第四章计算机控制系统的常规控制技术

合集下载

计算机控制技术(曹立学)1-4章 (1)

计算机控制技术(曹立学)1-4章 (1)

第1章 绪论
2. (1) 串级调节。 在简单调节回路中, 选取干扰影响特别 明显的一个中间变量, 附加一个调节器, 组成内调节回路 (或副调节回路) , 用来初步克服干扰的影响, 同时用原回 路(称主回路) 中的调节器(主调节器) 的输出作为副调节器的 给定值, 使副调节器跟随此值达到进一步的精细调节。 这是 用一个内回路对主要干扰影响进行初调的控制系统。
第1章 绪论
3. 设备管理系统可以提供设备自身及过程的诊断信息、 管 理信息、 设备(包括智能仪表)运行状态信息、 厂商提供的设 备制造信息。 例如, Fisher Rosemoune公司推出的AMS管理 系统, 它安装在主计算机内并完成管理功能, 可以构成一个 现场设备的综合管理系统信息库, 在此基础上实现设备的可 靠性分析以及预测性维护, 将被动的管理模式改变为可预测 的管理维护模式。 AMS软件是以现场服务器为平台的T型结构, 在现场服务器上支撑模块化, 功能丰富, 为用户提供一个图 形化界面。
第1章 绪论
DDC控制系统中常使用小型计算机或微型机的分时系统来 实现多个点的控制功能。 实际上属于用控制机离散采样, 实 现离散多点控制。 这种DDC计算机控制系统已成为当前计算机 控制系统中的主要控制形式之一, DDC系统原理图如图1.2所示。
第1章 绪论 图 1.2 DDC系统原理图
第1章 绪论
第1章 绪论
(4) 分程调节。在需用不同的手段分阶段地控制一个参数 时, 采用这种调节。 例如:一个反应器的温度调节, 在正常 温度范围内用水冷却即可, 但温度达高限后需用冷冻水冷却, 低于低限时需用蒸汽加热, 方能保持正常反应。 满足这种需 要的调节称分程调节。 在分程调节中, 由一个测量元件、 一 个调节器及三个调节阀组成系统, 由三个调节阀分别控制冷水、 冷冻水和蒸汽的流量。 冷水阀通常调整到当温度在低限时全关, 高限时全开; 冷冻水阀在温度高限时全关, 温度超过高限时 开启; 蒸汽阀在温度低限时全关, 再低时开启。 为了避免冷 水阀及冷冻水阀在超高限时同时开启, 还要增加一个冷水阀超 高限自动关闭装置, 这样就可以进行分程调节了。 分程调节 系统的调节质量类似简单调节, 若需提高, 宜采用串级调节、 前馈调节等改进措施。

计算机控制系统习题参考答案

计算机控制系统习题参考答案

4) 集散控制系统:分散控制,集中操作,分级管理,综合协调,实现高级复杂的控制。 系统成本较高,且各厂商的 DCS 有各自的标准,不能互联。
2
计算机控制系统习题参考答案
5) 现场总线控制系统:分散控制,环境适应性强,维护简易,成本低,可靠性高,并且 在同一国际标准下可实现真正的开放式互联系统结构。
1) 增量型算法无需累加,计算误差或计算精度问题对控制量的计算影响较小;而位置型
算法要用到过去误差的所有累加值,容易产生大的累加误差。
2) 增量型算法得出的是控制量的增量,误动作影响小;而位置型是控制量的全量输出,
误动作影响大。
3) 增量型算法可实现手动到自动的无冲击切换。
4-4 什么叫积分饱和作用?它是怎样引起的,如何消除? 如果执行机构已到达极限位置,仍不能消除静差时,由于积分作用,尽管 PID 差分 方程式所得的运算结果继续增大或减小,但执行机构已无相应的动作,这就叫积分饱和。 在控制过程的起动、结束、大幅度增减设定值或出现较大扰动时,短时间内系统的 输出会出现很大的偏差,这些偏差经过积分项累加,有可能使控制量超出执行机构的极 限位置,因而不能按照控制量的要求动作,产生饱和效应,使系统输出出现较大的超调 和长时间的波动。 消除方法:可采用积分分离式 PID 控制算法,其基本思想是大偏差时,去掉积分作 用,以免积分作用使系统稳定性变差;小偏差时,投入积分作用,以便消除静差,提高 控制精度。亦可采用变速积分 PID 控制算法,其基本思想是设法改变积分项的累加速度,
1)
f(t)=a mt
* -k mT -1 2mT -2 Z [ f(t) ] =Z f (t) = ∑ f(kT)z =1+a z +a z +... k=0 ∞

计算机控制系统常用的控制规律

计算机控制系统常用的控制规律
第四章 计算机控制系统常用的控制规律
第一节 第二节 第三节 第四节 第五节 第六节 PID控制 串级控制 前馈控制 史密斯(Smith)预估控制 比值控制 模糊控制
PID控制

4.1 PID调节器的控制作用 4.2 PID控制器的离散化 4.3 数字PID调节中的几个实际问题 4.4 数字PID控制算法的改进 4.5 数字PID控制器参数的整定
4.1 PID调节器的控制作用
1. PID调节器的优点: 为什么要用数字模拟PID


技术成熟 易被人们熟悉和掌握 不需要建立数学模型 控制效果好
4.1.1 比例(P)调节器 1. 比例(P)调节规律 比例(P)调节器的微分方程: y(t) = Kpe(t)
பைடு நூலகம்
(8-1)
其中: y——调节器输出 Kp——比例系数 e(t)——调节器输入,为偏差值,e(t)=r(t)-m(t)。其中,r(t)为给定值, m(t)为被测参数测量值。 2. 比例(P)调节的作用 调节器的输出与输入偏差成正比。因此,只要偏差出现,就能及时地产生 与之成比例的调节作用,具有调节及时的特点。
第一节 PID控制
PID控制方式:采用比例、积分、微分的控制方式。 P I D 1. 模拟PID控制算法:用于模拟控制系统 模拟系统过程控制:被测参数(模拟量:温度、压力、流量)由传感器 变换成统一的标准信号后输入调节器。在调节器中与给定值进行比较, 再把比较后的差值经PID运算后送到执行机构,改变进给量,以达到自动 调节的目的。 2. 数字PID控制算法:用于数字控制系统 数字系统过程控制:先把过程参数进行采样,并通过模拟量输入通道将 模拟量变成数字量,这些数字量通过计算机按一定控制算法进行运算处 理,运算结果经D/A转换成模拟量后,由模拟量输出通道输出,并通过 执行机构去控制生产,以达到给定值。

《计算机控制技术》课程教学大纲

《计算机控制技术》课程教学大纲

计算机控制技术课程教学大纲Techno1ogyofMicrocomputercontro1学时数:40其中:实验学时:0课外学时:0学分数:2.5适用专业:电气工程与自动化专业或其它相关专业一、课程的性质、目的和任务本课程是自动化类各专业的“主干专业课程”,属工程技术类课程。

通过本课程的学习,使学生了解和掌握以微型机为核心组成的控制系统的硬件、软件基础知识,以及基本的应用技术。

并具备独立设计计算机控制系统的能力,为今后从事工业自动化方面的工作打下一个基础。

二、课程教学的基本要求(一)熟练掌握计算机控制系统的组成与接口技术;(二)掌握和理解计算机控制系统的常用控制算法;(H)熟练掌握计算机控制系统的设计方法和实现过程;(四)了解计算机控制技术的发展趋势及前沿课题。

三、课程的教学内容、重点和难点第一章微型计算机控制系统概述(4学时)基本内容:计算机控制系统的概念、组成,计算机控制系统的分类以及发展。

基本要求:1、熟悉微机控制系统的组成(硬件结构和软件组成)。

2、了解微机控制技术的发展趋势。

重点:计算机控制系统的发展概况。

难点:计算机控制系统的分类。

第二章计算机控制系统的过程通道接口技术(6学时)基本内容:数字量输入、输出通道的设计,模拟量输入通道的设计,模拟量输出通道的设计。

基本要求:1、掌握模拟量输入、输出通道的设计。

2、掌握数字量输入、输出通道的设计。

3、了解过程通道的结构形式。

能够根据控制系统要求选择输入输出通道中所用到的各种器件,掌握工作原理和使用方法。

能正确地绘制出系统的硬件电路原理图。

重点:采样/保持器、D/A转换器、A/D转换器接口设计难点:采样定理与数据采集第三章人机交互接口技术(4学时)基本内容:人机交互输入接口技术,人机交互输出接口技术。

基本要求:1、掌握常用键盘和常用1ED显示器的工作原理及接口设计方法。

2、能够根据控制系统要求正确的设计出键盘和显示器的接口电路,以及接口程序设计。

第4章 计算机控制系统的控制算法

第4章 计算机控制系统的控制算法

(2)热电偶的热电势与温度 热电偶的热电势与温度 T=a4E4+a3E3+a2E2+a1E+a0 用多段折线代替非线性函数。 用多段折线代替非线性函数。 (4—8)
计算机控制技术
2.标度变换 标度变换 (1)线性参数的标度变换 线性参数的标度变换
第 4章 计算机控制系统的控制算法 计算机控制系统的控制算法
计算机控制技术
第 4章 计算机控制系统的控制算法 计算机控制系统的控制算法
第4章 计算机控制系统的控制算法 章 4.1 数字滤波和数据处理 4.1.1 数字滤波 数字滤波,就是在计算机中用某种计算方法对输入的信号进行数学处理。 数字滤波, 就是在计算机中用某种计算方法对输入的信号进行数学处理。 以便减少干扰在有用信号中的比重,提高信号的真实性。 以便减少干扰在有用信号中的比重,提高信号的真实性。 常用的数字滤波方法: 常用的数字滤波方法: 限幅滤波法、 限幅滤波法、 中位值滤波法、 中位值滤波法、 平均值滤波法和惯性滤波法。 平均值滤波法和惯性滤波法。
Ax =

Nx (A m − A0 ) + A0 Nm
205 (800—200)十200=682(℃) 十 = ℃ 255
计算机控制技术
(2)非线性参数的标度变换 非线性参数的标度变换 差压变送器信号△ 与流量 与流量Q的关系为 差压变送器信号△P与流量 的关系为 据此, 据此,可得测量流量时的标度变换式为
第 4章 计算机控制系统的控制算法 计算机控制系统的控制算法
Q = K
∆P
Q x − Q0 K N x − K N 0 = Q m − Q0 K N m − K N 0
式中: 式中: Qx——被测量的流量值; 被测量的流量值; 被测量的流量值 Qm——流量仪表的上限值; 流量仪表的上限值; 流量仪表的上限值 Q0——流量仪表的下限值; 流量仪表的下限值; 流量仪表的下限值 Nx——差压变送器所测得的差压值 数字量 ; 差压变送器所测得的差压值(数字量 差压变送器所测得的差压值 数字量); Nm——差压变送器上限所对应的数字量; 差压变送器上限所对应的数字量; 差压变送器上限所对应的数字量 N0——差压变送器下限所对应的数字量。 差压变送器下限所对应的数字量。 差压变送器下限所对应的数字量 对于流量测量仪表,一般下限为取0,此时Q 对于流量测量仪表,一般下限为取 ,此时 0=0,N0=0,故上式变为 , ,

自动化导论第4章 自动控制系统的基本控制方法

自动化导论第4章 自动控制系统的基本控制方法

修正机构
辨识机构
输入量
控制器
被控对象 环境条件等
输出量
4.4 自适应控制
基本原理——小结
a 辨识被控对象的特性
b 在辨识的基础上作出控制决策
期望的 性能指标
c 按照决策对可调系统实行修正 决策机构
修正机构
辨识机构
输入量
控制器
被控对象 环境条件等
输出量
4.4 自适应控制
基本类型
自适应控制实质上是系统辨识与控制技术的结合,通常有 自校正控制系统、模型参考自适应控制系统两种类型。
拦截导弹最短时间控制
4.3 最优控制
常见的最优控制问题
⑵ 最小燃料消耗问题:控制量u(t)与燃料消耗量成正比。
J tf u t dt min t0
F xt ,u t ,t u t
导弹最小燃料控制
4.3 最优控制
常见的最优控制问题
⑶ 最小能量控制问题:考虑与消耗功率成正比。
被控对象 环境条件等
输出量
4.4 自适应控制
基本原理
然后根据所获得的信息并按照一定的评价系统优劣的性能
准则,判断决定所需的控制器参数或所需的控制信号。
期望的 决策机构
性能指标
性能指标 J t e2 ( )d t0
辨识机构
输入量
控制器
被控对象 环境条件等
输出量
4.4 自适应控制
基本原理
即控制器输出变化的速度与偏差成正比:
du(t) dt SCe(t)
t
u(t) u(0) SC
e(t)dt
0
SC:积分控制作用放大倍数 现象:只要有偏差,控制器输出就不断变化。

计算机控制系统第4章计算机控制系统的常规控制技术


K Pe(k )
Ki
k
e(
j)
Kd e(k )
e(k
1)
u0
j0
式中:
Ki
Kp
T Ti
Kd
Kp
Td T
控制算法提供了执行机构的位置。
2020/6/9
13
(2)数字PID增量型控制算法
由位置型算法
Tk
e(k) e(k 1)
u(k )
KP
e(k)
Ti
e( j) Td
j0
T
u0
得: u(k
2020/6/9
Kp
u0
0
t0
t
图2 P调节器的阶跃响应
缺点:不能消除静差;KP 过大,会使
动态质量变坏,引起被控量振荡甚至
导致闭环不稳定。
8
(2)比例积分调节器
控制规律:
e
u(t )
K P[e(t )
1 Ti
t
0 e(t )dt ] u0
其中: Ti 为积分时间常数。
1 0
t0 u
0u
1
pK pK
2020/6/9
7
(1)比例调节器
e
控制规律:
1
u(t ) K Pe(t ) u0
1
其中: KP为比例系数;
0
t0
u
t
u0 为控制量的基准。
比例调节的特点:比例调节器对于 偏差是即时反应,偏差一旦产生, 调节器立即产生控制作用使被控量 朝着减小偏差的方向变化,控制作 用的强弱取决于比例系数。只有当 偏差发生变化时,控制量才变化。
5
1.模拟PID调节器
e(t) r(t) y(t)

第四章 计算机控制系统常用的控制规律

所以, Ti也要根据对象选择。 注意:加入积分控制时,比例控制量要适当降低,为
积分控制量腾出作用空间 。
PI控制器可清除系统静差
3、比例、积分、微分(PID)控制器
➢ PI控制器虽然可以消除静差,但它是以降低响应速度为代 价的,而且Ti越大,代价越高。
➢ 在实际控制系统中,人们不但要求静差可以为0,而且还要 求有尽可能快地实现抑制静差出现的能力,或者说希望超前消 除静差。即在静差刚出现还没有发生作用,就立即消除。
当主要干扰无法用串级控制使其包围在副回路内时,采用前 馈控制将会比串级控制获得更好的效果。
➢微分先行PID控制算法 结构框图为:
控制算式为:
U(s)Kp1T1isE(s)
u(k) Kp( e k) e(k1)KpTTis( e k)-KTpTd c(k)2c(k1)c(k2) -KpTd c(k)c(k1)
Ti
四、数字PID控制器参数的整定 ● 采样周期的选择
► 对于响应快、波动大、容易受干扰影响的过程,应该选取 较短的采样周期;反之,则长一些。
➢前馈控制算法
实现完全补偿的前馈控制为:GM
(s)
GD (s) G(s)
若: 前馈控制器为:
G D (s)1 K T 11se 1s
, G (s)K 2 e 2s 1T 2s
G M ( s ) M V ( ( s s ) ) G G D ( ( s s ) ) K K 1 2 ( ( 1 1 T T 2 1 s s ) ) e ( 1 2 ) s K m 1 1 T T 1 2 s s e fs
位置式PID的输出不仅与本次偏 差有关,而且与历次测量偏差有 关,计算时要对误差累加,计算 机运算工作量大。
● 增量式PID控制算式

计算机控制系统第4章第2部分


Dn (s)G(s) Gn (s) 0

Dn
(
s)


Gn ( s) G(s)
说明:常采用前馈+反馈控制相结合的控 制方案。反馈为主:抑制各种扰动。前馈为辅: 完全补偿指定扰动。
4.6.2 前馈-反馈控制结构
1、系统结构 如图4.6所示。在反馈控制的基础上,增加
一个扰动的前馈控制。
D(s):反馈控制器 Dn(s):前馈控制器
(T (T

T2 T1
));Bm1
K f
T1 T T1
3、计算机前馈-反馈控制的算法步骤 (1) 计算反馈控制的偏差e(k)=r(k)-y(k); (2) 计算反馈控制器PID的输出u1(k);
u1(k) u1(k 1) Δu1(k)
u1(k) K pe(k) K I e(k) K D e(k) e(k 1)
系统对负荷变化的适应能力更强。
对具有纯滞后的对象和具有非线性的对象,采用 串级控制可以改善系统的控制性能。
3、系统组成特点 有主、副回路之分。主回路只有一个,而
副回路可以有多个。 主回路调节器的控制输出,就是副回路的
输入设定值。 副回路调节器的控制输出,作为系统的控
制输出,直接作用于生产过程。
4、串级控制系统的应用范围 (1) 抑制控制系统的扰动
路中,由于副回路是随动系统,能适应操作条 件和负荷的变化,自动改变副控调节器的给定 值,使系统具有良好的控制性能。
注意:设计此类系统应尽可能把主对象和 副对象的时间常数拉开,以减少副回路参数波 动对主回路的影响,从而取得良好的控制效果。
5、串级控制系统的设计原则
1)系统中主要扰动应包含在副控回路之中。这样可以再 扰动影响到主控被调参数之前,已经由于副控回路的调 节使扰动的影响大大削弱。

【第二版】计算机控制系统(康波 李云霞)第4章


= 0, 9 0 0 :S平面的虚轴,Z平面单位圆上。
z e
T
e
d T cot
z d T
cot
2 T ws
z e
T
e

n
ws
2
z n
2 1 ws
2

1 2
, wd wn 1 2
等自然频率轨迹映射

s平面上的等值线在z平面的映射: s平面实轴平行线的映射
j
A
0
[s ]
Im
[z]

AT 1
0
Re
4.1.1 S平面与Z平面的映射关系

s平面上等值线在z平面的映射: s平面虚轴平行线的映射
j
[s ]
Im
[z]
AT
A
0

e 1
0
Re
4.1.1 S平面与Z平面的映射关系

: 阻 尼 比 , n: 无 阻 尼 自 然 振 荡 频 率 2 s1 , s2 , s1,2 n n 1 设系统的根为:
离散劳斯阵列:
前两行,各n项
wn
w n-2 w n-3 w
n 1
an
an2
an4
an6
...
... 0 w
... ...
an1 an3 an5 b1 b2 b3 c1 c2 c3
... ...
... ...
an 7 b4 c4
... ...
... ... ...
n+1
... ...
4.1.2 计算机控制系统稳定性的判别

计算机控制系统稳定性的判别方法: 离散劳斯判据: 因Z-W的变换是线性变换,故是一一对应的关系。 对应关系推导:略 Im [z] jy [w]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积分调节的特点:调节器的 输出与偏差存在的时间有关。 只要偏差不为零,输出就会 随时间不断增加,并减小偏 差,直至消除偏差,控制作 用不再变化,系统才能达到 稳态。
缺点:降低响应速度。
8
t
(3)比例微分调节器
控制规律:
de( t ) u( t ) K P [e( t ) Td ] u0 d( t )
T u' ( k ) K P [e( k ) Ti
2015/12/8
(5)

T Tf T
e( k ) e( k 1) e( j ) Td ] T j 0
k
22
u( k )
(a)普通PID控制
(1)普通PID控制的微 分作用仅局限于第一个 采样周期有一个大幅度 的输出。一般的工业用 执行机构,无法在较短 的采样周期内跟踪较大 的微分作用输出,而且 理想微分容易引进高频 干扰。 (2)不完全微分PID控 制的微分作用能缓慢地 持续多个采样周期。由 于不完全微分PID算式 中含有一个低通滤波器, 因此抗干扰能力也较强。
2. 抑制饱和的方法
1) 抑制积分饱和 过程的起动、结束、大幅度增减设定值短时间内 系统的输出会出现很大的偏差,致使积分部分幅 值快速上升。由于系统存在惯性和滞后,这就势 必引起系统输出出现较大的超调和长时间的波动, 特别对于温度、成分等变化缓慢的过程,这一现 象更为严重,有可能引起系统振荡(即积分饱和 现象)。采用积分分离PID或变速积分PID等控制 算法可以解决。
Kp
u0 0 t0 t
图4
理想 PD调节器的阶跃响应
缺点: 稳定。
Td 太大,易引起系统不
9
(4)比例积分微分调节器
控制规律:
1 u( t ) K P [e( t ) Ti de( t ) 0 e(t )dt Td d(t ) ] u0
t
e
1 1 0 t0 t
u
比例积分微分三作用的线性组合。
其中: Td 为微分时间常数。
e
1 1 0 u
t0
t
微分调节的特点:在偏差出现或变化的 瞬间,产生一个正比于偏差变化率的控 制作用,它总是反对偏差向任何方向的 变化,偏差变化越快,反对作用越强。 故微分作用的加入将有助于减小超调, 克服振荡,使系统趋于稳定。它加快了 系统的动作速度,减小调整时间,从而 改善了系统的动态性能。 2015/12/8
2015/12/8
增量型算法只需保持前3个时刻的偏差值。
13
(3)两种标准PID控制算法比较
r

e

PID 位置算法
u
调节阀
被控对象
y
(a)位臵型
r


e
PID 增量算法
u 步进电机
u
被控对象
y
(b) 增量型 图6
2015/12/8
两种PID控制算法实现的闭环系统
14
算法比较 :
(1)增量型算法不需要做累加,计算误差或计 算精度问题,对控制量的计算影响较小。而位臵型 算法要用到过去误差的所有累加值,容易产生大的 累加误差。 (2)增量型算法得出的是控制量的增量,误动 作影响小,而位臵型算法的输出是控制量的全量输 出,误动作影响大。 (3)采用增量型算法,由于算式中不出现 u0 项, 则易于实现手动到自动的无冲击切换。
第4章 计算机控制系统的常规控制技术
本章主要内容
1. 数字PID控制
2. 最少拍控制
3. 纯滞后控制
2015/12/8
1
4.1 数字PID控制
本节主要内容
1.模拟PID调节器 2.数字PID控制器的实现
3.数字PID算法的改进
4.数字PID参数的整定
5.PID控制的新发展
2015/12/8
2
按偏差的比例、积分和微分进行控制的调节器简 称为PID调节器,是在连续系统中技术最为成熟, 应用最为广泛的一种调节器。
2015/12/8 17
积分分离PID控制算法
u(k ) K P [e(k ) e(k 1)] K i e(k ) K d [e(k ) 2e(k 1) e(k 2)]
1 0 e( k ) β e( k ) β
y( k )
2 1
式中, 为逻辑变量; 为 积分分离限值,它根据具 体对象要求确定。过大, 达不到积分分离的目的; 过小,一旦被控量y( t )无法 跳出积分分离区,只进行 PD控制,将会出现静差。

PID调节器结构简单、参数易于调整,当被控对 象精确数学模型难以建立、系统的参数又经常发生 变化时,应用PID控制技术,在线整定最为方便。

在计算机进入控制领域后,用计算机实现数字 PID算法代替了模拟PID调节器。

2015/12/8
3
连续生产过程中,设计数字控制器的两种方法: 1.用经典控制理论设计连续系统模拟调节器,然后 用计算机进行数字模拟,这种方法称为模拟化设计
t
缺点:不能消除静差;K P 过大,会使 动态质量变坏,引起被控量振荡甚至 7 导致闭环不稳定。
(2)比例积分调节器
控制规律:
e
1 u( t ) K P [e( t ) Ti

t
0
e( t )dt] u0
其中: Ti 为积分时间常数。
1
1 0
t0
Kp
t
u
u0
0
2015/12/8
Kp t0 Ti
u (t ) u (k ) e(t ) e( k ) k t Te( j ) 0 e(t )dt j 0 de(t ) e( k ) e( k 1) dt T
11
式中,T为采 样周期,k为 采样序号。
2015/12/8
两种标准的数字PID控制算法 (l)数字PID位臵型控制算法
式中: K i K p T

Ti
Td Kd Kp T
控制算法提供了执行机构的位置。
12
2015/12/8
(2)数字PID增量型控制算法
由位臵型算法
T u( k ) K P e( k ) Ti e( k ) e( k 1) e( j ) Td u0 T j 0
2015/12/8
15
3. 数字PID控制算法的改进
1. 什么是饱和效应?
在实际过程中,控制变量因受到执行元件机械 和物理性能的约束而限制在有限范围内,即
umin u umax
其变化率也有一定的限制范围,即
u max u
如果计算机给出的控制量在所限制范围内, 能得到预期结果;若超出此范围,实际执行的控制 量就不再是计算值,将得不到期望的效果。这种效 应称为饱和效应。 2015/12/8 16
t
(2)
21
du( t ) Tf u( t ) u' ( t ) dt
(3)
du( t ) 1 Tf u( t ) K P [e( t ) dt Ti
de ( t ) 0 e( t )dt Td dt ] (4)
t
进行离散化,得到不完全微分PID位臵型控制算式
u(k ) u(k 1) (1 )u' (k )
变速积分的PID积分项表达式为 k 1 ui (k ) K i e(i ) f e(k )e(k )T i 0 系数与偏差当前值的关系可以是线性的或非线性的,可 设为
1 A e( k ) B f e( k ) A 0 f 值在 0, 1 区间内变化 。 e( k ) B B e( k ) A B e( k ) A B
其中: K P 为比例系数;
e
1 1 0
t0
t
u0 为控制量的基准。
比例调节的特点:比例调节器对于 偏差是即时反应,偏差一旦产生, 调节器立即产生控制作用使被控量 朝着减小偏差的方向变化,控制作 用的强弱取决于比例系数。只有当 偏差发生变化时,控制量才变化。
2015/12/8
u
Kp
u0
0
t0
图2 P调节器的阶跃响应
25
③选择控制度; 控制度
m i n e 2 ( t )dt 0 D m i n e 2 ( t )dt 0 A
④按扩充临界比例度法参数整定计算公式,求 取 T 、K P 、Ti 、 Td 。 ⑤按求得的参数运行,在运行中观察控制效果, 用试凑法适当调整有关控制参数,以便获得满意 的控制效果。
2015/12/8 24
2)PID参数的工程整定法
(l)扩充临界比例度法
整定步骤如下:
① 选择一足够小的采样周期。若系统存在
纯滞后,采样周期应小于纯滞后的1/10。 ② 投入纯比例控制,使 控制系统出现临界振荡。记 下临界比例系数和临界振荡
y (t )

周期。
图10
2015/12/8
t
系统的临界振荡状态
T k e( k ) e( k 1) u( k ) K P e( k ) e( j ) Td u0 Ti j 0 T
或:
u(k ) K Pe(k ) K i e( j ) K d e(k ) e(k 1) u0
k j 0
方法。
2.应用采样控制理论直接设计数字控制器,这是一
种直接设计方法(或称离散化设计)
• 数字PID控制器的设计是按照 1 进行的。
2015/12/8 4
1.模拟PID调节器
e ( t ) r ( t ) y( t )
r

PID
Kp
相关文档
最新文档