热交换器原理与设计管壳式热交换器
管壳式换热器的课程设计

避免选用不合适的材料导致设备损坏 或安全事故;注意材料的兼容性和与 其他材料的接触情况;考虑材料的可 加工性和安装维护的便利性。
04
管壳式换热器的优化设计
传热效率优化
01
传热效率
通过选择合适的材料、优化管程和壳程流体的流速和温度,以及采用强
化传热技术,如增加翅片、改进管子形状等,提高换热器的传热效率。
管件与结构
优化换热器内部的管件和 结构,减少流体流动过程 中的局部阻力,降低压力 损失。
结构强度优化
1 2
应力分析
对换热器进行详细的应力分析,确保其在正常操 作条件下具有足够的结构强度和稳定性。
材料选择
根据使用条件和要求,选择合适的材料和厚度, 以提高换热器的结构强度和耐腐蚀性。
3
支撑与固定
合理设计换热器的支撑和固定结构,以减小应力 集中和振动,提高其结构强度和使用寿命。
新材料与新技术的应用
新型材料
采用高导热性能的复合材料、纳米材料等,提高换热器的传热效率。
新型涂层
利用先进的涂层技术,如陶瓷涂层、金属氧化物涂层等,增强换热器的抗腐蚀和 耐磨性能。
节能减排与环保要求
高效节能
研发低能耗的换热器,优化换热器结构,降低运行过程中的能源消耗。
环保设计
采用无毒、无害的材料,减少换热器对环境的影响,同时对换热器产生的废弃物进行环保处理。
能源与动力工程领域的应用
发电厂
管壳式换热器可用于加热和冷却发电厂中的各种 流体,如锅炉给水、凝结水和冷却水等。
船舶工程
在船舶工程中,管壳式换热器可用于船舶发动机 的冷却和加热,以及生活用水的加热和冷却。
采暖系统
在供暖系统中,管壳式换热器可用于将热量从热 源传递到水中,为建筑物提供热水供暖。
《热交换器原理与设计》热交换器设计

结构紧凑,制造简便,单位体积设备内的传热面积约为列管式换 热器的3倍。
操作压力和温度不能太高,尤其是所能承受的压力比较低,操作 压力只能在20atm以下,操作温度约在300-400℃以下。
37
具有的共同特点
①强化传热的凹凸形波纹; ②用以安装密封垫片的密封槽; ③介质进出的角孔; ④板片悬挂装置(缺口); ⑤保证密封垫片压紧时对中的定 位缺口; ⑥板片组装后保持流道一定的间 隙、并使流层“网状”化的触点, 可使板片在两侧介质有压差情况 下减少板片的变形; ⑦使介质能均匀沿板片流道宽度 分布的导流槽;
1—上导杆;2—垫片;3—传热板片;4—角孔; 5—前支柱;6—固定端板;7—下导杆;8—活动端板
29
30
a 传热板片
作用: 流体在低速下发生强烈湍流,以强化传热 提高板片刚度,能耐较高的压力
类型:
人字形板
水平平直波纹板
锯齿形板
31
32
人字形波纹片
33
板片的样式
34
35
水平平直波纹
36
17
组成 传热板片
密封垫圈
压紧装置 轴及接口管等
18
板式换热器的构造
19
20
21
平板式换热器的工作原理
若干矩形板片,其上四角开有圆孔,通过圆孔外设置或不 设置圆环形垫片可使每个板间通道只留两个孔相连。
(a)平板式换热器流向示意图
b)平板式换热器板片
平板式换热器
22
工作过程
板四角开有角孔,流体由一个角孔流入,即在两块板形成的流道 中流动,而经另一对角线角孔流出(该板的另外两个角孔则由垫 片堵住),流道很窄,通常只有3~4 mm,冷热两流体的流道彼 此相间隔。为了强化流体在流道中的扰动,板面都做成波纹形。 板片间装有密封垫片,它既用来防漏,又用以控制两板间的距离。 冷热两流体分别由板的上、下角孔进入换热器,并相间流过奇数 及偶数流道,然后再从下、上角孔流出。传热板片是板式换热器 的关键元件,不同类型的板片直接影响到传热系数、流动阻力和 承受压力的能力。 板片的材料,通常为不锈钢,对于腐蚀性强的流体(如海水冷却 器),可用钛板。
热交换器原理与设计第2章 管壳式热交换器

☆挡管是两端堵死的管子,安置在相应于分程隔板槽后面的 位置上,每根挡管占据一根换热管的位置,但不穿过管板, 用点焊的方法固定于折流板上。通常每隔3~4排管子安排一 根挡管,但不应设置在折流板缺口处,也可用带定距管的拉 杆来代替挡管。
优点:结构简单,制造成本低,规格范围广,工程中应用广泛。 缺点:壳侧不便清洗,只能采用化学方法清洗,检修困难,对较脏
或有腐蚀性介质不能走壳程。当壳体与换热管温差很大时, 可设置单波或多波膨胀节减小温差应力。
管壳式换热器结构名称
单程管壳式换热器
1 —外壳,2—管束,3、4—接管,5—封头 6—管板,7—折流板
图2.25 折流板的几何关系
2.2.4 进出口连接管直径的计算
进出口连接管直径的计算仍用连续性方程, 经简化后计算公式为:
D 4M1.13M
πρw
ρw
2.3 管壳式热交换器的传热计算
1) 选用经验数据:根据经验或参考资料选用工艺条 件相仿、设备类型类似的传热系数作为设计依据。 如附录 A。 2) 实验测定:实验测定传热系数比较可靠,不但可 为设计提供依据,而且可以了解设备的性能。但实 验数值一般只能在与使用条件相同的情况下应用。
焊在换热管上)。
图2.23 防冲板的形式
a) 内导流筒 图2.24 导流筒的结构
b) 外导流筒
★导流筒
❖ 在立式换热器壳程中,为使气、液介质更均匀地流入管间, 防止流体对进口处管束段的冲刷,而采用导流筒结构。
热交换器原理与设计

热交换器原理与设计热交换器是一种用于传热的设备,它可以将热量从一个流体传递到另一个流体,而两者之间并不直接接触。
热交换器广泛应用于工业生产和日常生活中,如空调系统、冷却系统、加热系统等。
在本文中,我们将深入探讨热交换器的原理与设计。
热交换器的原理主要基于热传导和对流传热。
在热交换器中,两种流体分别流经热交换器的两侧,通过热传导和对流传热的方式,实现热量的传递。
热交换器的设计主要包括换热面积、传热系数、流体流速等因素。
换热面积越大,传热效果越好;传热系数越大,传热效率越高;流体流速对于传热效果也有着重要的影响。
热交换器的设计需要考虑多种因素,如流体的性质、温度、压力、换热面积、传热系数等。
在实际工程中,需要根据具体的工况条件来选择合适的热交换器类型,如板式热交换器、管式热交换器、壳管式热交换器等。
不同类型的热交换器适用于不同的工况条件,需要根据实际情况进行合理选择。
在热交换器的设计过程中,需要进行热力学计算、流体力学分析、材料选型等工作。
通过这些工作,可以确定热交换器的尺寸、结构、材料等参数,确保热交换器在实际工作中能够达到预期的换热效果。
此外,还需要考虑热交换器的清洗维护、安装调试等问题,确保热交换器的长期稳定运行。
总的来说,热交换器是一种重要的传热设备,它在工业生产和日常生活中都有着重要的应用。
热交换器的原理基于热传导和对流传热,设计时需要考虑多种因素,如流体性质、温度、压力、换热面积、传热系数等。
合理的热交换器设计可以提高能源利用效率,降低生产成本,对于工业生产和环境保护都具有重要意义。
因此,热交换器的原理与设计是一个值得深入研究的课题,也是工程技术人员需要掌握的重要知识。
核电站中的热交换器工作原理解析

核电站中的热交换器工作原理解析热交换器是核电站中的重要设备,用于实现热量的传递与转移。
本文将对核电站中的热交换器的工作原理进行详细解析。
一、热交换器的定义与分类热交换器是一种用于传递热能的设备,能够实现两种介质之间的热量转移。
根据工作原理和构造形式的不同,热交换器可以分为多种类型,如壳管式、板式、管式等。
二、壳管式热交换器的工作原理壳管式热交换器是核电站中常用的热交换器类型之一。
其主要结构包括壳体、管束、管板等组成。
当热交换器运行时,热载体进入壳体内,经过管束内的管道,与管道内的冷却介质进行热量交换。
热载体从一侧进入,流动经过管道,并在管道内释放热量,同时冷却介质从另一侧进入,流过管道,并吸收热量。
通过壳体外的管板对热量的传递和转移进行调节和控制,实现两种介质之间的热量交换。
三、板式热交换器的工作原理板式热交换器是另一种常见的热交换器类型,其主要由一系列平行排列的金属板组成。
每个板上都有一系列的波动或堆叠形式,以增加板之间的接触面积。
板式热交换器中的热载体和冷却介质分别从不同的通道进入,流动经过板子之间的通道。
由于板子间的波动或堆叠形式,热载体和冷却介质之间的接触面积增加,从而提高了热量的传递效率。
热载体和冷却介质通过板式热交换器内部的通道进行交换,并完成热量转移。
四、管式热交换器的工作原理管式热交换器是一种采用管束形式进行热量传递的热交换器类型。
其主要由一组相互交织的管束组成。
管式热交换器中,热载体和冷却介质分别通过不同的管道进入,流经管束内的管道,并在管道内进行热量交换。
热载体在管道内流动并释放热量,而冷却介质则通过管道,吸收热量。
通过管束的设计和调整,可以实现热量的传递和转移。
五、热交换器的应用与未来发展热交换器广泛应用于核电站等能源领域,用于处理、传递和转移大量的热能。
热交换器的工作原理和性能对核电站的运行稳定性和效率起着重要作用。
未来,随着能源技术的发展和能源需求的增加,热交换器在核电站中的应用将进一步扩大。
《热交换器原理与设计》管壳式热交换器

流动状况
壁面因素
热交换器流动阻力分类 摩擦阻力
局部阻力
14
管壳式热交换器的阻力
管程阻力 壳程阻力
阻力不允许超过允许范围
一、管程阻力的计算
沿程阻力△Pi 回弯阻力△Pr
pt pi Pr PN
进出口连接管阻力△PN 15
沿程阻力△Pi
Pi
L
di
wt
2
2
i
式中: λ——莫迪圆管摩擦系数
17
对于多管程换热器,流体总阻力应等于各程直管阻力、 回弯阻力及进、出口阻力之和(通常忽略进、出口阻力):
pi p1 p2 Ft Ns N p
p1—流体流经直管的压力降,N/m2; p2—流体流经回弯管时的压力降,N/m2; Ft—结垢修正系数,25×2.5mm1.4, 19×2mm1.5; Ns—串联的壳程数; Np—管程数。 直管压力降 p1 可按流体力学的一般公式进行计算;
冷却
气体
6
液体
加热 冷却
f
0.14
w
1.05
f
0.14
w
0.95
气体
f
0.14
w
1.0
同时存在对流换热与辐射换热的处理
具有辐射能力的气体 温度较高
辐射 对流
总换热系数
7
c r
辐射
T1
4
T2
4
方法 作图
牛顿迭代法。
11
在某一钢制立式管壳式热交换器中用饱和温度ts=111.38℃ 的蒸汽加热某种溶液,已知其管径为Φ32×2mm,管高l=1.5m,
热交换器原理与设计
t1 t1 (t1 t2 )
①
根据热平衡式得: W1(t1 t1) W2 (t2 t2 )
于是
t2
t2
W1 W2
(t1
t1)
②
式①, ②相加整理:
1 t1 t2 (1 W1 )
t1 t2
W2
③
1.3.3 其他流动方式时的
1)<1-2>型换热器
该型换热器的可直接按式(1.18)作进一步分析求解。
ቤተ መጻሕፍቲ ባይዱ
t1
t1
expma expma
L L
expmb expmb
L L
t1
t1
t2
t2
;
式(1.18)
S为每一流程单位长度上的传热面积,
ma
L=
KF 2W1
1
1
W1 W2
2
mb L=
KF 2W1
1-
1
W1 W2
2
为推导方便,假定热流体为小热容量流体
1.4 换热器热计算方法的比较
设计性热计算和校核性热计算的基本方程都是:
1.2.3、复杂布置时换热器平均温差的计算
壳管式换热器及交叉流式换热器的平均温差一般 采用以下公式来计算:
tm tlmc
式1-13
tlmc 按逆流情况下的对数平 均温差
修正系数
1前.2述.4推流导体过比程热中,或皆传假热定系比数热变c为化常时数的,平此时均流温体差温
度变化与吸收(或放出)的热量成正比即是线性关 系;
1.1 热计算基本方程式
设计性热计算
目的在于确定换热器的F
校和性热计算
针对现成的换热器,其目的在于确定流体的出口温度。 两种热计算采用的基本关系式一致
热交换器原理与设计-管壳式热交换器设计 2.1-2.3
14
圆盘-圆环形折流板
15
图2-22 单弓形折流挡板
图2-24 圆盘—圆环形折流挡
16
17
布置原则: a.一般应按等间距布置 b.管束两端的折流板尽可能靠近壳程进出口接管
c.间距:Lmin不小于0.2管内径Di,且不小于 50mm; Lmax不大于Di;
折流板缺口布置原则: a.壳程为单相清洁流体时,折流板缺口 (卧式) 应水平上下布置。 若气体中含有少量液体, 应在缺口朝上的 折流板最低处开设通液口; 若液体中含有少量气体,应在缺口朝下 的折流板最高处开通气口; b.壳程介质为气液共存或液体中含有固体 颗粒时,折流板应垂直左右布置,并在 折流板最低处开通液口;
管程数Zt为: Zt L/l
式中: l——所确定的管子的长度m L——管程总长,m;
39
管子的总根数
nt nZt
式中: n——每程管数
流程数的选取:
流程数适中
过多
隔板在管板上占去过多的面积,管板排管数降低 增加流体穿过隔板垫片短路的机会
增加流体的转弯次数及流动阻力
40
程数宜取偶数,以使流体的进、出口 连接管做在同一封头管箱上,便于制造。
条件: 当壳程进出口接管距管板较远,流体停滞区过大时, 应设置导流筒
分类:内导流筒和外导流筒两种。
9
10
11
⑵折流板、支持板
①折流板
作用: a.提高壳程流体流速,增加湍动程度;使壳程流 直冲刷管束,提高壳程传热系数; b.减少结垢。 c.支承管束
结构形式 弓形 圆盘-圆环形 堰形折流板
体垂
12
AC—两折流板间错流的流通截面积
49
(3)盘环形折流板
环板圆孔处的流通面积a1
第1章_热交换器基本原理【《热交换器原理与设计》课件】
逆流
1.2 平均温差
对顺、逆流的传热温差分析,作如下假设:
1. 冷热流体的质量流量和比热保持定值; 2. 传热系数是常数; 3. 热交换器没有热损失; 4. 沿流动方向的导热量可以忽略不计; 5. 同一种流体从进口到出口,不能既有相变又
有单相对流换热。
要计算整个换热的平均温差,首先需要知道 温差随换热面的变化,即 Δtx= f(Fx),然后再沿 整个换热面积进行平均。
过冷
t1″ t2′
t1′ t2″
放热
过热 沸腾
t1′
部分冷凝
t1″
吸热
t2″
吸热
t1″ t2′
t2′
g :一种流体有相变
h:可凝蒸气和非凝结性 气体混合物的冷凝
1.2.2 顺流、逆流下的平均温差
以顺流为例:已知冷热流体的进出口温度, 针对微元换热面dF一段的传热,温差为:
Δt=t1 – t2
→
dΔt=dt1 – dt2
Fx dΔt μk dF 0 Δt
dΔt μkdF Δt
Δtx ln μkFx Δt
Δtx
Δt
Δtx Δt e
μkFx
Δtx Δt e
Δt Δt e
"
μkFx
当 Fx = F 时,Δtx =Δt"
μkF
1 1 μ W1 W2
' 2
热容量:
W = M· C
(W/℃)
Q = W1 · Δt1 =W2 · Δt2
W1 Δt2 W2 Δt1
平行流:顺流和逆流
Hot fluid Cold fluid
Hot fluid Cold fluid
热交换器原理与设计
绪论1.在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,称为热交换器。
2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式间壁式I:热流体和冷流体间有一固体表面,一种流体恒在壁的一侧流动,而另一种流体恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
混合式!:这种热交换器内依靠热流体与冷流体的直接接触而进行传热。
蓄热式I:其中也有固体壁面,但两种流体并非同时而是轮流的和壁面接触,当热流体流过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章, ,1.Mc称为热容量,它的数字代表流体的温度没改变1°C是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W一对应单位温度变化产生的流动流体的能量存储速率。
3.1平均温差指整个热交换器各处温差的平均值。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W]、W2值的大小如何,总有p >0, 因而在热流体从进口到出口的方向上,两流体间的温差At总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,p >0,At不断降低,当W1>W2时,p V 0,At不断升高。
5.P—冷流体的实际吸热量与最大可能的吸热量的比率,称为温度效率。
(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☆旁路挡板可减小管束外环间隙的短路,用它增加阻力,迫 使大部分流体通过管束进行热交换。其厚度一般与折流板厚 度相同,将它嵌入折流板槽内,并点焊在每块折流板上。
或有腐蚀性介质不能走壳程。当壳体与换热管温差很大时, 可设置单波或多波膨胀节减小温差应力。
管壳式换热器结构名称
单程管壳式换热器
1 —外壳,2—管束,3、4—接管,5—封头 6—管板,7—折流板
管子两端固定在管板上,管束与管板再封装 在外壳内。两种流体分管程和壳程。
TA,out TB,in (shell side)
管板与壳体的连接
表 2.4 管板最小厚度 mm
换热管外径 d0
≤25 25<d0<50
用于易燃易爆
管板最小 厚度δmin
有毒介质等严 格场合
用于无害介质
的一般场合 ≥0.75d0
≮d0 ≥0.70d0
≥50 ≥0.65d0
程数
2
流口 体端 分 进隔 出板 程
图 另一 隔端 板
分程隔板
4 (平行)
4 (丁字形)
6
2.1.5 纵向隔板、折流板和支持板
☆为提高流体流速和湍流程度,强化壳程流体 传热,在壳程常装设纵向隔板或折流板。
☆折流板除使流体横过管束流动外,还有支撑 管束、防止管束振动和弯曲的作用。
☆折流板常用形式有:弓形、盘环形 (或称圆 盘-圆环形)。弓形折流板有 单弓形、双弓形和三弓形三种。
32
38
40
44
48
57
64
70
72
分程隔板槽两
侧相邻管中心 28 30 32 35 38 40 42 44 50 52 56 头式: DL=Di –2(b1+b2+b)
固定管板式、U型管式:
DL=Di – 2b3 b3 =0.25d;且>10mm
2.1.3 管板
❖ 导流筒有内导流筒与外导流筒两种形式。内导流筒的结构简 单、制造方便,但它占据壳程空间,而使布管数相应减少。 外导流筒是在进口处采用扩大环形通道,考虑到环形通道进 口处的线速度较高,为保证气体沿圆周方向均匀的进入,导 流筒应做成斜口形。
适用:管壳间温差大,壳程介质腐蚀性强、易结垢的情况。
填料函式:
☆ 一端管板固定,另一端管板在填料函中滑动。 ☆ 将浮头露在壳体外面的浮头式换热器,
又称外浮头式换热器。 ☆ 填料密封处容易泄露,不宜用于易挥发、易燃、易爆、
有毒和高压的流体。且制造复杂,安置不便。
主要部件的分类及代号
主要部件的分类及代号
2.1 管壳式热交换器的类型、标准与结构
国家质量技术监督局发布: 《管壳式换热器标准》GB 151—1999 (1999-02-26发布 2000-01-01实施)
2.1.1 类型和标准
固定管板式:将管子两端固定在位于壳体两端的固定管板上,
管板与壳体固定在一起。
优点:结构简单,制造成本低,规格范围广,工程中应用广泛。 缺点:壳侧不便清洗,只能采用化学方法清洗,检修困难,对较脏
图2.21 旁路挡板 图2.22 旁路挡板和挡管
2.1.7 防冲板和导流筒
当管程采用轴向入口或换热管内流速超过3m/s,应设置 防冲板,以减少流体分布不均和对换热管端的冲蚀。
★防冲板结构尺寸 ❖ 防冲板外表面到壳体内壁的距离不小于接管内径的
1/4,其通道流通面积须大于接管流通面积; ❖ 防冲板的直径或边长,应大于接管外径 50mm; ❖ 防冲板最小厚度:碳钢为4.5mm,不锈钢为3mm。
2.1.2 管子在管板上的固定与排列
(a)等边三角形法;
(b)同心圆法;
(c)正方形法
图2.7 管子在管排上的排列
表2.3 换热管中心距
mm
换热管外径 10 12 14 16 19 20 22 25 30 32 35 38 45 50 55 57
换热管中心距 s
13~ 14
16
19
22
25
26
28
★防冲板固定形式 ❖ 防冲板的两侧焊在定距管或接杆上,也可同时焊在
靠近管板的第一块折流板上; ❖ 防冲板焊在圆筒上; ❖ 用U形螺栓将防冲板固定在换热管上(不允许防冲板
焊在换热管上)。
图2.23 防冲板的形式
a) 内导流筒 图2.24 导流筒的结构
b) 外导流筒
★导流筒
❖ 在立式换热器壳程中,为使气、液介质更均匀地流入管间, 防止流体对进口处管束段的冲刷,而采用导流筒结构。
浮头式:一端管板与壳体固定,另一端管板可以在壳体内自由浮动。
优点: 1. 壳体和管束热变形自由,不产生热应力。 2. 管束可从壳体中抽出,便于壳程的检修和清洗。
缺点: 1. 结构复杂,造价高。 2. 需增加内浮头及相关连接件以保证密封,如果内浮头连接 处泄漏将无法发现,所以应严格保证其密封性能。
弓形
圆盘形
管板
折流板
单壳程水平圆缺形折流板管壳式换热器流体在壳内的流动
管板
圆盘形折流板
单壳程圆盘形折流板管壳式换热器流体在壳内的流动
(a) 缺口上下交替排列
(b) 缺口左右交替排列
图2.17 弓形折流板的排列
(a)
(b) 正常
(c)
图2.18 缺口高度及板间距对流动的影响
(a) 缺口高度过小,板间距过大
(c) 缺口高度过大,板间距过小
表 2.5 折流板最大间距
换热管外径 10 14 19 25 32 38 45 57 最大无支持跨距 800 1100 1500 1900 2200 2500 2800 3200
图2.20 折流板的安装和固定
2.1.6 挡管和旁路挡板
浮头式热交换器中,由于安装浮头法兰需要,圆筒内有一 圈较大没有排列管子的间隙,使部分流体由此间隙短路,使 主流速度及换热系数下降。而旁路流体未经换热就达出口, 与主流混合必使流体出口温度达不到预期数值。挡管和旁路 挡板就是为了防止流体短路而设立的构件。
TB,out TA,in (tube side)
U形管式:将换热管弯成U形,管子两端固定在同一块
管板上,弯曲端不加固定。 换热管可以自由伸缩,所以壳体与换热管无温差应力。 只有一块管板,结构较简单,管束可从壳体内抽出,壳侧 便于清洗,但管内清洗困难,管内介质必须清洁且不易结垢。 壳程可设置纵向隔板,将壳程分为两程。