热交换器原理与设计 第1章_热交换器基本原理
1 热交换器的热基本计算

Q-热负荷,W; M1,M2- 分别为热流体与冷流体的质量流量,kg/s; h1,h2-分别为冷热流体的焓,J/kg; 1代表热流体,2代表冷流体;
代表流体的进口状态, 代表流体的出口状态。
热计算基本方程式
热平衡方程式
Q M1 h1 h1 M 2 h2 h2
当流体无相变时,热负荷也可用下式表示:
为修正系数
其它流动方式时的平均温差
tm tlm,c
若令
t2 t2 冷流体的加热度 P t2 两流体的进口温差 t1 t1 热流体的冷却度 t1 R t2 冷流体的加热度 t2
P的数值代表了冷流体的实际吸热量与最大可能的 吸热量的比率,称为温度效率,恒小于1。 R是冷流体的热容量与热流体的热容量之比, 可以大于1、等于1或小于1。
t t e
μkA
t x t e
-μ kAx
t ln μ kA t
t t t t tm ( 1) t t t ln ln t t
由于式中出现了对数,故常把tm称为对数平均温差。
d dt1 qm1c1 d dt2 qm 2c2
由于qm1c1和qm2c2 不变,则d↓ , dt1、dt2↓
故沿着流体流动方向,冷热流体温度变化渐趋平缓,温 度分布曲线形状的凹向不可能反向。
逆流情况下的平均温差
逆流换热器中冷、热流体温度的沿程变化如下图。
d k[t1 ( x) t2 ( x)]dA kt ( x)dA
d[t ( x)] k t ( x)dAx
顺流情况下的平均温差
1 1 d[t ( x)] dt1 ( x) dt2 ( x) qm1c1 qm2c2 d d
热交换器原理与设计期末复习重点1

0绪论一、定义1、热交换器:在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备。
2、换热过程:在炼油、化工生产以及绝大多数工艺过程中都有加热、冷却和冷凝过程。
3、注意:在热交换器中至少有两种流体参加换热。
一种流体温度较高,放出热量,另一种流体温度较低,吸收热量。
二、热交换器在工程中广泛应用1、锅炉设备中的:过热器、省煤器、空气预热器;2、电厂热力系统中的:凝汽器、除氧器、给水加热器、冷水塔等;3、制冷工业中:蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;4、冶金工业中高炉中的:热风炉,炼钢和轧钢生产工艺中的空气或煤气预热;5、制糖工业和造纸工业中的:糖液蒸发器和纸浆蒸发器。
三、衡量换热器的指标1、传热效率高(传热系数大)2、结构要紧凑(比表面积:传热面积与换热设备体积之比。
要大)3、要节省材料(比重量:单位体积消耗材料。
要小)4、压力降要小(流动阻力小)5、要求结构可靠、制造成本低、便于安装检修、使用周期长。
四、热交换器的分类1. 按照用途来分类(1)加热器:用于把流体加热到所需温度,被加热流体在加热过程中不发生相变。
(2)预热器:用于流体的预热,以提高整套工艺装置的效率。
(3)过热器:用于加热饱和蒸汽,使其达到过热状态。
(4)蒸发器:用于加热液体,使其蒸发汽化。
(5)再沸器:用于加热已被冷凝的液体,使其再受热汽化。
为蒸馏过程专用设备。
(6)冷却器:用于冷却流体,使其达到所需温度。
(7)冷凝器:用于冷却凝结性饱和蒸汽,使其放出潜热而凝结液化。
(8)再热器:用于电厂再热循环。
(9)回热器:用于冷凝液的过冷。
(10)省煤器:用于加热锅炉的给水。
2. 按照制造的材料分类(1)金属材料换热器由金属材料加工制成的换热器。
常用的材料有碳钢、合金钢、铜及铜合金、铝及铝合金、钛及钛合金等。
因金属材料导热系数大,故此类换热器的传热效率高。
(2)非金属材料换热器有非金属材料制成的换热器。
常用的材料有石墨、玻璃、塑料、陶瓷等。
热交换器原理与设计

绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)

两种流体中只有一种横向混合的错流式热交换器,其 值为:
能源与动力工程教研室
对于某种特定的流动形式, 是辅助参数P、R的函 数 f ( P, R) 该函数形式因流动方式而异。
对于只有一种流体有横向混合的错流式热交换器, 可将辅助参数的取法归纳为:
t m ,算术
t max t min 2
使用条件:如果流体的温度沿传热面变化不大, 范围在
t max 2 内可以使用算数平均温差。 t min
能源与动力工程教研室
算术平均与对数平均温差
t m ,算术
t max t min 2
t m ,对数
t max t min t max ln t min
R 1 t t 2 2 1 P ln 1 PR
的函数
t1m,c
能源与动力工程教研室
为了简化 的计算,引入两辅助参数:
t 2 t2 p t2 t1
t1 t1 R t 2 t2
冷流体的加热度 两种流体的进口温差
能源与动力工程教研室
1.2 平均温差
1.2.2 顺流和逆流情况下的平均温差
简单顺流时的对数平均温差 假设:
(1)冷热流体的质量流量qm2、qm1 以及比热容c2, c1是常数; (2)传热系数是常数;
(3)换热器无散热损失; (4)换热面沿流动方向的导热量 可以忽略不计。 下标1、2分别代表热冷流体。 上标1撇和2撇分别代表进出口
能源与动力工程教研室
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:
热交换器原理与设计第1章 热交换器基本原理

W K1S dd2tx 212dd1txdd2txadd2txb (g)
将式(d)、(e)代入式(g):
W K1Sdd2tx212dd1txW K2S t2bt2a
(h)
将式(b)代入式(h)并整理:
dd2t2 x 12W 1Kd dS 1txW K2S2t1 t10
(i)
此为壳侧流体温度沿流动方向的微分方程。
热平衡:W1(t′1 – t″1) =W2(t″2 – t′2) (a)
x=x到x=L段的热平衡:
W1(t′1 – t1) =W2(t2b – t2a) (b)
微元段dx内,设热流体放热量dQ1,冷流体第一 流程吸热量dQ′2,第二流程吸热量dQ″2,则:
dQ1=W1dt1;dQ′2=W2dt2;dQ″2= –W2dt2b
t’
t1 (hot) t”
t2 (cold) x
顺流
t
t’
t1
t”
t2 x
逆流
1.2 平均温差
对顺、逆流的传热温差分析,作如下假设: 1. 冷热流体的质量流量和比热是常数; 2. 传热系数是常数; 3. 热交换器没有热损失; 4. 换热面沿流动方向的导热量可以忽略不计; 5. 同种流体从进口到出口既无相变也无单相
故: W1dt1 =W2 (dt2a – dt2b)
(c)
若整以S表示每一流程中单位长度上的 传热面积,则:
W2dt2a =KS(t1 – t2a)dx
(d)
W2dt2b = –KS(t1 – t2b)dx (e)
将式(d)、(e)代入式(c)得:
W K1Sdd1tx21tt2at2b
(f)
将此式对x微分,则:
校核性计算 针对现有换热器,确定流体的进出口温度。了解 其在非设计工况下的性能变化,判断其是否能满 足新的工艺要求。
全热交换器的工作原理

全热交换器的工作原理
全热交换器是一种常见的热交换器类型。
它主要用于回收和利用建筑物和工业
过程中的余热。
与传统的热回收系统相比,全热交换器可以回收和利用空气中的热量和湿度,从而更有效地节约能源。
下面是全热交换器的工作原理及其优点。
工作原理
全热交换器的核心部分是热交换器核心。
热交换器核心由多个平行的薄板组成,每个薄板都有许多小孔。
当新鲜空气从一个管道进入热交换器核心时,它被分配到每个薄板上的小孔中。
同时,废气从另一个管道进入热交换器核心,通过小孔流入薄板的相邻侧。
这样,新鲜空气和废气通过热交换器核心平行流动,但不相互混合。
在这个过程中,温度和湿度的热能被传递给了新鲜空气。
当新鲜空气进入室内时,它已经被加热和加湿,使得室内的温度和湿度得以改变。
由于新鲜空气和废气没有相互混合,所以热交换过程是高效的。
优点
1.节约能源
全热交换器可以在室内回收和利用废气中的热量和湿度,从而节约能源。
据统计,全热交换器可以使空调系统的能耗降低20~40%。
2.提高室内空气质量
全热交换器可以过滤室内和室外的空气,从而减少室内污染物的浓度,提高室
内空气质量。
3.保持室内舒适
全热交换器可以平衡室内和室外的温度和湿度,从而使室内气温和湿度更加舒适。
4.方便维护
全热交换器的结构简单,易于维护和清洁。
小结
全热交换器是一种高效的热回收系统,它可以在室内回收和利用废气中的热量
和湿度,从而节约能源并提高室内空气质量。
由于其简单的构造和易于维护,全热交换器被广泛应用于建筑物和工业过程中。
换热器原理与设计课后题答案史美中国

换热器原理与设计课后题答案史美中国热交换器原理与设计热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。
(2013-2014学年第二学期考题[名词解释])热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式按照传热量的方法来分间壁式、混合式、蓄热式。
(2013-2014学年第二学期考题[填空])1热交换器计算的基本原理(计算题)热容量(W=Mc):表示流体的温度每改变1C时所需的热量温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释])传热有效度(e):实际传热量Q与最大可能传热量Q之比2管壳式热交换器管程:流体从管内空间流过的流径。
壳程:流体从管外空间流过的流径。
<1-2>型换热器:壳程数为1,管程数为2卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释])记:前端管箱型式:A-平盖管箱B一--封头管箱壳体型式:一一单程壳体F一一具有纵向隔板的双程壳体H一双分流后盖结构型式:P一一填料函式浮头S一一钩圈式浮头U一一U形管束一-管子在管板上的固定:胀管法和焊接法管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。
(2013-2014学年第二学期考题[填空])管壳式热交换器的基本构造: (1)管板(2)分程隔板(3)纵向隔板、折流板、支持板(4)挡板和旁路挡板(5)防冲板产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。
热交换器中的流动阻力:摩擦阻力和局部阻力管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力管程、壳程内流体的选择的基本原则: (P74)管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。
核电站中的热交换器工作原理解析

核电站中的热交换器工作原理解析热交换器是核电站中的重要设备,用于实现热量的传递与转移。
本文将对核电站中的热交换器的工作原理进行详细解析。
一、热交换器的定义与分类热交换器是一种用于传递热能的设备,能够实现两种介质之间的热量转移。
根据工作原理和构造形式的不同,热交换器可以分为多种类型,如壳管式、板式、管式等。
二、壳管式热交换器的工作原理壳管式热交换器是核电站中常用的热交换器类型之一。
其主要结构包括壳体、管束、管板等组成。
当热交换器运行时,热载体进入壳体内,经过管束内的管道,与管道内的冷却介质进行热量交换。
热载体从一侧进入,流动经过管道,并在管道内释放热量,同时冷却介质从另一侧进入,流过管道,并吸收热量。
通过壳体外的管板对热量的传递和转移进行调节和控制,实现两种介质之间的热量交换。
三、板式热交换器的工作原理板式热交换器是另一种常见的热交换器类型,其主要由一系列平行排列的金属板组成。
每个板上都有一系列的波动或堆叠形式,以增加板之间的接触面积。
板式热交换器中的热载体和冷却介质分别从不同的通道进入,流动经过板子之间的通道。
由于板子间的波动或堆叠形式,热载体和冷却介质之间的接触面积增加,从而提高了热量的传递效率。
热载体和冷却介质通过板式热交换器内部的通道进行交换,并完成热量转移。
四、管式热交换器的工作原理管式热交换器是一种采用管束形式进行热量传递的热交换器类型。
其主要由一组相互交织的管束组成。
管式热交换器中,热载体和冷却介质分别通过不同的管道进入,流经管束内的管道,并在管道内进行热量交换。
热载体在管道内流动并释放热量,而冷却介质则通过管道,吸收热量。
通过管束的设计和调整,可以实现热量的传递和转移。
五、热交换器的应用与未来发展热交换器广泛应用于核电站等能源领域,用于处理、传递和转移大量的热能。
热交换器的工作原理和性能对核电站的运行稳定性和效率起着重要作用。
未来,随着能源技术的发展和能源需求的增加,热交换器在核电站中的应用将进一步扩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 热计算基本方程
1. 传热方程:
Q = k·F·Δtm
F
Q = 0 k·Δt·dF
2.
热
Q M1 i1' i1" M2 i2" i2'
平 衡
Q1 -M1C1 t1" t1' M1C1Δt1
按两种流体的相对流动方向分: 顺流、逆流、顺逆混合流、交叉流
按用途分:
1. 加热器:用于把流体加热到所需的温度。 2. 预热器:用于流体的预热,以提高整套工艺
装置的效率。 3. 过热器:用于加热饱和蒸汽,使其达到过热状态。 4. 冷却器:用于冷却流体,使其达到所需温度。 5. 蒸发器:用于加热液体,使其蒸发汽化。 6. 冷凝器:用于冷却凝结性饱和蒸汽,使其放出
如各种管壳式、板式结构的换热器。
Q
冷 流 tw2 体 t2
2. 混合式换热器 (直接接触式) 冷、热流体直接接触,相互 混合传递热量。
特点:结构简单,传热效率高。 适于冷、热流体允许混合的场合。 如冷却塔、喷射式等。
热流体 冷流体
3. 蓄热式换热器(回流式换热器、 蓄热器) 借助于热容量较大的固体蓄热
却。如回转式空气预热器。
按材料分:
1. 金属材料换热器 常用的材料有碳钢、合金钢、铜及铜合金、
铝及铝合金、钛及钛合金等。因金属材料导热 系数大,故此类换热器的传热效率高。 2. 非金属材料换热器
常用的材料有石墨、玻璃、塑料、陶瓷等。 因非金属材料导热系数较小,故此类换热器的 传热效率较低。常用于具有腐蚀性的物系。
1 W2
dQ
对逆流:
Δt = t1 – t2 → dΔt = dt1 – dt2
dQ = k·Δt·dF
热流体:
dQ
- M1c1dt 1
dt1
-
1 W1
dQ
冷流体:
dQ
- M 2c2dt
2
dt
2
-
1 W2
dQ
dΔt
1 W1
1 W2
dQ
μdQ
+ - μ 1 1 W1 W2
内部构造
管壳式换热器的外形
管壳式换热器端部流程安排
多流程焊接式换热器
1 热交换器热计算基本原理
热(力)计算是换热器设计的基础
以间壁式换热器为基础介绍换热器的热(力)计算, 其他形式的换热器计算方法相同。
设计性计算 设计新换热器,确定其面积。但同样大小的传热 面积可采用不同的构造尺寸,而不同的构造尺寸 会影响换热系数,故一般与结构计算交叉进行。
以顺流为例:已知冷热流体的进出口温度,
针对微元换热面dF一段的传热,温差为:
Δt=t1 – t2 → dΔt=dt1 – dt2
通过微元面dF,两流体的换热量为:
dQ=k·Δt·dF
分别对热流体与冷流体:
热流体: dQ
- M1c1dt 1
dt1
-1 W1
dQ
冷流体:
dQ
M2c2dt 2
dt 2
体,将热量由热流体传给冷流体。
有固体壁面,两流体并非同时, 冷流体
热流体
而是轮流与壁面接触。当与热
流体接触,蓄热体接受热量,温
度升高;与冷流体接触,将热量 传给冷流体,蓄热体温度下降,
热流体
冷流体
达到换热目的。 特点:结构简单,可耐高温,
蓄热式换热器示意图
体积庞大,不能完全避免两种流
体的混和。
适于高温气体热量的回收或冷
t2″
d:顺流,无相变
t1′
t1′ 过热蒸汽冷却
放热
冷凝
t2″
t1″ t2″
过冷
t1″
Байду номын сангаас吸热
t2′
吸热
t2′
e :逆流,无相变
f :一种流体有相变
t1′
放热
t2″ 过热
t1′ t1″ t2″
沸腾 吸热 t2′
部分冷凝
t1″
吸热
t2′
g :一种流体有相变
h:可凝蒸气和非凝结性 气体混合物的冷凝
1.2.2 顺流、逆流下的平均温差
热交换器原理与设计
(第6版)
换热器分类与型式
1 换热器的定义:将某种流体的热量以一定的传热
方式传递给他种流体的设备。
2 换热器的分类:
间壁式
按热量传递方式分:
混合式 蓄热式
套管式
交 壳叉 管流 式(换管热壳器式)
管束式 管翅式
板式
板翅式
螺旋板式
方 程
Q2 M2C2 t2" t2' M2C2Δt2
热容量: W = M·C (W/℃) Q = W1 ·Δt1 =W2 ·Δt2
W1 Δt2 W2 Δt1
平行流:顺流和逆流
Hot fluid Cold fluid
Hot fluid Cold fluid
t t’
t1 (hot) t”
:顺流 :逆流
dΔt μdQ μkΔtdF
dΔt μkdF Δt
Δtx dΔt μk Fx dF
Δt Δt
要计算整个换热的平均温差,首先需要知道 温差随换热面的变化,即 Δtx= f(Fx),然后再沿 整个换热面积进行平均。
1.2.1 流体的温度分布
t1 冷凝
t1 冷凝
t2 沸腾
t2′
a:两种流体都有相变
t1′
t1′
放热
t1″
t2 沸腾
t2′
c:一种流体有相变
t2″
吸热
b:一种流体有相变
放热
t1″
吸热
潜热而凝结液化。 7. 再沸器:用于加热已被冷凝的液体,使其再受热
汽化。为蒸馏过程专用设备。
按热量传递方式分:
1. 间壁式换热器(表面式换热器、 t1
间接式换热器) 冷、热流体被固体壁面隔开, 互不接触,热量由热流体通过
热Q
流 体
tw1
壁面传递给冷流体。
形式多样,应用广泛。
适于冷、热流体不允许混和的场合。
按传热面形状和结构分
1. 管式换热器 通过管子壁面进行传热的换热器。按传热管
结构形式可分为管壳式换热器、蛇管式换热器、 套管式换热器、翅片式换热器等。 2. 板式换热器
通过板面进行传热的换热器。按传热板的结 构形式可分为平板式、螺旋板式、板翅式等。 3. 特殊形式换热器
根据工艺特殊要求而设计的具有特殊结构的 换热器。如回转式、热管式换热器等。
t2 (cold) x
顺流
t
t’
t1
t”
t2 x
逆流
1.2 平均温差
对顺、逆流的传热温差分析,作如下假设:
1. 冷热流体的质量流量和比热保持定值; 2. 传热系数是常数; 3. 热交换器没有热损失; 4. 沿流动方向的导热量可以忽略不计; 5. 同一种流体从进口到出口,不能既有相变又
有单相对流换热。