Configured from console by console------------设置路由器R4的RIP---------------------------------------R4(config)#router rip //设置路由器R4的RIPR4(config-router)#network 10.0.0.0R4(config-router)#network 192.168.1.0R4(config-router)#endR4(config)#rout rip //设置R4的ripR4(config-router)#network 10.0.0.0R4(config-router)#network 192.168.1.0R4(config-router)#end6)连接到路由器R1中,通过命令“show ip route”显示R1的动态路由表,观察路由表项,当目标网络是192.168.1.0/24时,需要多少跳数(hops)?通过命令“show ip protocols”查看每台路由器的协议。

R1>show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRGateway of last resort is not setR 10.0.0.0/8 [120/1] via 11.0.0.1, 00:00:20, FastEthernet0/011.0.0.0/24 is subnetted, 1 subnetsC 11.0.0.0 is directly connected, FastEthernet0/0R 12.0.0.0/8 [120/1] via 11.0.0.1, 00:00:20, FastEthernet0/0R 192.168.1.0/24 [120/2] via 11.0.0.1, 00:00:20, FastEthernet0/0答;有路由表可知,到达192.168.1.0需要两跳。

显示协议如下R1>show ip protocolRouting Protocol is "rip"//协议是RIP协议Sending updates every 30 seconds, next due in 13 secondsInvalid after 180 seconds, hold down 180, flushed after 240Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not setRedistributing: ripDefault version control: send version 1, receive any versionInterface Send Recv Triggered RIP Key-chainFastEthernet0/0 1 2 1Automatic network summarization is in effectMaximum path: 4Routing for Networks:11.0.0.0Passive Interface(s):Routing Information Sources:Gateway Distance Last Update11.0.0.1 120 00:00:19Distance: (default is 120)7)连接到R2、R3和R4,通过“show ip route”和“show ip protocols”命令查看每台路由器的路由表和协议。

R2: R2的路由表:R2>show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeR 10.0.0.0/8 [120/1] via 12.0.0.1, 00:00:19, FastEthernet0/0R 11.0.0.0/8 [120/1] via 12.0.0.1, 00:00:19, FastEthernet0/012.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, FastEthernet0/0R 192.168.1.0/24 [120/2] via 12.0.0.1, 00:00:19, FastEthernet0/0//需要两跳R2所用协议:R2>show ip protocolsRouting Protocol is "rip"Sending updates every 30 seconds, next due in 11 secondsInvalid after 180 seconds, hold down 180, flushed after 240Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not set Redistributing: ripDefault version control: send version 1, receive any versionInterface Send Recv Triggered RIP Key-chainFastEthernet0/0 1 2 1Automatic network summarization is in effectMaximum path: 4Routing for Networks:12.0.0.0Passive Interface(s):Routing Information Sources:Gateway Distance Last Update12.0.0.1 120 00:00:25Distance: (default is 120)R3:R3路由表:R3>show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set10.0.0.0/24 is subnetted, 1 subnets11.0.0.0/24 is subnetted, 1 subnetsC 11.0.0.0 is directly connected, FastEthernet0/012.0.0.0/24 is subnetted, 1 subnetsC 12.0.0.0 is directly connected, FastEthernet0/1R 192.168.1.0/24 [120/1] via 10.0.0.2, 00:00:09, Serial0/0//需要一跳R3协议:R3>show ip protocolRouting Protocol is "rip"Sending updates every 30 seconds, next due in 12 secondsInvalid after 180 seconds, hold down 180, flushed after 240Outgoing update filter list for all interfaces is not setIncoming update filter list for all interfaces is not set Redistributing: ripDefault version control: send version 1, receive any versionInterface Send Recv Triggered RIP Key-chainSerial0/0 1 2 1FastEthernet0/0 1 2 1FastEthernet0/1 1 2 1Automatic network summarization is in effectMaximum path: 4Routing for Networks:10.0.0.011.0.0.012.0.0.0Passive Interface(s):Routing Information Sources:Gateway Distance Last Update10.0.0.2 120 00:00:14Distance: (default is 120)R4:R4路由表:R4>show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set10.0.0.0/24 is subnetted, 1 subnetsC 10.0.0.0 is directly connected, Serial0/0R 12.0.0.0/8 [120/1] via 10.0.0.1, 00:00:03, Serial0/0C 192.168.1.0/24 is directly connected, FastEthernet0/0R4协议:R4>show ip protocolsRouting Protocol is "rip"Sending updates every 30 seconds, next due in 1 seconds Invalid after 180 seconds, hold down 180, flushed after 240 Outgoing update filter list for all interfaces is not set Incoming update filter list for all interfaces is not set Redistributing: ripDefault version control: send version 1, receive any version Interface Send Recv Triggered RIP Key-chainSerial0/0 1 2 1FastEthernet0/0 1 2 1Automatic network summarization is in effectMaximum path: 4Routing for Networks:10.0.0.0192.168.1.0Passive Interface(s):Routing Information Sources:Gateway Distance Last Update10.0.0.1 120 00:00:24Distance: (default is 120)8)使用ping命令测试到路由器各接口的连通状态,以检测路由器的配置。

相关文档
最新文档