自动控制系统的直流调速系统
《电力拖动自动控制系统》题库

一、判断题1、自动控制的直流调速系统,往往以调节电枢供电电压为主。
(√)2、在V-M系统中,设置平波电抗器可以抑制电流脉动。
(√)3、在电流断续时,V-M系统机械特性很软,理想空载转速翘得很高。
(√)4、与晶闸管-电动机调速系统相比,直流脉宽调速系统开关频率高,电流容易连续,谐波少,电机损耗及发热都小。
(√)5、转速、电流双闭环直流调速系统中,当电动机过载甚至堵转时,转速调节器可以限制电枢电流最大值,起快速自动保护作用。
(X)6、按照典型II型系统设计转速调节器时,中频宽h可以任意选择。
(X)7、按照典型II型系统设计转速调节器时,由典型II型系统的开环传递函数可知,K、T、τ都就是待定符号。
(X)8、转速、电流双闭环直流调速系统中,对负载变化起抗扰作用的就是转速调节器。
(√)9、积分控制可以使直流调速系统在无静差的情况下保持恒速运行,实现无静差调速。
(√)10、闭环调速系统的静特性表示闭环系统电动机转速与负载电流或转矩间的稳定关系。
(√) 1、弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
(Ⅹ)2、采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。
(√)3、只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
(√)4、直流电动机变压调速与降磁调速都可做到无级调速。
(√)5、静差率与机械特性硬度就是一回事。
( Ⅹ )6、带电流截止负反馈的转速闭环系统不就是单闭环系统。
( Ⅹ )7、电流—转速双闭环无静差可逆调速系统稳态时控制电压U k的大小并非仅取决于速度定 U g*的大小。
(√)8、双闭环调速系统在起动过程中,速度调节器总就是处于饱与状态。
( Ⅹ )9、逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
(Ⅹ)10、可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。
(√)11、双闭环可逆系统中,电流调节器的作用之一就是对负载扰动起抗扰作用。
《电力拖动自动控制系统》课程综述

电力拖动自动控制系统电力拖动自动控制系统简介电力拖动自动控制系统包括:直流调速系统和交流调速系统。
直流调速系统包括:直流调速方法、直流调速电源和直流调速控制。
交流调速系统包括:交流调速系统的主要类型、交流变压调速系统、交流变频调速系统、绕线转子异步电机双馈调速系统——转差功率馈送型调速系统和同步电动机变压变频调速系统。
电力拖动自动控制系统课程内容介绍第一篇直流调速系统闭环反馈直流调速系统1.1 直流调速系统用的可控直流电源根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。
常用的可控直流电源有以下三种:旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。
1.2 晶闸管-电动机系统(V-M系统)的主要问题本节讨论V-M系统的几个主要问题:(1)触发脉冲相位控制;(2)电流脉动及其波形的连续与断续;(3)抑制电流脉动的措施;(4)晶闸管-电动机系统的机械特性;(5)晶闸管触发和整流装置的放大系数和传递函数。
1.3 直流脉宽调速系统的主要问题自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM 调速系统。
(1)PWM变换器的工作状态和波形;(2)直流PWM调速系统的机械特性;(3)PWM 控制与变换器的数学模型;(4)电能回馈与泵升电压的限制。
1.4反馈控制闭环直流调速系统的稳态分析和设计本节提要:转速控制的要求和调速指标;开环调速系统及其存在的问题;闭环调速系统的组成及其静特性;开环系统特性和闭环系统特性的关系;反馈控制规律;限流保护——电流截止负反馈1.5 反馈控制闭环直流调速系统的动态分析和设计反馈控制闭环直流调速系统的动态数学模型;反馈控制闭环直流调速系统的稳定条件; 动态校正——PI调节器的设计;系统设计举例与参数计算转速、电流双闭环直流调速系统和调节器的工程设计方法内容提要:转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。
直流电动机调速系统

直流电动机调速系统的能耗分析
能效比
直流电动机的能效比通常较高,可以在较高的效率下运行,减少 能源浪费。
功率因数
直流电动机的功率因数较高,可以减少无功损耗,提高电网效率。
热效率
直流电动机的热效率也较高,可以在长时间运行下保持稳定的性 能。
直流电动机调速系统的稳定性分析
抗干扰能力
直流电动机的调速系统通常具有较强的抗干扰能力,可以在复杂 的工作环境下稳定运行。
直流电动机调速系统的调速性能
调速范围
直流电动机的调速范围通常较大,可以在较 宽的转速范围内实现平滑调节,满足不同工 况下的需求。
调速精度
直流电动机的调速精度较高,可以通过精确的控制 算法实现转速的精确控制,提高生产过程的稳定性 和产品质量。
动态响应
直流电动机的动态响应较快,可以在短时间 内达到稳定转速,满足动态负载变化的需求 。
输标02入题
调压调速是通过改变电枢电压来控制电动机的转速, 具有调节方便、平滑性好等优点,但调速过程中能量 损失较大。
01
03
串级调速是通过改变转子回路的电阻来控制电动机的 转速,具有调节方便、能量损失较小等优点,但调节
范围较小且对电机结构有特殊要求。
04
调磁调速是通过改变励磁电流来控制电动机的转速, 具有调节方便、能量损失较小等优点,但调节范围较 小。
系统调试
在系统集成完成后,进行全面的 调试,确保各部分工作正常,满 足设计要求。
性能测试
对系统的性能进行测试,包括调 速范围、动态响应、稳态精度等 指标,确保系统性能达标。
优化改进
根据测试结果和实际应用情况, 对系统进行必要的优化和改进, 提高系统的稳定性和可靠性。
04
自动控制原理与系统第7章直流调速系统

若略去平波电抗器Ld的电压降落ULd,则电枢电压Ua可近似等于
Ud(Ud=Ua+ULd)。当电枢电压Ua增加时,转速n将增加。因此,调节 给定电压Us,即可调节转速n的数值。
图 7-2 具有转速反馈的直流调速系统组成框图
• 当负载转矩TL发生变化时(今设TL增加),则 电动机的转速将下降(n ),则反馈环节的反
•Tn------速度调节器时间常数 T=RnCn ;
•Ke--------电动机电动势恒量 •Φ--------电动机工作磁通量(磁极磁通
•Ki------电流调节增益.Ki=Ri/R0 量) ;
•Ti-------电流调节器时间常数 Ti=RiCi ;
•JG--------电动机及机械负载折合到电 动机转轴上的机械转速惯量;
系统的动态性能分析
• 适当降低增益(即调低比例系数Kk),将使系 统的稳定性改善( 、 N ),但稳态误差
( ess )将有所增大。
实例分析
分析晶闸管调速系统线路的一般顺序是: 主电路→触发电路→控制电路→辅助电路
(包括保护、指示、报警等)
7.2 转速和电流双闭环直流调速系统
系统的组成:
假设 n Usn / ,其自动调节过程如下:
直至
n Usn
,Un 0
调节过程才结束
图 7-8 速度环的自动调节过程
图 7-9 转速、 电流双闭环直流调速系统框图
框图中的系统结构参数有共13个
•Kn-----速度调节增益。Kn=Rn/R0 ;•KT-------电动机电磁转矩恒量;
馈电压将减小( U fn ),于是偏差电压 将增U 大Us(Ufn ),经电压U放 大和功率放大后,整
流输出电压Ud也将增大,而
自动控制系统第一二章习题解答

习题课N N NN N NN N n D n n D s c s n s n D n n n n n S n n D ∆+∆=↓⇒↓=∆-∆=∆+∆=∆==D s n )1(N min 0min maxkn C I R n op e d op +∆=∆=∆∑1n cl opcl op op cl op D k s s ks n n )1(D 1s cl cl 00+==+== e s p C K K k α=第一章 闭环控制的直流调速系统1-1 为什么PWM —电动机系统比晶闸管—电动机系统能够获得更好的动态性能?答:PWM —电动机系统(1) 开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。
(2) 低速性能好,稳速精度高,调速范围宽,可达1:10000左右。
(3) 若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。
(4) 无需加电抗器,主回路电磁时间常数TL 小。
1-4 11135148515150151500min 0max 0min max ==--=∆-∆-==N N n n n n n n D1-694.116311513011113.4831168301151n 1111n ns 11)1( D )1(11n n 1n 1n 1212cl121212cl2cl12112122cl21112cl2cl12cl21cl1==++=++==⨯=⨯++=∆++=∆++=∆∆=++=+=+=++=∆∆+∆=∆+∆=∆k k D D k k n k k s k k D D D k D k D k k k n k n cl cl cl cl cl opop cl op op1-5某闭环调速系统的调速范围是1500~150r/min ,要求系统的静差率,那么系统允许的静态速降是多少?如果开环系统的静态速降是100r/min ,则闭环系统的开环放大倍数应有多大? 解7.31106.310011min /06.302.0102.01501min min 0min max =-=-∆∆=+∆=∆=-⨯=-=∆∆+∆=∆==cl op op cl N NN N n n K Kn n r s s n n n n n n n S n n D 1-7 某调速系统的调速范围D=20,额定转速nN ,=1500r/min,开环转速降落为240r/min ,若要求系统的静差率由10%减少到5%,则系统的开环增益将如何变化?解; s=0.1时,8.27133.82401min /33.8)1.01(201.01500)1(=-=-∆∆==-⨯⨯=-=∆cl op N N n n K r s D s n n S=5%时,8.59195.32401min /95.3)05.01(2005.01500)1(=-=-∆∆==-⨯⨯=-=∆cl op N N n n K r s D s n n 1-10 有一V-M 调速系统,电动机参数为:,35k ,5.1R ,2.1R m in,/r 1500n ,A 5,12I ,V 220U ,KW 2.2P S REC s N N N N =Ω=Ω=====要求:(1)计算开环速降和调速要求所允许的闭环速降。
第2章转速反馈控制的直流调速系统

自动控制的直流调速系统往往以变压调 速为主。
(1)调压调速
工作条件:
n
保持励磁 = N ;
n0
保持电阻 R = Ra
调节过程:
改变电压 UN U
U n , n0
调速特性:
O
转速下降,机械特性
曲线平行下移。
nN
n1
UN
当电流断续时,由于非线性因素, 机械特性方程要复杂得多。
电流断续区与电流连续区的分界线
是 2 的曲线,当 2 时,电
流便开3始连续了。
3
——一个电流脉波的导通角。
1.1.3 直流斩波器或脉宽调制变换器
在干线铁道电力机车、工矿电力机 车、城市有轨和无轨电车和地铁电机车 等电力牵引设备上,常采用直流串励或 复励电动机,由恒压直流电网供电,过 去用切换电枢回路电阻来控制电机的起 动、制动和调速,在电阻中耗电很大。
在大容量或负载有较大惯量的系统中,不可 能只靠电容器来限制泵升电压,这时,可以采 用下图中的镇流电阻 Rb 来消耗掉部分动能。 分流电路靠开关器件 VTb 在泵升电压达到允许 数值时接通。
泵升电压限制电路
+
Us
+ CC
过电压信号
-
Rbb VVTTbb
泵升电压限制(续)
对于更大容量的系统,为了提高效率, 可以在二极管整流器输出端并接逆变器, 把多余的能量逆变后回馈电网。当然,这 样一来,系统就更复杂了。
PWM系统的优越性
主电路线路简单,需用的功率器件少;
开关频率高,电流容易连续,谐波少,电机损 耗及发热都较小;
低速性能好,稳速精度高,调速范围宽;
自动控制技术第三章 直流调速系统

第三章 直流调速系统
与旋转变流机组及离子拖动变流装置相比, 晶闸管整流装置不仅在经济性和可靠性上都有 很大提高,而且在技术性能上也显示出较大的 优越性。由图可见,晶闸管可控整流器的功率 放大倍数在104以上,其门极电流可以直接用晶 体三极管来控制,不再像直流电动机那样需要 较大功率放大装置。在控制作用的快速性方面, 变流机组是秒级,而晶闸管整流器是毫秒级, 这将会大大提高系统的动态性能。
直流斩波器的控制方式 b)脉冲频率调制
第三章 直流调速系统
用全控式器件实行开关控制时,多用脉冲宽度调制的控制方式,形成近年来 应用日益广泛的PWM装置—电动机系统,简称PWM调速系统或脉宽调速系统。
直流斩波器的控制方式 c)两点式控制
第三章 直流调速系统
与V-M系统相比,PWM调速系统有下列优点: (1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就足以 获得脉动很小的直流电流,电枢电流容量连续,系统的低速运行平稳,调速范围 较宽,可达1∶10 000左右。又由于电流波形比V-M系统好,在相同的平均电流即 相同的输出转矩下,电动机的损耗和发热都较小。 (2)同样由于开关频率高,若与快速响应的电动机相配合,系统可以获得很 宽的频带,因此快速响应性能好。动态抗干扰能力强。 (3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。 因受到器件容量的限制,直流PWM调速系统目前只用于中、小功率的系统。
在静止可控整流方面,离子拖动系统是最早应用的静止变流装置供电的直流 调速系统。它虽然克服了旋转变流机组的许多缺点,而且还缩短了响应时间,但 汞弧整流器造价较高,维护麻烦,特别是水银如果泄漏,将会污染环境,危害人 体健康。
电力拖动自动控制系统(直流调速)课后思考题

第2章2-1 直流电动机有哪几种调速方法?各有哪些特点?(调速指标)答:调压调速,弱磁调速,转子回路串电阻调速。
特点略。
2-2 简述直流PWM变换器电路的基本结构。
(表2-3,P17主电路)答:直流PWM变换器基本结构如图,包括IGBT和续流二极管。
三相交流电经过整流滤波后送往直流PWM变换器,通过改变直流PWM变换器中IGBT的控制脉冲占空比,来调节直流PWM变换器输出电压大小,二极管起续流作用。
2-3 直流PWM变换器输出电压的特征是什么?答:脉动直流电压。
2=4 为什么直流PWM变换器-电动机系统比T-M系统能够获得更好的动态性能?答:PWM开关频率快、周期短。
直流PWM变换器和晶闸管整流装置均可看作是一阶惯性环节。
其中直流PWM变换器的时间常数Ts等于其IGBT控制脉冲周期(1/fc),而晶闸管整流装置的时间常数Ts通常取其最大失控时间的一半(1/(2mf))。
因fc通常为kHz级,而f通常为工频(50或60Hz),m为一周内整流电压的脉波数,通常也不会超过20,故直流PWM变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。
2=5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流PWM变换器的输出。
电枢回路中还有电流,因为电枢电压和电枢电阻的存在。
2-6 直流PWM变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?答:为电动机提供续流通道。
若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。
电枢电压不可控,无法调速2-7 直流PWM变换器的开关频率是否越高越好?为什么?答:不是。
受器件约束。
因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。