应用时间序列实验报告
应用时间序列分析实验报告

应用时间序列分析实验报告学院名称专业班级应用统计学14-2学生姓名学号齐鲁工业大学实验报告 成绩课程名称 《应用时间序列分析实验》 指导教师 实验日期院(系) 专业班级 实验地点学生姓名 学号 同组人 无实验项目名称 ARIMA 模型、确定性分析法,多元时间序列建模一、 实验目的和要求1.熟悉非平稳序列的确定性分析法:趋势分析、季节效应分析、综合分析2.熟悉差分平稳序列的建模步骤。
3.掌握单位根检验、协整检验、动态回归模型的建立。
二、 实验原理1. 序列的各种变化都归结于四大因素的综合影响:长期趋势(Trend ),循环波动(Circle ),季节性变化(Season ),机波动(Immediate ).常假设它们有如下的相互模型:加法模型 t t t t t X T C S I =+++乘法模型 t t t t tX T C S I =⋅⋅⋅混合模型 模型结构不唯一2.非平稳序列如果能通过适当阶数的差分后实现平稳,就可以对差分后序列进行ARMA 模型拟合了,所以ARIMA 模型是差分运算与ARMA 模型的组合tt d B x B ε)()(Θ=∇Φ3.单位根检验: (1)DF 检验;(2)ADF 检验; (3)PP 检验;4.动态回归模型ARIMAX如果两个非平稳序列之间具有协整关系,则先建立它们的回归模型,再对平稳的残差序列建立ARMA 模型。
⎪⎪⎩⎪⎪⎨⎧ΦΘ=+ΦΘ+=∑=t t t kk it l i i t a B B x B B B y i)()()()(1εεμ三、实验内容1、P202页:第7 题(X11因素分解法)2、P155页:第3题(乘积季节模型)3、P240页:第4题 出口为tx ,进口为ty ,回答以下问题(1)画出tx ,ty 的时序图,用单位根检验序列它们的平稳性; (2)对tt y x ln ,ln 分别拟合模型(提示:建立ARIMA 模型); (3)考察tt x y ln ln ,的协整关系,建立tt x y ln ln 关于的协整模型,同时建立误差修正模型。
时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。
时
间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。
二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。
该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。
三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。
2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。
3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。
四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。
2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。
3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。
五、结论
通过本次实验可以得出结论。
时间序列实验报告心得

在本次时间序列实验中,我深刻体会到了时间序列分析在解决实际问题中的重要作用。
通过对时间序列数据的收集、处理、分析和预测,我学会了如何运用时间序列分析方法解决实际问题,以下是我在实验过程中的心得体会。
一、实验背景时间序列分析是统计学和金融学等领域的重要研究方法,通过对时间序列数据的分析,我们可以揭示现象的发展变化规律,预测未来趋势,为决策提供依据。
本次实验以我国某地区1980年1月至1995年8月每月屠宰生猪数量为研究对象,运用时间序列分析方法进行建模和预测。
二、实验步骤1. 数据收集与处理:首先,收集了某地区1980年1月至1995年8月每月屠宰生猪数量数据。
然后,对数据进行初步处理,包括去除异常值、缺失值等。
2. 时间序列图绘制:运用Excel或R等软件绘制时间序列图,观察数据的变化趋势,为后续建模提供依据。
3. 平稳性检验:对时间序列数据进行平稳性检验,以确定是否可以直接进行建模。
常用的平稳性检验方法有ADF检验、KPSS检验等。
4. 模型选择与参数估计:根据时间序列图和平稳性检验结果,选择合适的模型进行拟合。
本次实验选择了ARIMA模型,并对模型参数进行估计。
5. 模型预测与结果分析:利用估计出的模型对未来的数据进行预测,并对预测结果进行分析,评估模型的准确性。
三、实验心得1. 时间序列分析的重要性:通过本次实验,我深刻认识到时间序列分析在解决实际问题中的重要性。
在实际工作中,许多现象都呈现出时间序列特征,运用时间序列分析方法可以揭示现象的发展变化规律,为决策提供依据。
2. 数据处理的重要性:在实验过程中,数据预处理是至关重要的。
只有保证数据的准确性和完整性,才能得到可靠的实验结果。
3. 平稳性检验的必要性:时间序列建模的前提是数据平稳。
通过对数据平稳性进行检验,可以确保模型的准确性。
4. 模型选择与参数估计的重要性:选择合适的模型和参数对于时间序列分析至关重要。
不同的模型适用于不同类型的数据,需要根据实际情况进行选择。
统计实验报告时间序列

一、实验背景时间序列分析是统计学中的一个重要分支,它主要研究如何对时间序列数据进行建模、预测和分析。
本实验旨在通过实际数据的时间序列分析,了解时间序列的基本特性,掌握时间序列建模的方法,并尝试进行未来趋势的预测。
二、实验目的1. 理解时间序列的基本概念和特征。
2. 掌握时间序列数据的可视化方法。
3. 学习并应用时间序列建模的基本方法,如自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。
4. 尝试进行时间序列数据的预测。
三、实验数据本实验选用某城市过去一年的月度降雨量数据作为分析对象。
数据包括12个月的降雨量,单位为毫米。
四、实验步骤1. 数据预处理- 读取数据:使用Python的pandas库读取降雨量数据。
- 数据检查:检查数据是否存在缺失值或异常值。
- 数据清洗:如果存在缺失值或异常值,进行相应的处理。
2. 数据可视化- 使用matplotlib库绘制降雨量时间序列图,观察数据的趋势和季节性特征。
3. 时间序列建模- 自回归模型(AR):根据自回归模型的理论,建立AR模型,并通过AIC(赤池信息量准则)和SC(贝叶斯信息量准则)进行模型选择。
- 移动平均模型(MA):建立MA模型,并使用同样的准则进行模型选择。
- 自回归移动平均模型(ARMA):结合AR和MA模型,建立ARMA模型,并选择最佳模型。
4. 模型验证与预测- 使用历史数据进行模型验证,比较不同模型的预测精度。
- 对未来几个月的降雨量进行预测。
五、实验结果与分析1. 数据可视化通过时间序列图可以看出,降雨量存在明显的季节性特征,每年的夏季降雨量较多。
2. 时间序列建模- AR模型:通过AIC和SC准则,选择AR(2)模型作为最佳模型。
- MA模型:同样通过AIC和SC准则,选择MA(3)模型作为最佳模型。
- ARMA模型:结合AR和MA模型,选择ARMA(2,3)模型作为最佳模型。
3. 模型验证与预测- 模型验证:通过比较实际值和预测值,可以看出ARMA(2,3)模型的预测精度较高。
应用时间序列实验报告

工程学院课程设计《时间序列分析课程设计》学生学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年 6 月 2 日目录1. 实验一澳大利亚常住人口变动分析 (1)1.1 实验目的 (2)1.2 实验原理 (2)1.3 实验容 (2)1.4 实验过程 (4)2. 实验二我国铁路货运量分析 (9)2.1 实验目的 (10)2.2 实验原理 (10)2.3 实验容 (11)2.4 实验过程 (12)3. 实验三美国月度事故死亡数据分析 (15)3.1 实验目的 (17)3.2 实验原理 (17)3.3 实验容 (18)3.4 实验过程 (18)课程设计体会 (22)1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。
表1-1(1)判断该序列的平稳性与纯随机性。
(2)选择适当模型拟合该序列的发展。
(3)绘制该序列拟合及未来5年预测序列图。
1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。
1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。
(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。
(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。
1.3 实验容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的围有界。
如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。
对自相关图进行检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。
时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。
时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。
本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。
正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。
本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。
通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。
时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。
因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。
时间序列分析的实验报告-实验一

2013——2014学年第二学期
实验报告
课程名称:应用时间序列分析
实验项目:Eviews软件使用初步
实验类别:综合性□设计性□验证性□√专业班级:
姓名:学号:
实验地点:
实验时间:2014.5. 4
指导教师:成绩:
吉首大学数学与统计学院
一、实验目的:
掌握应用Eviews软件完成以下任务:(1)工作文件及建立;
(2)掌握数据分析的常用操作;(3)进行OLS回归;(4)预测二、实验内容:
用拟合的线性回归模型对数据集进行线性趋势拟合;数据来源是1996年黑龙江省伊春林区16个林业局的年木材采伐量和相关伐木剩余物数据。
三、实验方案(程序设计说明)
四. 实验步骤或程序(经调试后正确的源程序)
五.程序运行结果
六、实验总结
学生签名:
年月日
七、教师评语及成绩
教师签名:
年月日
1。
时间序列模型操作实训报告

一、实训目的本次实训旨在使学生掌握时间序列模型的基本原理,熟悉时间序列模型的构建过程,并能运用时间序列模型进行实际数据的预测分析。
通过本次实训,提高学生对时间序列分析方法的实际应用能力,为以后从事相关领域的研究和工作打下基础。
二、实训内容1. 时间序列分析概述时间序列分析是统计学的一个重要分支,它研究的是一组按时间顺序排列的观测值。
通过对时间序列数据的分析,我们可以揭示数据中的规律性、趋势性、季节性和周期性,从而对未来的数据进行预测。
2. 时间序列模型的构建(1)平稳性检验在构建时间序列模型之前,首先要检验序列的平稳性。
常用的平稳性检验方法有ADF单位根检验、KPSS检验等。
(2)自回归模型(AR)自回归模型(AR)是一种描述序列自身过去值对当前值影响的模型。
AR模型的数学表达式为:Y_t = c + φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} + ε_t其中,Y_t表示时间序列,c为常数项,φ_1, φ_2, ..., φ_p为自回归系数,ε_t为误差项。
(3)移动平均模型(MA)移动平均模型(MA)是一种描述序列过去值对当前值影响的模型。
MA模型的数学表达式为:Y_t = c + ε_t + θ_1ε_{t-1} + θ_2ε_{t-2} + ... + θ_qε_{t-q}其中,Y_t表示时间序列,c为常数项,θ_1, θ_2, ..., θ_q为移动平均系数,ε_t为误差项。
(4)自回归移动平均模型(ARMA)自回归移动平均模型(ARMA)是AR模型和MA模型的结合,它同时考虑了序列自身过去值和过去误差对当前值的影响。
ARMA模型的数学表达式为:Y_t = c + φ_1Y_{t-1} + φ_2Y_{t-2} + ... + φ_pY_{t-p} + θ_1ε_{t-1} + θ_2ε_{t-2} + ... + θ_qε_{t-q}(5)自回归差分移动平均模型(ARIMA)自回归差分移动平均模型(ARIMA)是在ARMA模型的基础上,对序列进行差分处理,以消除非平稳性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南工程学院课程设计《时间序列分析课程设计》学生姓名学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年 6 月 2 日目录1. 实验一澳大利亚常住人口变动分析..... 错误!未定义书签。
实验目的............................................... 错误!未定义书签。
实验原理............................................... 错误!未定义书签。
实验内容............................................... 错误!未定义书签。
实验过程............................................... 错误!未定义书签。
2. 实验二我国铁路货运量分析........... 错误!未定义书签。
实验目的............................................... 错误!未定义书签。
实验原理............................................... 错误!未定义书签。
实验内容............................................... 错误!未定义书签。
实验过程............................................... 错误!未定义书签。
3. 实验三美国月度事故死亡数据分析...... 错误!未定义书签。
实验目的............................................... 错误!未定义书签。
实验原理............................................... 错误!未定义书签。
实验内容............................................... 错误!未定义书签。
实验过程............................................... 错误!未定义书签。
课程设计体会 ............................ 错误!未定义书签。
1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。
表1-1(1)判断该序列的平稳性与纯随机性。
(2)选择适当模型拟合该序列的发展。
(3)绘制该序列拟合及未来5年预测序列图。
实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。
实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。
(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。
(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。
实验内容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。
如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。
对自相关图进行检验时,可以用SAS 系统ARIMA 过程中的IDENTIFY 语句来做自相关图。
而单位根检验我们用到的是DF 检验。
以1阶自回归序列为例:11t t t x x φε-=+该序列的特征方程为:0λφ-=特征根为:λφ=当特征根在单位圆内时:11φ<该序列平稳。
当特征根在单位圆上或单位圆外时:11φ≥该序列非平稳。
对于纯随机性检验,既白噪声检验,可以用SAS 系统中的IDENTIFY 语句来输出白噪声检验的结果。
(2)选择适当模型拟合该序列的发展先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。
ARIMA过程的第一步是要IDENTIFY命令对该序列的平稳性和纯随机性进行识别,并对平稳非白噪序列估计拟合模型的阶数。
使用命令如下:proc print data=example3_20;IDENTIFY VAR =people nlag=8 minic p= (0:5) q =(0:5);run;(3)绘制该序列拟合及未来5年预测序列图模型拟合好之后,利用该模型对序列进行短期预测。
预测命令如下:forecast lead=5 id=time out=results;run;其中,lead指定预期数;id指定时间变量标识;out指定预测后期的结果存入某个数据集。
利用存储在临时数据集RESULTS里的数据,我们可以绘制拟合预测图,相关命令如下:proc gplot data=results;plot people*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1 c=red i=none v=star;symbol2 c=black i=join v=none;symbol3 c=green i=join v=none l=32;run;实验过程按照实验的过程运行程序,对程序结果的分析如下:(1)判断该序列的平稳性与纯随机性图1-1 1971年9月-1993年6月澳大利亚季度常住人口变动序列时序图时序图显示澳大利亚季度常住人口围绕在52千人附近随机波动,没有明显趋势或周期,基本可视为平稳模式。
图1-2序列自相关图自相关图显示该序列的自相关系数一直都比较小,始终控制在2倍的标准差范围以内,故认为该序列是平稳序列。
图1-3 序列的单位根检验结果根据第五列、第六列输出的结果我们可以判断,当显著性水平 取时,序列非平稳,但当消除线性趋势之后序列平稳。
图1-4 白噪声检验输出结果可以看到延迟6阶、12阶的检验P值均小于,故拒绝原假设,认为该序列为非白噪声序列(非纯随机序列)。
(2)选择适当模型拟合该序列的发展图1-5 IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对于最小的是ARMA(1,3)模型。
图1-6 ESTIMATE命令输出的未知参数结果图1-7 ESTIMATE命令输出的拟合统计量结果图1-8 ESTIMATE 命令输出的系数矩阵图1-9 ESTIMATE 命令输出的残差自相关检验结果从输出结果可以看出由于延迟各阶的LB 统计量的P 值均显著大于α(0.05α≥),所以该拟合模型显著成立。
图1-10 ESTIMATE 命令输出的拟合模型形式该输出形式等价于:23(10.62415B 0.253693B 0.2953B )t t x ε=-++或记为:1230.624150.2536930.2953t t t t t x εεεε---=-++(3)绘制该序列拟合及未来5年预测序列图图1-11 FORECAST 命令输出的5年预测结果拟合效果图如图1-11:图1-12 拟合效果图2.实验二我国铁路货运量分析我国1949—2008年每年铁路货运量(单位:万吨)数据如表2-1所示。
表2-1请选择适当的模型拟合该序列,并预测2009—2013年我国铁路货运量。
实验目的掌握用SAS软件对数据进行相关性分析,掌握对非平稳时间序列的随机分析,选择合适模型,拟合序列发展。
实验原理ARIMA模型的预测和ARMA模型的预测方法非常类似。
(p,d,q)ARIMA模型的一般表示方法为:(B)(B)d t t x φε∇=Θ同时可以简记为:(B)(B)d t t x εΘ∇=Φ 式中,{}t ε 为零均值白噪声序列。
我们可以从上式看出,ARIMA 模型的实质就是差分与ARMA 模型的组合,这说明任何非平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进行ARMA 模型拟合。
(1)对差分平稳后的序列可以使用ARIMA 模型进行拟合,ARIMA 建模操作流程如图2-1所示。
图2-1 建模流程实验内容由于ARMA 模型是ARIMA 模型的一种特例,所以在SAS 系统中这两种模型的拟合都放在ARMA 过程中。
先利用时序图分析模型是否平稳,可以运用实验一的程序来实现。
再对该序列进行1阶差分运算,同时考虑差分后序列的平稳性,添加如下命令:difhuoyunliang=dif(huoyunliang);命令“difhuoyunliang=dif(huoyunliang);”是指令系统对变量进行的1阶差分后的序列值赋值给变量difhuoyunliang,其中dif()是差分函数。
利用差分函数得出平稳模型。
再对模型进行定阶和进行预测。
模型定阶:identify var=difhuoyunliang(1) nlag=8 minic p=(0:5) q=(0:5);模型预测:forecast lead=5 id=time;实验过程(1)判断序列的平稳性图2-2 我国1949—2008年每年铁路货运量时序图通过分析可知,该时序图有明显的上升趋势,所以为非平稳序列。
在此,对该序列进行1阶差分运算。
difhuoyunliang-30000-20000-10000100002000030000timeJAN1945JAN1950JAN1955JAN1960JAN1965JAN1970JAN1975JAN1980JAN1985JAN1990JAN1995JAN2000JAN2005JAN2010图2-3 1阶差分后序列时序图图2-4 1阶差分后序列自相关图通过分析可知,时序图显示差分后序列没有明显的非平稳特征;自相关图显示序列有很很强的短期相关性,所以可认为1阶差分后序列平稳。
对平稳的1阶查分序列进行白噪声检验,检验结果如图图2-5 1阶差分后序列白噪声检验默认显著性水平为的条件下,由于延迟6阶、12阶的P值为和,小于,所以该差分后序列不能视为白噪声序列,即差分后的序列还蕴含着不容忽视的相关信息可供提取。
(2)对平稳非白噪声查分序列进行拟合图2-6 IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有(p,q)ARMA模型中,BIC信息量相对于最小的是(1,0)ARMA模型。
考虑到前面已经进行的1阶差分运算,实际上是用(1,1,0)ARIMA模型拟合原序列。
图2-7 ESTIMATE命令输出的未知参数结果图2-8 ESTIMATE命令输出的拟合统计结果图2-8 ESTIMATE命令输出的残差自相关检验结果α≥),所以显然,拟合检验统计量的P值均显著大于显著性水平α(0.05可以认为改残差序列即为白噪声序列,显著性检验显示两参数均显著,这说明ARIMA模型对该序列建模成功。