晶体的结合固体物理

合集下载

孙会元固体物理基础教案第六章晶体的结合、晶体缺陷和相图6.5 分子晶体及氢键晶体

孙会元固体物理基础教案第六章晶体的结合、晶体缺陷和相图6.5 分子晶体及氢键晶体

如图:
e
产生库仑吸引
e
e
产生库仑排斥
e
按照玻尔兹曼统计,温度越低,处于库仑吸 引状态的几率越大,所以在低温下形成晶体。 可以证明一对原子间的相互作用势,可以 表示为: 12 6 ( R ) 4 R为原子间距
R R
非极性分子被极性分子的电场极化而产生的诱 导偶极矩与极性分子永久偶极矩间的相互作用力 称为范德瓦尔斯---德拜力。
非极性分子的瞬时偶极矩间相互作用力称为范 德瓦尔斯-伦敦力。 以惰性气体为例作简略说明: 惰性气体原子的核外电子是球对称分布的, 正负电荷重心重合,平均电偶极矩为零;但在 某一瞬时,由于核周围电子运动的涨落,可产 生瞬时电偶极矩。
仿照离子晶体的做法,我们可以得到:
6 12 U ( R) 2 N A12 A6 R R N N / 1 1 A12 12 A6 / 6 Pj Pj j j
A6 , A12 是仅与晶体结构有关的常数。
分子晶体中通常存在以下3部分作用力: 1.静电力:固有分子偶极矩间的静电偶极相互作用力 2.诱导力:极性分子的固有偶极矩与其诱导产生的偶 极矩间的静电作用 3.色散力:非极性分子间的瞬时偶极矩间的相互作用 范德瓦尔斯力:分子偶极矩的静电吸引作用产生的力。 极性分子永久偶极矩间的相互作用力称为范德瓦尔斯葛生力。
对于某些固体来说(如固体氦),原子具有很大的零 点运动振幅,可以隧穿到邻近的格点上,在晶体中的 位置发生退定域,从而不可分辨,称为量子固体(晶 体)。原子位置发生退定域的现象,目前只是在3He、 4He量子晶体中被观察到了。量子晶体具有不同于普 通晶体的奇异现象,因而引起了人们的兴趣。 到目前为止,我们讨论的基本上都是理想状态的晶 体,每个格点都被原子填满了,且没有原子平面的畸 变等。但是,实际晶体并非如此,它们不可避免的存 在缺陷,从而导致了丰富多彩的物理世界。

固体物理学-晶体结合类型

固体物理学-晶体结合类型
根据测不准原理xpħ ,电子的动能正比于p2x-2V-2/3,故动能正 比于n2/3,n为自由电子密度,V为体积。价电子如果束缚在一个原子周 围,运动范围V较小,动能是比较高的。当价电子的运动范围为整个晶 体时,动能显著降低。
同时,由于距离增大,价电子与原子实之间的势能相对于 自由原子时要高。但由于自由电子屏蔽作用的存在,势能的 升高相对于动能的降低要小,二者能量之差就是金属结合的 主要来源。
12
I . 固体结合类型
------共价结合和共价晶体
13
共价键(氢分子为例)
•共价结合是靠两个原子各贡献一个电子,形成共价键。这样一对为两个 原子所共有的自旋相反配对的电子结构称为共价键。
•这对自旋相反的电子在两原子核之间的区域会形成较大的电子云密度, 同时受到两个原子核较强的库仑吸引作用,这就是共价键产生的物理根 源。
这种相互作用一定包括吸引和排斥两种类型。吸引力使粒子 聚集一起,排斥力使粒子之间保持一定间距,维持固体形态。 两种作用并存,粒子处于平衡状态,从而结合形成稳定的晶体 结构。这种维系原子结合在一起的作用力或称为“键”。
粒子之间的作用力应全部归结于静电相互作用,磁力和万有 引力忽略不计。粒子间的吸引作用可以归结为异性电荷间的库 仑吸引力;而排斥作用可以归结为同性电荷之间的库仑斥力以 及由泡利原理引起的排斥力。
4
根据键的特征,固体结合类型主要有以下几种:1. 金属 性结合;2. 共价结合;3. 离子性结合;4.范德瓦尔斯结合。 与结合力类型相对应,晶体可大致分为四种基本类型: 1. 金属晶体; 2. 共价晶体;3.离子晶体;4.分子晶体。
值得指出的是,以上这些类型之间的区分不是严格的, 某些固体的结合往往具有混合的特点或过渡的性质。

固体物理:第二章 晶体的结合

固体物理:第二章 晶体的结合

晶体为什么形成这么有序的结构?
7
原子结合成晶体时,原子的外层电子要作重新
分布
不同分布产生了不同类型的结合

不同类型的结合力,导致了晶体结合
的不同类型。
+ = 原子
原子核+ 芯电子(稳定、满壳层)
价电子
原子外层的芯电子层对相互作用贡献不大,价电子的
相互作用
决定了原子间的相互作用后的性质。
同一种原子,不同的结合类型中具有不同的电子云分布,因此呈现出
10
我们讲到:
原子外层的芯电子层对相互作用贡献不大,价电子相互
作用
决定了原子间相互作用的性质。
原来中性的原子能够结合成晶体,除了外界的压力和温度 等条件的作用外,主要取决于原子最外层电子的作用。没 有一种晶体结合类型,不是与原子的电性有关的。
下面我们来系统学习一下:18
各壳层容纳的电子数
19
能量最低原理 “电子优先占据最低能态”
20
21
22
原子捕获电子的能力(电性)
一、电离能
定义:使原子失去一个电子所需要的能量称为原子的电离能。 从原子中移去第一个电子所需要的能量为第一电离能,从正1 价离子中再移去一个电子所需要的能量为第二电离能。
Na + 5.14 eV Na+ + e
23
电离能的大小可以用来度量原子对价电子的束缚强弱。 电离能越大,越难失去电子;电离能越小,越易失去电 子,金属性越强。 在一个周期内,从左到右,电离能不断增加。
24
二、电子亲和能
定义:一个中性原子获得一个电子成为负离子所释放出的能 量称为电子亲和能,亲和过程不能看成是电离过程的逆过程。 电子亲和能越大,那么得到电子的能力越大。 电子亲和能一般随原子半径的减小而增大。因为原子半径小, 核电荷对电子的吸引力较强,对应较大的互作用势。

黄昆 固体物理 讲义 第二章

黄昆 固体物理 讲义 第二章

第二章 固体的结合晶体结合的类型 晶体结合的物理本质固体结合的基本形式与固体材料的结构、物理和化学性质有密切联系 § 2.1 离子性结合元素周期表中第I 族碱金属元素(Li 、Na 、K 、Rb 、Cs )与第VII 族的卤素元素(F 、Cl 、Br 、I )化合物(如 NaCl , CsCl ,晶体结构如图XCH001_009_01和XCH001_010所示)所组成的晶体是典型的离子晶体,半导体材料如CdS 、ZnS 等亦可以看成是离子晶体。

1. 离子晶体结合的特点以CsCl 为例,在凝聚成固体时,Cs 原子失去价电子,Cl 获得了电子,形成离子键。

以离子为结合单元,正负离子的电子分布高度局域在离子实的附近,形成稳定的球对称性的电子壳层结构;,,,Na K Rb Cs Ne Ar Kr Xe FClBrI++++−−−−⇒⇒⇒⇒离子晶体的模型:可以把正、负离子作为一个刚球来处理;离子晶体的结合力:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。

当排斥力和吸引力相互平衡时,形成稳定的离子晶体; 一种离子的最近邻离子为异性离子;离子晶体的配位数最多只能是8(例如CsCl 晶体);由于离子晶体结合的稳定性导致了它的导电性能差、熔点高、硬度高和膨胀系数小;大多数离子晶体对可见光是透明的,在远红外区有一特征吸收峰。

氯化钠型(NaCl 、KCl 、AgBr 、PbS 、MgO)(配位数6) 氯化铯型(CsCl 、 TlBr 、 TlI)(配位数8)离子结合成分较大的半导体材料ZnS 等(配位数4) 2. 离子晶体结合的性质 1)系统内能的计算晶体内能为所有离子之间的相互吸引库仑能和重叠排斥能之和。

以NaCl 晶体为例,r 为相邻正负离子的距离,一个正离子的平均库仑能:∑++−++321321,,2/122322222102)(4)1('21n n n n n n r n r n r n q πε ——遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为相互作用能的一半。

《固体物理学》房晓勇主编教材-习题解答参考02第二章_晶体的结合和弹性

《固体物理学》房晓勇主编教材-习题解答参考02第二章_晶体的结合和弹性

d 2U ( dV 2 )V0
=
1 9V 2
0

N 2
⎡ ⎢ ⎣

m2 A r0m
+
n2B ⎤
r0n
⎥ ⎦
=
1 9V02

N 2
⎡⎢−m ⎣
mA r0m
+
n
nB r0n
⎤ ⎥ ⎦
=
1 9V02

N 2
⎡⎢−m ⎣
nB r0n
+
n
mA ⎤
r0m
⎥ ⎦
=

mn 9V02

N 2
⎡⎢− ⎣
A r0m
+
B r0n
第二章 晶体的结合和弹性 第二章 晶体的结合和弹性
2.1 有一晶体,在平衡时的体积为V0 ,原子之间总的相互作用能为U0 ,如果相距为 r 的原子间相互作用能
由下式给出: 证明:(1)体积弹性模量为
u(r) = − A + B , rm rn
K
=
U0
mn 9V0
(2)求出体心立方结构惰性分子晶体的体积弹性模量。 解:参考王矜奉 2.2.1 根据弹性模量的定义可知
2
平衡条件
dU dr
|r = r0
=
⎛ ⎜⎜⎝
mA r m+1
0

nB r n+1
0
⎞ ⎟⎟⎠
=
0

mA r m+1
0
=
nB r n+1
0
第二章 晶体的结合和弹性
1
r0
=
⎛ ⎜⎝
nB mA
⎞n−m ⎟⎠

固体物理 第二章 结合能

固体物理 第二章 结合能
在两原子间的自旋反向电子对似乎产生吸引力,使两 原 子 键 和 , 从 而 能 量 降 低 , 称 为 成 键 态 ( bonding state)。 能量较高的-态则称反键态(antibonding state),电 子处在-态时,能量高于自由原子情形,不利于原子 间的键和。
固体物理第二章 23
固体物理第二章
17
固体物理第二章
18
3
典型的共价键是氢分子的共价键,两个氢原子 的价电子,围绕着两个氢原子核运动,形成 电子云。在两个氢核之间,为两个氢核所共 有。实际上,共价键的现代理论正是由氢分 子的量子理论开始的。 设想有原子A 和 B ,它们表示互为近邻的一对 原子。当它们是自由原子时,各有一个价电 子,归一化的波函数分别用 A 、 B 表示,即:
这一四体问题迄今还不能严格求解,需作近 似处理,常用的比较成功的做法是分子轨道 法 (Molecular Orbital Method) 。忽略电子 - 电 子间相互作用,且假定 : (r1 , r2 ) 1 (r ) 2 (r )
固体物理第二章 20
2 2 2 2 1 2 VA1 VA 2 VB1 VB 2 V12 2m 2m

* H dr
* H aa * A H A dr B H B dr 0
* H ab * A H B dr B H A dr 0

* dr
2 2C ( H aa H ab )
+态波函数是对称的,可填充两个自旋相反的电子, +态的能量亦低于自由氢原子1s态的能量。较多出现
固体物理第二章 3
2-1 结合力的普遍性质与结合能
研究组成晶体的原子结构和它们之间的结合力与结 合力的性质,是固体物理中最基本、最重要的问题 之一。 不同的晶体具有不同的结合力类型,但它们的结合力 在定性上具有共同的普遍性质。 在晶体中,粒子的相互作用可分为吸引作用和排斥作 用两类。当粒子间距离较远时(大于几个A),吸引作 用为主;当距离较近时 ( 小于平均粒子间距),排斥 作用为主;当距离适当时,二者相等,相互抵消, 使晶体中的粒子处于平衡状态。 首先研究处于基态的两个相同的原子由相距无穷远处 移到一起时能量和结合能变化的情形。

固体物理第二章复习

固体物理第二章复习

式中



B
1
6
;

A2
A
4B
'N 1
A12
j
a12 j
A6 , A12 是仅与晶体结构有关的常数。
'N 1
A6
j
a6 j
3.原子晶体、金属晶体和氢键晶体
(1)原子晶体
结构:第Ⅳ族、第Ⅴ族、第Ⅵ族、第Ⅶ族元素都可以形成
原子晶体。
结合力: 共价键 (2)金属晶体
饱和性 方向性
层一共有 8 个量子态, 最多能接纳(8- N)个电子, 形成(8- N)个共价键. 这就 是共价结合的 “饱和性”.
共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的 “方向性”.
10. 为什么许多金属为密积结构? 金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的
(2)结合力: 范德瓦尔斯力。
(3)配位数: 通常取密堆积,配位数为12。
(4)互作用势能:
u(r )

4
12



6

r r
U ( R)

2 N

A12


R
12

A6


R

6


雷纳德-琼斯势
r1 rA a, a1 1, r2 rB 2a, a2 2, r3 rC 3a, a3 3,
2( 1 1 1 1 ) ln( 1 x ) x x2 x3 x4

固体物理第二章答案

固体物理第二章答案

第21. 有一晶体,平衡时体积为 0V , 原子间相互作用势为0.如果相距为 r 的两原子互作用势为 ()n m r r a r u β+-= 证明(1) 体积弹性模量为 K=.90V mnU (2) 求出体心立方结构惰性分子的体积弹性模量.[解答]设晶体共含有 N 个原子,则总能量为U(r)=()∑∑i jij r u '21. 由于晶体表面层的原子数目与晶体内原子数目相比小得多,因此可忽略它们之间的基异,于是上式简化为 U=().2'∑jijr u N设最近邻原子间的距离为R 则有j ij a r =R再令 A ,1'∑=j m j m a A ,1'∑=jn j n a 得到 U=.200⎪⎪⎭⎫ ⎝⎛+-n n m m R A R A N βα 平衡时R=R 0,则由已知条件U(R 0) = 0U 得0002U R A R A N n n m m =⎪⎪⎭⎫⎝⎛+-βα 由平衡条件 0)(0=R dRR dU得021010=⎪⎪⎭⎫⎝⎛-++n nm m R A n R A m N βα. 由(1),(2)两式可解得.)(2,)(20000n n m m nR n m N U A nR n m N U A -=-=βα利用体积弹性模量公式[参见《固体物理教程》(2.14)式]K=0220209R R U V R ⎪⎪⎭⎫ ⎝⎛∂∂得K= ⎥⎦⎤⎢⎣⎡+++-n n m m R A n n R A m m N V 000)1()1(291βα = ⎥⎦⎤⎢⎣⎡-++-+-)(2)1()(2)1(2910000000n m N mR U R n n n m N nR U R m m N V nnm m = .900V mn U - 由于,00<U 因此,00U U -= 于是 K= .90V mnU (1) 由《固体物理教程》(2.18)式可知,一对惰性气体分子的互作用能为.)(126r B r A r u +-=若令 61,42⎪⎭⎫⎝⎛==A B B A σε,则N 个惰性气体分子的互作用势能可表示为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122)(R A R A N r U σσε.由平衡条件0)(0=R dRR dU 可得 R .2616120⎪⎪⎭⎫ ⎝⎛=A A σ进一步得 .2)(122600A A N R U U ε-==代入K=.900V mn U 并取 m =6,n =12,V 300334R N =得 K=5126123233⎪⎪⎭⎫⎝⎛A A A σε.对体心立方晶体有 A .11.9,25.12126==A 于是.1.703σε=K 2. 一维原子链,正负离子间距为a ,试证:马德隆常数为2=μ1n2. [解答] 相距ij r 的两个离子间的互作用势能可表示成.4)(2n ijij ij r br q r u +=πμ设最近邻原子间的距离为R 则有 R a r j ij =, 则总的离子间的互作用势能 U=()∑∑∑-⎪⎪⎭⎫ ⎝⎛±-=jn jn j j j ij a bRa R q N r u N ''0'114[22πε. 基中 jja 1'±=∑μ 为离子晶格的马德隆常数,式中+;- 号分别对应于与参考离子相异和相同的离子.任选一正离子作为参考离子,在求和中对负离子到正号,对正离子取负号,考虑到对一维离子两边的离子是正负对称分布的,则有.413121112)1('⎥⎦⎤⎢⎣⎡+-+-=±=∑Λj ja μ利用正面的展开式 1n(1+x ),432432Λ+-+-x x x x 并令 1=x 得Λ+-+-41312111=1n(1+1)=1n2.于是,一维离子链的马德常数为2=μ1n23. 计算面心立方面简单格子的6A 和12A(1) 只计最近邻; (2) 计算到次近邻; (3) 计算到次近邻.[解答]图2.26示出了面心立方简单格子的一个晶胞.角顶O 原子周围有8个这样的晶胞,标号为1的原子是原子O 的最近邻标号为2的原子是O 原子的最近邻,标号为3的原子是O 原子的次次近邻.由此得到,面心立方简单格子任一原子有12个最近邻,6个次近邻及24个次次近邻.以最近邻距离度量,其距离分别为:.3,2,1===j j j a a a 由 .1,112'126'6⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∑∑jj j j a A a A图2.6 面心立方晶胞得(1) 只计最近邻时1211*12)1(66=⎪⎭⎫⎝⎛=A , 1211*12)1(1212\=⎪⎭⎫⎝⎛=A .(2) 计算到次近邻时.094.1221*611*12)2(,750.1221*611*12)2(121212666=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A(3) 计算到次次近邻时.127.12033.0094.1231*2421*611*12)3(,639.13899.0750.1231*2421*611*12)3(121212126666=+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=A A 由以上可以看出,由于12A中的幂指数较大,12A 收敛得很快,而6A 中的幂指数较小,因此 6A 收敛得较慢,通常所采用的面心立方简单格子的 6A 和 12A 的数值分别是14.45与12.13.4. 用埃夫琴方法计算二维正方离子(正负两种)格子的马德隆常数. [解答]马德隆常数的定义式为 jja 1'±=∑μ,式中+、-号分别对应于与参考离子相异和相同的离子,二维正方离子(正负两种)格子,实际是一个面心正方格子,图 2.7示出了一个埃夫琴晶胞.设参考离子O 为正离子,位于边棱中点的离子为负离子,它们对晶胞的贡献为4*(1/2).对参考离子库仑能的贡献为图2.7二维正方离子晶格.121*4顶角上的离子为正离子,它们对晶胞的贡献为4*(1/4), 对参考离子库仑能的贡献为 .241*4-因此通过一个埃夫琴晶胞算出的马德隆常数为 .293.1241*4121*4=-=ν再选取422=个埃夫琴晶胞作为考虑对象,这时离子O 的最的邻,次近邻均在所考虑的范围内,它们对库仑能的贡献为,2414-而边棱上的离子对库仑能的贡献为 ,521*8221*4+- 顶角上的离子对为库仑能的贡献为 ,841*4-这时算出的马德隆常数为图 2.8 4个埃夫琴晶胞同理对932=个埃夫琴晶胞进行计算,所得结果为611.11841*41321*81021*8321*48458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ 对 1642=个埃夫琴晶胞进行计算,所得结果为614.13241*42521*81721*81021*8421*4184138108348458242414=⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-=μ当选取 n 2个埃夫琴晶胞来计算二维正方离子(正负两种)格子的马德隆常数,其计算公式(参见刘策军,二维NaC1 晶体马德隆常数计算,《大学物理》,Vo1.14,No.12,1995.)为 [][].1,8411>+++=--n D C B A n n n n μ其中 ,21)1(,1)1(11111nB t A n n n t t n +-=+--=-=∑,1)1(1)1()2()1(1)1()1(2112212221112122122222222221⎪⎪⎪⎪⎪⎭⎫⎝⎛+--+--+-+-+--++⎪⎪⎭⎫⎝⎛+++-+⎪⎪⎭⎫ ⎝⎛+---n n n n n C n n ΛΛ.121)1()1(2181222222+-+-++++-=n n n n n D n n Λ5. 用埃夫琴方法计算CsCl 型离子晶体的马德隆常数(1) 只计最近邻 (2) 取八个晶胞 [解答](1) 图2.29是CsCl 晶胸结构,即只计及最近邻的最小埃夫琴晶胞,图2.29()a 是将Cs +双在体心位置的结构,图2.9(a)是将 Cl -取在体心位置的结构,容易求得在只计及最近邻情况下,马德隆常数为1.图2.29 (a )Cs 取为体心的CsC1晶胞,(b) C1取为体心的CsC1晶胞(2)图2.10是由8个CsCl 晶胞构成的埃夫琴晶胞,8个最近邻在埃夫琴晶胞内,每个离子对晶胞的贡献为1,它们与参考离子异号,所以这8个离子对马德隆常数的贡献为8埃夫琴晶胞6个面上的离子与参考离子同号,它们对埃夫琴晶胞的贡献是21,它们与参考离子的距离为32R 它们对马德隆常数的贡献为-()3/2*621图 2.10 8个CsCl 晶胞构成的一个埃夫琴晶胞埃夫琴晶胞楞上的12个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是41它们与参考离子的距离为322R 它们对马德隆常数的贡献为-()3224/1*12埃夫琴晶胞角顶上的 8个离子,与参考离子同号,它们对埃夫琴晶胞的贡献是81它们与参考离子的距离为2R 它们对马德隆常数的贡献为 -()281*8,由8个CsCl 晶胞构成的埃夫琴晶胞计算的马德隆常数.064806.32)8/1(*8322)4/1(*123/2)2/1(*68=---=μ 为了进一步找到马德常数的规律,我们以计算了由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数,结果发现,由27个CsCl 晶胞构成的埃夫琴晶胞的马德隆常数是0.439665.马德隆常数的不收敛,说明CsCl 晶胞的结构的马德隆常数不能用传统的埃夫琴方法计算.为了找出合理的计算方法,必须首先找出采用单个埃夫琴晶胞时马德隆常数不收敛的原因.为了便于计算,通常取参考离子处于埃夫琴晶胞的中心.如果以Cs +作参考离子,由于埃夫琴晶胞是电中性的要求,则边长为pa 2(p 是大于或等于1的整数)的埃夫琴晶胞是由(2p )3个CsCl 晶胞所构成,埃夫琴晶胞最外层的离子与参考离子同号,而边长为(2p +1)的埃夫琴晶胞是由(2p +1)3 个 CsCl 晶胞所构成,但埃夫琴晶胞的最外层离子与参考离子异号,如果以C1-作参考离子也有同样的规律,设参考离子处于坐标原点O ,沿与晶胞垂直的方向(分别取为x,y,z 图2.11示出了z 轴)看去,与参考郭同号的离子都分布在距O 点ia 的层面上,其中i 是大于等于 1的整数,与 O 点离子异号的离子都分布在距O 点(i -0.5)a 的层面上,图 2.11(a) 示出了同号离子层,图2.11(b)示出了异号离子层.图2.11 离子层示意图(a)表示同号离子层, O 离子所在层与 O '离子所在层相距ia(b)表示异号离子层, O 离子所在层和O ' 离子所在层相距(i -0.5)a当 CsCl 埃夫琴晶胞边长很大时,晶胞最外层的任一个离子对参考离子的库仑能都变得很小,但它们对参考离子总的库仑能不能忽略.对于由(2p )3个CsCl 晶胞所构成的埃夫琴晶胞来说,最外层有6*(2p )2个与参考离子同号的离子,它们与参考离子的距离为(1/2)pa ~(23)pa ,它们与参考离子的库仑能为a pe 024πε量级,这是一个相对大的正值.对于由(2p +1)3个CsCl 晶胞所构成的埃夫琴晶胞来说,离外层有6*(2p +1)2个与参考离子异号的离子,它们与参考离子的库仑能为a pe 024πε-量级,这是一个绝对值相对大的负值,因此,由(2p )3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能,与由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能会有较大的差异.即每一情况计算的库仑能都不能代表CsCl 晶体离子间相互作用的库仑能.因此这两种情况所计算的马德隆常数也必定有较大的差异,由1个CsCl 晶胞、8个CsCl 晶胞和27个CsCl 晶胞构成的埃夫琴晶胞的计算可知, CsCl 埃夫琴晶胞体积不大时,这种现象已经存在.为了克服埃夫琴方法在计算马德隆常数时的局限性,可采取以下方法,令由 (2p )3个CsCl 晶胞构成的埃夫琴晶胞计算的库仑能为1U ,由(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞所计算的库仑能为1U ,则CsCl 晶体离子间相互作用的库仑能可近似取作 )(2121U U U +=(1) 因子1/2 的引入是考虑除了(2p +1)3个CsCl 晶胞构成的埃夫琴晶胞最外层离子外,其他离子间的库仑能都累计了两偏,计算1U 和2U 时要选取体积足够大的埃夫琴晶胞,此时埃夫琴晶胞最外层离子数与晶胞内的离子数相比是个很小的数,相应的马德隆常数应为 )(2121μμμ+=(2) 其中:=1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'是由(2p )3个CsC1晶胞构成的埃夫琴晶胞计算的值; =1μ⎪⎪⎭⎫ ⎝⎛±∑i ja 1'由 (2p +1)3 个CsC1晶胞构成的埃夫琴晶胞所计算成本的值.为简化计算,特选取晶胞边长a 为计算单位,由于,32a R =所以,23'μμ= ⎪⎪⎭⎫ ⎝⎛±=∑'''1i i a μ (3) 其中'i a 是某一离子到参点的距离与a 的比值.考虑到对称性,对选定的埃夫琴晶胞,把晶胞的离子看成分布在一个个以参考离子为对称心的正六面体的六个面上,体积不同的正六面六个面上的离子分别计算.由(2p )3个CsC1晶胞构成埃夫琴晶胞时,由分析整理可得,231111⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i C B A μ (4) 由(2p +1)3个 CsC1 晶胸构成埃夫琴晶胞时,,231112⎪⎪⎭⎫ ⎝⎛++=∑∑=-=p pi i p i i D B A μ (5)其中:),1(''''22'2'p i i y x k A i x iy y x i <≤++-=∑∑(6)i A 表示与 O 点距离为ia 的6个面上所有的离子对马德隆常数的面贡献,因为这些离子与参考离子同号,故到负号.'x 、'y 是离子在平面 '''y x o 上的坐标, ''y x k 代表 6个面上等价离子的个数,其取值规则为:(1) 在角上(如E 点),即'x =i 且 'y = i. 时, ''y x k =8;(2) 在棱与坐标轴的交点(如 F 点),'x =i 且'y = 0或 'x =0且'y = 0时, ''y x k =6 (3) 在棱上的其他点(如H 、I 点)即不满足上述条件,且'x =i 或'y = i.时, ''y x k =12 (4) 在'O 点,即'x =0且'y = 0时, ''y x k =6(5) 在除'O 点外的面上的点(如J 点),即不满足上述条件时,''y x k =24.),1()5.0(5.05.05.05.022'2''''''p i i y x k B i x i y yx i ≤≤-++=∑∑-=-=(7)i B 代表距O 点距离为(i -0.5)a 的6个面上的离子对马德隆常数的贡献,因为这种些离子与参考离子异号,故取正号. 'x ,'y 是离子在平面'''y x o 上的坐标, '''y x k 代表这6个面上等价离子的个数,其取值规则为:(1) 在角上(如K 点),即'x =i 且 'y = i.时, '''y x k =8;(2) 在棱下(如L 、M 点),即不满足不述条件,且'x =i 或'y = i 时,'''y x k =12; (3) 在面上(如N 点)好不满足上述条件时, '''y x k =24.),(0022'2'"''''p i i y x k C i x iy i yx =++-=∑∑==i C 表示在边长为2pa 的晶胞最外层,即与参考离子相距pa 的6个面上的离子对马德隆常数的贡献,应取负号,与iA 的不同在于"''y x k的取值: (1) 在角上, "''y x k =''y x k /8; (2) 在棱上, "''y x k =''y x k /4; (3) 在面上, "''y x k=''y x k /2.),()5.0(5.05.05.05.022'2''''''''p i i y x k D i x i y yx i =-++=∑∑-=-=i D 表示在边长为2a p )1(+的晶胞最外层,即与参考离子相距(p +0.5)a 的离子层对马德隆常数的贡献,应取正号,与i B 的不同在于'''''yx k 的取值: (1) 在角上, '''''y x k ='''y x k /8; (2) 在棱上, '''''y x k ='''y x k /4; (3) 在面上, '''''y x k ='''y x k /2.表2.1给出了计算结果,给出的μ是由分别对应2p 和2p+1的1μ和2μ求得的,实际上, 1μ和2μ只需对应边长相近的埃夫琴晶胞即可,如取对应2p 和2p-1的埃夫琴晶胞也可得到一样的收敛结果,由以上数据可见,马德隆常数μ随晶胞边长的增大而迅速收敛.该方法适用于NaC1结构以外离子晶体马德隆常数的计算.6.只计及最近邻间的排斥作用时,一离子晶体离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±-=-)2(,)1(,)(22r e R e e r u R ρλ(1)最近邻(2)最近邻以外 式中ρλ,是常数,R 是最近邻距离,求晶体平衡时,原子间总的互作用势.[解 答]设离子数目为2N,以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示为U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑-ρλR j j e R a e 2' (∑表示最近邻)=N ,2⎥⎦⎤⎢⎣⎡+--ρλμR e Z R e其中⎪⎪⎭⎫⎝⎛±=∑j ia 1'μ 为马德隆常数,+号对应于异号离子,-号对应于同号离子;Z 为任一离子的最近邻数目,设平衡时R=R 0 ,由平衡条件,02020=⎥⎦⎤⎢⎣⎡+=-ρρλμR R e Z R e N dRdU 得.0202ρλμρR e Z R e -=平衡时的总相互作用为.1)(0020200⎪⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡+-=-R R e N e Z R e N R U R ρμλμρ 7. 设离子晶体中,离子间的互作用势为⎪⎪⎩⎪⎪⎨⎧±+-=最近邻以外最近邻,,)(22re R b R e r u m(1) 求晶体平衡时,离子间总的相互作用势能)(0R U (2) 证明: )(0R U 11-⎪⎪⎭⎫⎝⎛∝m mZ μ其中μ是马德隆常数,Z 是晶体配位数 [解答](1)设离子数目为2N , 以j ij a r =R 表示第j 个离子到参考离子i 的距离,忽略表面效应,则总的相互作用能可表示U =N ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛±-∑∑m j j R b R a e 2'(∑表示最近邻) =N ,2⎥⎦⎤⎢⎣⎡+-m R b Z Re μ其中⎪⎪⎭⎫ ⎝⎛±=∑j i a 1'μ,为马德隆常数,+号对应于异号离子,-号对应于同号离子.Z 为任一离子的最近邻数目,设平衡时R=R 0由平衡条件,0102020=⎥⎦⎤⎢⎣⎡-=+m R R Zmb R e N drdUμ得10-m R Zmb=2e μ即1120-⎪⎪⎭⎫ ⎝⎛=m e Zmb R μ.于是,晶体平衡时离子间总的相互作用势能0U =).1(000--=⎥⎦⎤⎢⎣⎡+-m R NZbR b Z R Zmb N m m m(2)晶体平衡时离子间的相互作用势能可进一步化为0U =.)()()1()1(1111121211--------=⎪⎪⎭⎫ ⎝⎛--m m m m mm m m m m mb Ze Nbm e Zmb ZNbm μμ由上式可知 .110-⎪⎪⎭⎫⎝⎛∝m mZ U μ8.一维离子链,其上等间距载有正负2N 个离子,设离子间的泡利排斥只出现在最近邻离子之间,且为b/R n,b,n 是常R 是两最近邻离子的间距,设离子电荷为q ,(1) 试证明平衡间距下 )(0R U =;114212002⎪⎭⎫⎝⎛--n R n Nq πε(2) 令晶体被压缩,使0R )1(0δ-→R , 试证明在晶体被压缩单位长度的过程中外力作功的主项为c 2δ其中c=;21)1(02R n q n -(3) 求原子链被压缩了2)1(0<<e e NR δδ时的外力[解答](1) 因为离子间是等间距的,且都等于R ,所以认定离子与第j 个离子的距离j r 总可表示成为R a r j j =ja 是一整数,于是离子间总的互作用势能⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛±-=⎥⎥⎦⎤⎢⎢⎣⎡+=∑∑n i in j j j R b a R q N r b r q N R U 214242)('202'0πεπεμ,其中+、-分别对应相异离子和相同离子的相互作用.一维离子晶格的马德隆常数(参见本章习题2)为=⎪⎪⎭⎫ ⎝⎛±∑i ia 1'21n2. 利用平衡条件0)(0=R dRR dU得到b=nq 01-n 0241n2R πε,)(R U =⎪⎪⎭⎫ ⎝⎛---n n nR R R Nq 102141n22πε. 在平衡间距下⎪⎭⎫⎝⎛--n R Nq R U 1141n22)(0020πε.(2) 将互作用势能在平衡间距附近展成级数Λ+-⎪⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+=202200)(21)()()(0R R dR U d R R dR dU R U R U R R 由外力作的功等于晶体内能的增量,可得外力作功的主项为W=20220)(21)()(0R R dR U d R U R U R-⎪⎪⎭⎫ ⎝⎛=-, 其中利用平衡条件,将R=R )1(0δ- ,代入上式,得到W=δδπε)2(421)1(2102002NR R n q n ⎥⎥⎦⎤⎢⎢⎣⎡-. 晶体被压缩单位长度的过程中,外力作的功的主项δ02W NR =δπε⎥⎥⎦⎤⎢⎢⎣⎡-2002421)1(21R n q n 令c=202421)1(R n q n πε-(CGS)得到在晶体被压缩单位长度的过程中,外力作的功的主项为2δc . (3)设e δδ=时外力为F e ,由于在弹性范围内,外力与晶格的形变成正比,所以 F= )2(0δαNR , F e = )2(0e NR δα,其中α为比例系数离子链被压缩e NR δ02过程中外力作的功W e =δδαδδd NR NR Fdx e eNR e 020002)]2([0⎰⎰== e e e F NR NR δδα022022121)2(=.由于 W e =)2(20e eNR c δδ,所以离子链被压缩了e NR δ02时的外力为F e =202)1(21R n n q c ee δδ-=.9.设泡利排斥项的形式不变,讨论电荷加倍对NaC1晶格常数,体积弹性模量以及结合能的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档