PWM直流调速系统设计解析

合集下载

PWM直流调速系统设计解析

PWM直流调速系统设计解析

PWM直流调速系统设计解析PWM(脉宽调制)是一种控制电路的技术,通过改变信号的脉冲宽度来控制输出电压的大小。

PWM直流调速系统是基于PWM技术设计的一种调速系统,可以用于直流电机的精确调速控制。

1.控制电路的设计:控制电路主要负责生成PWM信号,以及对输入信号进行放大和滤波。

PWM信号的产生通常采用计数器和比较器的组合,根据设定的频率和占空比来生成PWM信号。

放大和滤波电路可以使用运算放大器和滤波器来实现。

2.电源电路的设计:电源电路负责为PWM调速器提供稳定的电源电压。

通常采用交流输入,通过整流和滤波电路转换为直流电压。

电源电路还需要考虑过流和过压保护,以及稳压和滤波功能。

3.电机驱动电路的设计:电机驱动电路用于控制电机的转速和转向。

常见的驱动电路有单向驱动和双向驱动两种。

单向驱动适用于只需控制电机转速的情况,双向驱动适用于需要控制电机转向的情况。

驱动电路中通常包含功率开关和保护电路,用于保护电机和驱动电路。

4.速度反馈回路的设计:速度反馈回路用于监测电机的实际转速,并将转速信号反馈给PWM调速器进行闭环控制。

常见的速度反馈装置有编码器、霍尔传感器和反电动势等。

回路还需要进行滤波和放大,以保证准确的速度反馈。

5.控制算法的设计:控制算法是PWM直流调速系统的核心。

常用的控制算法有比例控制、积分控制和微分控制等。

根据实际情况,可以选择不同的控制算法来实现精确的调速效果。

控制算法还需要考虑响应时间、稳定性和抗干扰性等因素。

6.控制参数的调试和优化:调试和优化是PWM直流调速系统设计的最后一步。

通过实际测试和参数调整,可以不断优化控制系统的性能。

常见的调试和优化方法有自整定、试错法和优化算法等。

总之,PWM直流调速系统设计需要综合考虑控制电路、电源电路、驱动电路、速度反馈回路、控制算法以及参数调试和优化等多个因素。

通过合理的设计和调试,可以实现对直流电机精确的调速控制,广泛应用于工业自动化、机械设备和交通运输等领域。

PWM脉宽直流调速系统设计课程设计

PWM脉宽直流调速系统设计课程设计

直流电机调速原理
直流电机 调速原理: 通过改变 电枢电压 或励磁电 流来改变 电机转速
直流电机 调速方式: 电枢电压 调速、励 磁电流调 速、电枢 电阻调速
电枢电压 调速:通 过改变电 枢电压来 改变电机 转速,适 用于恒转 矩负载
励磁电流 调速:通 过改变励 磁电流来 改变电机 转速,适 用于恒功 率负载
稳定性分析步 骤:确定系统 模型、分析系 统稳定性、优
化系统设计
可靠性分析
稳定性:系统在运 行过程中是否稳定, 是否会出现波动或 异常
准确性:系统输出 的信号是否准确, 是否符合设计要求
抗干扰能力:系统 在受到外部干扰时, 是否能够保持稳定 运行
故障诊断与处理: 系统出现故障时, 是否能够快速诊断 并处理,保证系统 正常运行
功率模块设计
功率模块类型: IGBT、
MOSFET等
功率模块选择: 根据系统需求 选择合适的功
率模块
功率模块参数: 电压、电流、
频率等
功率模块布局: 考虑散热、电 磁干扰等因素 进行布局设计
控制模块设计
控制模块组成:包括微处理 器、存储器、输入输出接口 等
控制模块功能:实现对电机 转速、电流、电压等参数的 控制
感谢观看
汇报人:
高效化、节能化。
发展趋势与展望
应用领域:广泛应用于工业自动 化、智能家居、电动汽车等领域
市场前景:随着科技的发展,市 场需求不断增长
添加标题
添加标题
添加标题
添加标题
技术发展趋势:智能化、网络化、 集成化
挑战与机遇:面临技术瓶颈、市 场竞争等挑战,同时也存在巨大 的发展机遇
技术创新与挑战
技术创新: PWM脉 宽直流调 速系统在 工业自动 化、电动 汽车等领 域的应用

PWM直流调速系统设计

PWM直流调速系统设计

PWM直流调速系统设计1.引言直流调速系统是工业领域中常见的控制系统之一、PWM(脉宽调制)技术被广泛应用于直流调速系统中,通过控制开关管的导通时间与关闭时间的比例来调节电压的大小,从而实现对直流电机的调速控制。

本文将详细介绍PWM直流调速系统的设计。

2.PWM控制原理PWM控制技术是一种将模拟信号转换成数字信号进行控制的方法。

PWM信号由方波信号与模拟输入信号相乘得到,当模拟输入信号大于方波信号时,开关管导通时间较长,输出电压较大;当模拟输入信号小于方波信号时,开关管导通时间较短,输出电压较小。

3.系统硬件设计3.1电源电路电源电路主要提供系统所需的稳定直流电源。

一般使用整流电路将市电转换为直流电源,并通过滤波电路提供稳定的电源电压。

3.2PWM发生电路PWM发生电路的作用是产生方波信号,用于与模拟输入信号进行乘法运算。

常见的PWM发生电路有555定时器、单片机等。

3.3比较器电路比较器电路用于比较PWM信号与模拟输入信号的大小,产生PWM信号的高低电平。

常见的比较器电路有运算放大器、比较器芯片等。

3.4功率放大电路功率放大电路是将PWM信号放大到适合直流电机使用的电压和电流。

一般采用功率晶体管、MOS管等器件来实现。

4.系统软件设计系统软件设计主要包括PWM信号的调节、比较器电路的控制以及保护功能的设计。

4.1PWM信号调节PWM信号的调节是通过改变方波信号与模拟输入信号的乘法运算比例来调节输出电压的大小。

可以通过改变方波信号的占空比来实现。

4.2比较器电路控制比较器电路的控制是根据PWM信号与模拟输入信号的大小关系来决定PWM信号的高低电平。

一般采用开关电路来实现。

4.3保护功能设计保护功能设计主要包括过载保护、过压保护和过流保护等。

通过在系统中添加相应的保护电路,可以保证系统在异常情况下的安全运行。

5.系统性能分析对PWM直流调速系统的性能进行分析是设计的重要环节。

通过分析系统的调速精度、输出波形的失真度、系统的响应速度等指标,评估系统的性能优劣。

基于PWM控制直流电机自动调速系统设计

基于PWM控制直流电机自动调速系统设计

1 绪论1.1 课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。

长期以来,直流电动机一直占据着调速控制的统治地位。

由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。

近年来,直流电动机的结构和控制方式都发生了很大变化。

随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制 (PulseWidthModulation,简称PWM)控制方式已成为绝对主流。

这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。

五十多年来,直流电气传动经历了重大的变革。

首先,实现了整流器件的更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。

再到脉宽调制 (PulsewidthModulation)变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。

另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。

随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。

以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。

由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。

技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调速、高精度的电气传动领域中一直居于垄断地位[1]。

目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。

姚勇涛等人提出直流电动机及系统的参数辨识的方法。

该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具有较高的精度,方法简便易行。

基于PWM控制的直流电机自动调速系统设计

基于PWM控制的直流电机自动调速系统设计

基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。

为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。

本文将基于PWM控制方法设计一个直流电机自动调速系统。

二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。

传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。

2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。

霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。

传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。

3.控制器设计控制器是整个自动调速系统的核心部分。

控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。

PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。

在本系统中,控制器输出的控制量即为PWM信号。

4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。

在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。

当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。

通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。

5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。

一般可选择线性稳压器或开关稳压器来提供所需的直流电压。

在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。

6.执行器选择执行器是将控制信号转换为实际操作的部分。

在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。

PWM直流调速系统

PWM直流调速系统

PWM直流脉宽调速系统设计1 PWM调速系统的主要问题什么是PWM脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。

脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。

PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM 控制技术发展的主要方向之一。

PWM的优越性自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制的高频开关控制方式,形成了脉宽调制变换器—直流电动机调速系统,简称直流脉宽调速系统,或直流PWM调速系统。

与V-M系统相比,PWM系统在很多方面有较大的优越性:1)主电路线路简单,需用的功率器件少。

2)开怪频率高,电流容易连续,谐波少,电机损耗及发热都较小。

3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右。

4)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。

5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当的时候,开关损耗也不大,因而装置效率较高6)直流电源采用不控整流时,电网功率因数比相控整流器高。

由于有上述优点,直流PWM调速系统的应用日益广泛,特别是在中、小容量的高动态性能系统中,已经完全取代了V-M系统。

PWM变换器的工作状态和电压、电流波形脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可以改变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速。

PWM直流电机调速系统设计

PWM直流电机调速系统设计

PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。

本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。

一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。

2.传感器:传感器主要用于检测电机转速和转速反馈。

常用的传感器有霍尔传感器和编码器。

3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。

控制器一般包括比较器、计数器、时钟和PWM 发生器。

4.功率电源:功率电源负责提供PWM信号的电源。

PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。

二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。

2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。

3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。

4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。

5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。

三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。

2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。

3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。

根据测试结果进行参数调整。

4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计

直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。

为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。

PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。

本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。

二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。

在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。

2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。

在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。

三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。

该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。

2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。

常用的PWM信号发生电路有555定时器电路和单片机控制电路等。

3、驱动电路驱动电路用于控制电机的供电电压。

常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。

通过改变驱动电路的控制信号,可以改变电机的转速。

四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。

常见的控制算法有PID控制算法等。

PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。

在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。

五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录前言 (1)一、设计目的 (2)二、设计要求 (2)三、直流调速系统整体设计 (2)四、系统参数选取 (7)五、各部分设计 (8)六、双闭环系统设计 (14)七、系统仿真 (17)八、设计总结 (18)参考文献 (19)前言由于直流电机具有良好的起动、制动和调速性能,已广泛应用于工业、航天领域等各个方面。

随着电力电子技术的发展,脉宽调制(PWM)调速技术已成为直流电机常用的调速方法,具有调速精度高、响应速度快、调速范围宽和功耗低等特点。

而以H桥电路作为驱动器的功率驱动电路,可方便地实现直流电机的四象限运行,包括正转、正转制动、反转、反转制动,已广泛应用于现代直流电机伺服系统中。

本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。

然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用SIMULINK对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。

在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。

对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。

采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。

一、设计目的通过对一个实用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。

二、设计要求完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算三、直流调速系统整体设计1、直流电机PWM调速控制原理直流电动机转速公式为:n=(U-IR)/Kφ其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。

直流电机转速控制可分为励磁控制法与电枢电压控制法。

励磁控制法用得很少,大多数应用场合都使用电枢电压控制法。

随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中脉冲宽度调制(PWM)便是常用的改变电枢电压的一种调速方法。

其方法是通过改变电机电枢电压接通时间与通电周期的比值(即占空比)来调整直流电机的电枢电压U,从而控制电机速度。

PWM的核心部件是电压-脉宽变换器,其作用是根据控制指令信号对脉冲宽度进行调制,以便用宽度随指令变化的脉冲信号去控制大功率晶体管的导通时间,实现对电枢绕组两端电压的控制。

在本次课程设计采用双闭环直流调速系统进行调速控制。

2、双闭环直流调速系统A.双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。

电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。

在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。

对负载引起的转速波动,速度调节器输入端产生的偏差信号将随时通过速度调节器、电流调节器来修正触发器的移相电压,使整流桥输出的直流电压相应变化,从而校正和补偿电动机的转速偏差。

另外电流调节器的小时间常数, 还能够对因电网波动引起的电动机电枢电流的变化进行快速调节,可以在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度更好地稳定于某一转速下运行。

B.双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。

两者之间实行嵌套连接,如图1所示。

把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。

这就形成了转速、电流双闭环调速系统。

图1 转速、电流双闭环直流调速系统其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子变换器 *Un -转速给定电压 Un-转速反馈电压 *Ui -电流给定电压 Ui -电流反馈电压实际上在正常运行时,电流调节器始终为不饱和状态,而转速调节器则处于饱和和不饱和两种状态。

双闭环直流调速系统的稳态结构图如图2所示。

图2 双闭环直流调速系统的稳态结构图双闭环直流调速系统的动态结构图如图3所示。

图3双闭环直流调速系统的动态结构图图中)W ACR分别表示转速调节器和电流调节器的传递函数。

(s(sW ASR和)为了引出电流反馈,在电动机的动态结构图上必须把电流d I标示出来。

电机在启动过程中,转速调节器经历了不饱和、饱和、退保和三种状态,整个动态过程可分为图4中的三个阶段。

双闭环直流调速系统启动过程的转速和电流波形如图4所示。

图4 双闭环直流调速系统起动过程的转速和电流波形图4中所示的启动过程,阶段Ⅰ是电流上升阶段,电流从0到达最大允许值Idm,ASR饱和、ACR不饱和;阶段Ⅱ时恒流升速阶段,Id基本保持在Idm,电动机加速到了给定值n*,ASR饱和、ACR不饱和;阶段Ⅲ时转速调节阶段(退饱和阶段),ASR不饱和、ACR不饱和。

双闭环直流调速系统的起动过程利用饱和非线性控制,获得了准时间最优控制,但却带来了转速超调。

C.H桥PWM变换器脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而改变平均输出电压的大小,以调节电机的转速。

由于题目中给定为转速、电流双闭环控制的H型双极式PWM直流调速系统,电动机M两端电压ABU的极性随开关器件驱动电压的极性变化而变化。

通过调节开关管的导通和关断时间,即占空比,可以达到对直流电机进行调速的目的。

H 型双极性PWM变换器如图5所示。

图5 桥式可逆PWM变换器电路双极式控制可逆PWM变换器的四个驱动电压波形如图6所示。

图6 双极式控制可逆PWM变换器的驱动电压、输出电压和电流波形它们的关系是:3g 2g 4g 1g U U U U -=-==。

在一个开关周期内,当on t t 0≤≤时,晶体管VT1、VT4饱和导通而VT2、VT3截止,这时Us U AB =。

当T t t ≤≤on 时,VT1、VT4截止,但VT2、VT3不能立即导通,电枢电流d i 经VD2、VD3续流,这时-Us U AB =。

AB U 在一个周期内正负相间,这是双极式PWM 变换器的特征,其电压、电流波形如图6所示。

电动机的正反转体现在驱动电压正负脉冲的宽窄上。

当正脉冲较宽时,2T t ≥on ,则AB U 的平均值为正,电动机正转;当正脉冲较窄时,则反转;如果正负脉冲相等,2Tt =on ,平均输出电压为零,则电动机停止转动。

双极式控制可逆PWM 变换器的输出平均电压为 Us 1-Tt 2T t -T Us T t Ud )(on on on =-=(1) 如果定义占空比T t on =ρ,电压系数s d U U =γ,则在双极式可逆变换器中 1-2ργ= (2) 调速时,ρ的可调范围为0~1,相应的1~1-=γ。

当21ρ时,γ为正,电动机正转;当21 ρ时,γ为负,电动机反转;当21=ρ时,γ=0,电动机停止。

但是电动机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而电流也是交变的。

四、系统参数的选取1、PWM 变换器滞后时间常数TsPWM 控制与变换器的动态数学模型和晶闸管触发与整流装置基本一致。

当控制电压Uc 改变时,PWM 变换器输出平均电压Ud 按现行规律变化,但其响应会有延迟,最大的时延是一周开关周期T 。

PWM 装置的延迟时间T Ts ≤,一般选取 f1Ts ==0.001s (3) 其中,f ------开关器件IGBT 的频率。

2、电流滤波时间常数和转速滤波时间常数PWM 变换器电流滤波时间常数的选择与晶闸管控制电路有所区别,这里选择电流滤波时间常数 0.002s Toi =noma d nom e n R I U C -==14602.0136220⨯-=0.132 V ·min /r (4) =2230375e C R GD π⨯=2132.0303755.05.22⨯⨯⨯π=0.18s (5) l T =RL =5.0105.12-⨯=0.03s (6)五、各部分设计1、电流调节器ACR 的设计A 、电流环小时间常数计算按小时间按常数近似处理,i T ∑取错误!未找到引用源。

=Toi +Ts =0.002+0.001=0.003(7)B 、电流调节器结构选择根据设计要求%5i ≤δ,并保证稳态时在电网电压的扰动下系统无静差,可以按典型I 型系统设计电流调节器,电流环控制对象是双惯性的,因此可以采用PI 调节器,其传递函数可见式(8)。

ss i i i ACR 1s W ττ)()(+K = (8) 检查对电源电压的抗扰性能:1003.0003.0T T i l ==∑,分析可知,各项指标都是可以接受的。

C 、电流调节器参数计算电流调节器超前时间常数:s 03.0T l i ==τ。

电流环开环增益:要求%5i ≤δ,根据典型I 型系统动态跟随性能指标和频域指标与参数的关系可知,应取5.0T K i I =∑,因此 1i I s 7.16603.005.0T .50K -∑=== (9)于是,ACR 的比例系数为 25.105.0405.003.07.166s i I i =⨯⨯⨯=K K =K βτR(10) D 、校验近似条件电流环截止频率:=K =I ci ω166.71s -(1)PWM 变换装置传递函数的近似条件 ci 1s s 3.333001.031T 31ω>=⨯=- (11)满足近似条件。

(2)校验忽略反电动势变化对电流环动态影响的条件 ci s ω<=⨯⨯=-1l m 8.40003.018.013T T 13 (12)满足近似条件。

(3)电流环小时间常数近似处理条件 ci s ω>=⨯=-1oi s 7.235002.0001.0131T T 131 (13)满足近似条件。

E 、调节器电容和电阻值计算按所用运算放大器取Ω=k 40R 0,各个电阻和电容值的计算如下:Ω=⨯==k 504025.1R 0i R K i 取50ΩkF R i iμτ6.0105003.0C 3i =⨯== 取0.6F μ F .20104002.004R T 4C 30oi oi μ=⨯⨯== 取0.2F μ PI 型电流调节器原理图如图7所示。

相关文档
最新文档