第四章计算机控制系统的常规控制技术
计算机控制技术(曹立学)1-4章 (1)

第1章 绪论
2. (1) 串级调节。 在简单调节回路中, 选取干扰影响特别 明显的一个中间变量, 附加一个调节器, 组成内调节回路 (或副调节回路) , 用来初步克服干扰的影响, 同时用原回 路(称主回路) 中的调节器(主调节器) 的输出作为副调节器的 给定值, 使副调节器跟随此值达到进一步的精细调节。 这是 用一个内回路对主要干扰影响进行初调的控制系统。
第1章 绪论
3. 设备管理系统可以提供设备自身及过程的诊断信息、 管 理信息、 设备(包括智能仪表)运行状态信息、 厂商提供的设 备制造信息。 例如, Fisher Rosemoune公司推出的AMS管理 系统, 它安装在主计算机内并完成管理功能, 可以构成一个 现场设备的综合管理系统信息库, 在此基础上实现设备的可 靠性分析以及预测性维护, 将被动的管理模式改变为可预测 的管理维护模式。 AMS软件是以现场服务器为平台的T型结构, 在现场服务器上支撑模块化, 功能丰富, 为用户提供一个图 形化界面。
第1章 绪论
DDC控制系统中常使用小型计算机或微型机的分时系统来 实现多个点的控制功能。 实际上属于用控制机离散采样, 实 现离散多点控制。 这种DDC计算机控制系统已成为当前计算机 控制系统中的主要控制形式之一, DDC系统原理图如图1.2所示。
第1章 绪论 图 1.2 DDC系统原理图
第1章 绪论
第1章 绪论
(4) 分程调节。在需用不同的手段分阶段地控制一个参数 时, 采用这种调节。 例如:一个反应器的温度调节, 在正常 温度范围内用水冷却即可, 但温度达高限后需用冷冻水冷却, 低于低限时需用蒸汽加热, 方能保持正常反应。 满足这种需 要的调节称分程调节。 在分程调节中, 由一个测量元件、 一 个调节器及三个调节阀组成系统, 由三个调节阀分别控制冷水、 冷冻水和蒸汽的流量。 冷水阀通常调整到当温度在低限时全关, 高限时全开; 冷冻水阀在温度高限时全关, 温度超过高限时 开启; 蒸汽阀在温度低限时全关, 再低时开启。 为了避免冷 水阀及冷冻水阀在超高限时同时开启, 还要增加一个冷水阀超 高限自动关闭装置, 这样就可以进行分程调节了。 分程调节 系统的调节质量类似简单调节, 若需提高, 宜采用串级调节、 前馈调节等改进措施。
计算机控制系统习题参考答案

4) 集散控制系统:分散控制,集中操作,分级管理,综合协调,实现高级复杂的控制。 系统成本较高,且各厂商的 DCS 有各自的标准,不能互联。
2
计算机控制系统习题参考答案
5) 现场总线控制系统:分散控制,环境适应性强,维护简易,成本低,可靠性高,并且 在同一国际标准下可实现真正的开放式互联系统结构。
1) 增量型算法无需累加,计算误差或计算精度问题对控制量的计算影响较小;而位置型
算法要用到过去误差的所有累加值,容易产生大的累加误差。
2) 增量型算法得出的是控制量的增量,误动作影响小;而位置型是控制量的全量输出,
误动作影响大。
3) 增量型算法可实现手动到自动的无冲击切换。
4-4 什么叫积分饱和作用?它是怎样引起的,如何消除? 如果执行机构已到达极限位置,仍不能消除静差时,由于积分作用,尽管 PID 差分 方程式所得的运算结果继续增大或减小,但执行机构已无相应的动作,这就叫积分饱和。 在控制过程的起动、结束、大幅度增减设定值或出现较大扰动时,短时间内系统的 输出会出现很大的偏差,这些偏差经过积分项累加,有可能使控制量超出执行机构的极 限位置,因而不能按照控制量的要求动作,产生饱和效应,使系统输出出现较大的超调 和长时间的波动。 消除方法:可采用积分分离式 PID 控制算法,其基本思想是大偏差时,去掉积分作 用,以免积分作用使系统稳定性变差;小偏差时,投入积分作用,以便消除静差,提高 控制精度。亦可采用变速积分 PID 控制算法,其基本思想是设法改变积分项的累加速度,
1)
f(t)=a mt
* -k mT -1 2mT -2 Z [ f(t) ] =Z f (t) = ∑ f(kT)z =1+a z +a z +... k=0 ∞
计算机控制系统常用的控制规律

第一节 第二节 第三节 第四节 第五节 第六节 PID控制 串级控制 前馈控制 史密斯(Smith)预估控制 比值控制 模糊控制
PID控制
4.1 PID调节器的控制作用 4.2 PID控制器的离散化 4.3 数字PID调节中的几个实际问题 4.4 数字PID控制算法的改进 4.5 数字PID控制器参数的整定
4.1 PID调节器的控制作用
1. PID调节器的优点: 为什么要用数字模拟PID
技术成熟 易被人们熟悉和掌握 不需要建立数学模型 控制效果好
4.1.1 比例(P)调节器 1. 比例(P)调节规律 比例(P)调节器的微分方程: y(t) = Kpe(t)
பைடு நூலகம்
(8-1)
其中: y——调节器输出 Kp——比例系数 e(t)——调节器输入,为偏差值,e(t)=r(t)-m(t)。其中,r(t)为给定值, m(t)为被测参数测量值。 2. 比例(P)调节的作用 调节器的输出与输入偏差成正比。因此,只要偏差出现,就能及时地产生 与之成比例的调节作用,具有调节及时的特点。
第一节 PID控制
PID控制方式:采用比例、积分、微分的控制方式。 P I D 1. 模拟PID控制算法:用于模拟控制系统 模拟系统过程控制:被测参数(模拟量:温度、压力、流量)由传感器 变换成统一的标准信号后输入调节器。在调节器中与给定值进行比较, 再把比较后的差值经PID运算后送到执行机构,改变进给量,以达到自动 调节的目的。 2. 数字PID控制算法:用于数字控制系统 数字系统过程控制:先把过程参数进行采样,并通过模拟量输入通道将 模拟量变成数字量,这些数字量通过计算机按一定控制算法进行运算处 理,运算结果经D/A转换成模拟量后,由模拟量输出通道输出,并通过 执行机构去控制生产,以达到给定值。
《计算机控制技术》课程教学大纲

计算机控制技术课程教学大纲Techno1ogyofMicrocomputercontro1学时数:40其中:实验学时:0课外学时:0学分数:2.5适用专业:电气工程与自动化专业或其它相关专业一、课程的性质、目的和任务本课程是自动化类各专业的“主干专业课程”,属工程技术类课程。
通过本课程的学习,使学生了解和掌握以微型机为核心组成的控制系统的硬件、软件基础知识,以及基本的应用技术。
并具备独立设计计算机控制系统的能力,为今后从事工业自动化方面的工作打下一个基础。
二、课程教学的基本要求(一)熟练掌握计算机控制系统的组成与接口技术;(二)掌握和理解计算机控制系统的常用控制算法;(H)熟练掌握计算机控制系统的设计方法和实现过程;(四)了解计算机控制技术的发展趋势及前沿课题。
三、课程的教学内容、重点和难点第一章微型计算机控制系统概述(4学时)基本内容:计算机控制系统的概念、组成,计算机控制系统的分类以及发展。
基本要求:1、熟悉微机控制系统的组成(硬件结构和软件组成)。
2、了解微机控制技术的发展趋势。
重点:计算机控制系统的发展概况。
难点:计算机控制系统的分类。
第二章计算机控制系统的过程通道接口技术(6学时)基本内容:数字量输入、输出通道的设计,模拟量输入通道的设计,模拟量输出通道的设计。
基本要求:1、掌握模拟量输入、输出通道的设计。
2、掌握数字量输入、输出通道的设计。
3、了解过程通道的结构形式。
能够根据控制系统要求选择输入输出通道中所用到的各种器件,掌握工作原理和使用方法。
能正确地绘制出系统的硬件电路原理图。
重点:采样/保持器、D/A转换器、A/D转换器接口设计难点:采样定理与数据采集第三章人机交互接口技术(4学时)基本内容:人机交互输入接口技术,人机交互输出接口技术。
基本要求:1、掌握常用键盘和常用1ED显示器的工作原理及接口设计方法。
2、能够根据控制系统要求正确的设计出键盘和显示器的接口电路,以及接口程序设计。
第4章 计算机控制系统的控制算法

(2)热电偶的热电势与温度 热电偶的热电势与温度 T=a4E4+a3E3+a2E2+a1E+a0 用多段折线代替非线性函数。 用多段折线代替非线性函数。 (4—8)
计算机控制技术
2.标度变换 标度变换 (1)线性参数的标度变换 线性参数的标度变换
第 4章 计算机控制系统的控制算法 计算机控制系统的控制算法
计算机控制技术
第 4章 计算机控制系统的控制算法 计算机控制系统的控制算法
第4章 计算机控制系统的控制算法 章 4.1 数字滤波和数据处理 4.1.1 数字滤波 数字滤波,就是在计算机中用某种计算方法对输入的信号进行数学处理。 数字滤波, 就是在计算机中用某种计算方法对输入的信号进行数学处理。 以便减少干扰在有用信号中的比重,提高信号的真实性。 以便减少干扰在有用信号中的比重,提高信号的真实性。 常用的数字滤波方法: 常用的数字滤波方法: 限幅滤波法、 限幅滤波法、 中位值滤波法、 中位值滤波法、 平均值滤波法和惯性滤波法。 平均值滤波法和惯性滤波法。
Ax =
=
Nx (A m − A0 ) + A0 Nm
205 (800—200)十200=682(℃) 十 = ℃ 255
计算机控制技术
(2)非线性参数的标度变换 非线性参数的标度变换 差压变送器信号△ 与流量 与流量Q的关系为 差压变送器信号△P与流量 的关系为 据此, 据此,可得测量流量时的标度变换式为
第 4章 计算机控制系统的控制算法 计算机控制系统的控制算法
Q = K
∆P
Q x − Q0 K N x − K N 0 = Q m − Q0 K N m − K N 0
式中: 式中: Qx——被测量的流量值; 被测量的流量值; 被测量的流量值 Qm——流量仪表的上限值; 流量仪表的上限值; 流量仪表的上限值 Q0——流量仪表的下限值; 流量仪表的下限值; 流量仪表的下限值 Nx——差压变送器所测得的差压值 数字量 ; 差压变送器所测得的差压值(数字量 差压变送器所测得的差压值 数字量); Nm——差压变送器上限所对应的数字量; 差压变送器上限所对应的数字量; 差压变送器上限所对应的数字量 N0——差压变送器下限所对应的数字量。 差压变送器下限所对应的数字量。 差压变送器下限所对应的数字量 对于流量测量仪表,一般下限为取0,此时Q 对于流量测量仪表,一般下限为取 ,此时 0=0,N0=0,故上式变为 , ,
自动化导论第4章 自动控制系统的基本控制方法

修正机构
辨识机构
输入量
控制器
被控对象 环境条件等
输出量
4.4 自适应控制
基本原理——小结
a 辨识被控对象的特性
b 在辨识的基础上作出控制决策
期望的 性能指标
c 按照决策对可调系统实行修正 决策机构
修正机构
辨识机构
输入量
控制器
被控对象 环境条件等
输出量
4.4 自适应控制
基本类型
自适应控制实质上是系统辨识与控制技术的结合,通常有 自校正控制系统、模型参考自适应控制系统两种类型。
拦截导弹最短时间控制
4.3 最优控制
常见的最优控制问题
⑵ 最小燃料消耗问题:控制量u(t)与燃料消耗量成正比。
J tf u t dt min t0
F xt ,u t ,t u t
导弹最小燃料控制
4.3 最优控制
常见的最优控制问题
⑶ 最小能量控制问题:考虑与消耗功率成正比。
被控对象 环境条件等
输出量
4.4 自适应控制
基本原理
然后根据所获得的信息并按照一定的评价系统优劣的性能
准则,判断决定所需的控制器参数或所需的控制信号。
期望的 决策机构
性能指标
性能指标 J t e2 ( )d t0
辨识机构
输入量
控制器
被控对象 环境条件等
输出量
4.4 自适应控制
基本原理
即控制器输出变化的速度与偏差成正比:
du(t) dt SCe(t)
t
u(t) u(0) SC
e(t)dt
0
SC:积分控制作用放大倍数 现象:只要有偏差,控制器输出就不断变化。
计算机控制系统第4章计算机控制系统的常规控制技术
K Pe(k )
Ki
k
e(
j)
Kd e(k )
e(k
1)
u0
j0
式中:
Ki
Kp
T Ti
Kd
Kp
Td T
控制算法提供了执行机构的位置。
2020/6/9
13
(2)数字PID增量型控制算法
由位置型算法
Tk
e(k) e(k 1)
u(k )
KP
e(k)
Ti
e( j) Td
j0
T
u0
得: u(k
2020/6/9
Kp
u0
0
t0
t
图2 P调节器的阶跃响应
缺点:不能消除静差;KP 过大,会使
动态质量变坏,引起被控量振荡甚至
导致闭环不稳定。
8
(2)比例积分调节器
控制规律:
e
u(t )
K P[e(t )
1 Ti
t
0 e(t )dt ] u0
其中: Ti 为积分时间常数。
1 0
t0 u
0u
1
pK pK
2020/6/9
7
(1)比例调节器
e
控制规律:
1
u(t ) K Pe(t ) u0
1
其中: KP为比例系数;
0
t0
u
t
u0 为控制量的基准。
比例调节的特点:比例调节器对于 偏差是即时反应,偏差一旦产生, 调节器立即产生控制作用使被控量 朝着减小偏差的方向变化,控制作 用的强弱取决于比例系数。只有当 偏差发生变化时,控制量才变化。
5
1.模拟PID调节器
e(t) r(t) y(t)
第四章 计算机控制系统常用的控制规律
积分控制量腾出作用空间 。
PI控制器可清除系统静差
3、比例、积分、微分(PID)控制器
➢ PI控制器虽然可以消除静差,但它是以降低响应速度为代 价的,而且Ti越大,代价越高。
➢ 在实际控制系统中,人们不但要求静差可以为0,而且还要 求有尽可能快地实现抑制静差出现的能力,或者说希望超前消 除静差。即在静差刚出现还没有发生作用,就立即消除。
当主要干扰无法用串级控制使其包围在副回路内时,采用前 馈控制将会比串级控制获得更好的效果。
➢微分先行PID控制算法 结构框图为:
控制算式为:
U(s)Kp1T1isE(s)
u(k) Kp( e k) e(k1)KpTTis( e k)-KTpTd c(k)2c(k1)c(k2) -KpTd c(k)c(k1)
Ti
四、数字PID控制器参数的整定 ● 采样周期的选择
► 对于响应快、波动大、容易受干扰影响的过程,应该选取 较短的采样周期;反之,则长一些。
➢前馈控制算法
实现完全补偿的前馈控制为:GM
(s)
GD (s) G(s)
若: 前馈控制器为:
G D (s)1 K T 11se 1s
, G (s)K 2 e 2s 1T 2s
G M ( s ) M V ( ( s s ) ) G G D ( ( s s ) ) K K 1 2 ( ( 1 1 T T 2 1 s s ) ) e ( 1 2 ) s K m 1 1 T T 1 2 s s e fs
位置式PID的输出不仅与本次偏 差有关,而且与历次测量偏差有 关,计算时要对误差累加,计算 机运算工作量大。
● 增量式PID控制算式
计算机控制系统第4章第2部分
Dn (s)G(s) Gn (s) 0
Dn
(
s)
Gn ( s) G(s)
说明:常采用前馈+反馈控制相结合的控 制方案。反馈为主:抑制各种扰动。前馈为辅: 完全补偿指定扰动。
4.6.2 前馈-反馈控制结构
1、系统结构 如图4.6所示。在反馈控制的基础上,增加
一个扰动的前馈控制。
D(s):反馈控制器 Dn(s):前馈控制器
(T (T
T2 T1
));Bm1
K f
T1 T T1
3、计算机前馈-反馈控制的算法步骤 (1) 计算反馈控制的偏差e(k)=r(k)-y(k); (2) 计算反馈控制器PID的输出u1(k);
u1(k) u1(k 1) Δu1(k)
u1(k) K pe(k) K I e(k) K D e(k) e(k 1)
系统对负荷变化的适应能力更强。
对具有纯滞后的对象和具有非线性的对象,采用 串级控制可以改善系统的控制性能。
3、系统组成特点 有主、副回路之分。主回路只有一个,而
副回路可以有多个。 主回路调节器的控制输出,就是副回路的
输入设定值。 副回路调节器的控制输出,作为系统的控
制输出,直接作用于生产过程。
4、串级控制系统的应用范围 (1) 抑制控制系统的扰动
路中,由于副回路是随动系统,能适应操作条 件和负荷的变化,自动改变副控调节器的给定 值,使系统具有良好的控制性能。
注意:设计此类系统应尽可能把主对象和 副对象的时间常数拉开,以减少副回路参数波 动对主回路的影响,从而取得良好的控制效果。
5、串级控制系统的设计原则
1)系统中主要扰动应包含在副控回路之中。这样可以再 扰动影响到主控被调参数之前,已经由于副控回路的调 节使扰动的影响大大削弱。
【第二版】计算机控制系统(康波 李云霞)第4章
= 0, 9 0 0 :S平面的虚轴,Z平面单位圆上。
z e
T
e
d T cot
z d T
cot
2 T ws
z e
T
e
n
ws
2
z n
2 1 ws
2
1 2
, wd wn 1 2
等自然频率轨迹映射
s平面上的等值线在z平面的映射: s平面实轴平行线的映射
j
A
0
[s ]
Im
[z]
AT 1
0
Re
4.1.1 S平面与Z平面的映射关系
s平面上等值线在z平面的映射: s平面虚轴平行线的映射
j
[s ]
Im
[z]
AT
A
0
e 1
0
Re
4.1.1 S平面与Z平面的映射关系
: 阻 尼 比 , n: 无 阻 尼 自 然 振 荡 频 率 2 s1 , s2 , s1,2 n n 1 设系统的根为:
离散劳斯阵列:
前两行,各n项
wn
w n-2 w n-3 w
n 1
an
an2
an4
an6
...
... 0 w
... ...
an1 an3 an5 b1 b2 b3 c1 c2 c3
... ...
... ...
an 7 b4 c4
... ...
... ... ...
n+1
... ...
4.1.2 计算机控制系统稳定性的判别
计算机控制系统稳定性的判别方法: 离散劳斯判据: 因Z-W的变换是线性变换,故是一一对应的关系。 对应关系推导:略 Im [z] jy [w]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积分调节的特点:调节器的 输出与偏差存在的时间有关。 只要偏差不为零,输出就会 随时间不断增加,并减小偏 差,直至消除偏差,控制作 用不再变化,系统才能达到 稳态。
缺点:降低响应速度。
8
t
(3)比例微分调节器
控制规律:
de( t ) u( t ) K P [e( t ) Td ] u0 d( t )
T u' ( k ) K P [e( k ) Ti
2015/12/8
(5)
T Tf T
e( k ) e( k 1) e( j ) Td ] T j 0
k
22
u( k )
(a)普通PID控制
(1)普通PID控制的微 分作用仅局限于第一个 采样周期有一个大幅度 的输出。一般的工业用 执行机构,无法在较短 的采样周期内跟踪较大 的微分作用输出,而且 理想微分容易引进高频 干扰。 (2)不完全微分PID控 制的微分作用能缓慢地 持续多个采样周期。由 于不完全微分PID算式 中含有一个低通滤波器, 因此抗干扰能力也较强。
2. 抑制饱和的方法
1) 抑制积分饱和 过程的起动、结束、大幅度增减设定值短时间内 系统的输出会出现很大的偏差,致使积分部分幅 值快速上升。由于系统存在惯性和滞后,这就势 必引起系统输出出现较大的超调和长时间的波动, 特别对于温度、成分等变化缓慢的过程,这一现 象更为严重,有可能引起系统振荡(即积分饱和 现象)。采用积分分离PID或变速积分PID等控制 算法可以解决。
Kp
u0 0 t0 t
图4
理想 PD调节器的阶跃响应
缺点: 稳定。
Td 太大,易引起系统不
9
(4)比例积分微分调节器
控制规律:
1 u( t ) K P [e( t ) Ti de( t ) 0 e(t )dt Td d(t ) ] u0
t
e
1 1 0 t0 t
u
比例积分微分三作用的线性组合。
其中: Td 为微分时间常数。
e
1 1 0 u
t0
t
微分调节的特点:在偏差出现或变化的 瞬间,产生一个正比于偏差变化率的控 制作用,它总是反对偏差向任何方向的 变化,偏差变化越快,反对作用越强。 故微分作用的加入将有助于减小超调, 克服振荡,使系统趋于稳定。它加快了 系统的动作速度,减小调整时间,从而 改善了系统的动态性能。 2015/12/8
2015/12/8
增量型算法只需保持前3个时刻的偏差值。
13
(3)两种标准PID控制算法比较
r
e
PID 位置算法
u
调节阀
被控对象
y
(a)位臵型
r
e
PID 增量算法
u 步进电机
u
被控对象
y
(b) 增量型 图6
2015/12/8
两种PID控制算法实现的闭环系统
14
算法比较 :
(1)增量型算法不需要做累加,计算误差或计 算精度问题,对控制量的计算影响较小。而位臵型 算法要用到过去误差的所有累加值,容易产生大的 累加误差。 (2)增量型算法得出的是控制量的增量,误动 作影响小,而位臵型算法的输出是控制量的全量输 出,误动作影响大。 (3)采用增量型算法,由于算式中不出现 u0 项, 则易于实现手动到自动的无冲击切换。
第4章 计算机控制系统的常规控制技术
本章主要内容
1. 数字PID控制
2. 最少拍控制
3. 纯滞后控制
2015/12/8
1
4.1 数字PID控制
本节主要内容
1.模拟PID调节器 2.数字PID控制器的实现
3.数字PID算法的改进
4.数字PID参数的整定
5.PID控制的新发展
2015/12/8
2
按偏差的比例、积分和微分进行控制的调节器简 称为PID调节器,是在连续系统中技术最为成熟, 应用最为广泛的一种调节器。
2015/12/8 17
积分分离PID控制算法
u(k ) K P [e(k ) e(k 1)] K i e(k ) K d [e(k ) 2e(k 1) e(k 2)]
1 0 e( k ) β e( k ) β
y( k )
2 1
式中, 为逻辑变量; 为 积分分离限值,它根据具 体对象要求确定。过大, 达不到积分分离的目的; 过小,一旦被控量y( t )无法 跳出积分分离区,只进行 PD控制,将会出现静差。
PID调节器结构简单、参数易于调整,当被控对 象精确数学模型难以建立、系统的参数又经常发生 变化时,应用PID控制技术,在线整定最为方便。
在计算机进入控制领域后,用计算机实现数字 PID算法代替了模拟PID调节器。
2015/12/8
3
连续生产过程中,设计数字控制器的两种方法: 1.用经典控制理论设计连续系统模拟调节器,然后 用计算机进行数字模拟,这种方法称为模拟化设计
t
缺点:不能消除静差;K P 过大,会使 动态质量变坏,引起被控量振荡甚至 7 导致闭环不稳定。
(2)比例积分调节器
控制规律:
e
1 u( t ) K P [e( t ) Ti
t
0
e( t )dt] u0
其中: Ti 为积分时间常数。
1
1 0
t0
Kp
t
u
u0
0
2015/12/8
Kp t0 Ti
u (t ) u (k ) e(t ) e( k ) k t Te( j ) 0 e(t )dt j 0 de(t ) e( k ) e( k 1) dt T
11
式中,T为采 样周期,k为 采样序号。
2015/12/8
两种标准的数字PID控制算法 (l)数字PID位臵型控制算法
式中: K i K p T
Ti
Td Kd Kp T
控制算法提供了执行机构的位置。
12
2015/12/8
(2)数字PID增量型控制算法
由位臵型算法
T u( k ) K P e( k ) Ti e( k ) e( k 1) e( j ) Td u0 T j 0
2015/12/8
15
3. 数字PID控制算法的改进
1. 什么是饱和效应?
在实际过程中,控制变量因受到执行元件机械 和物理性能的约束而限制在有限范围内,即
umin u umax
其变化率也有一定的限制范围,即
u max u
如果计算机给出的控制量在所限制范围内, 能得到预期结果;若超出此范围,实际执行的控制 量就不再是计算值,将得不到期望的效果。这种效 应称为饱和效应。 2015/12/8 16
t
(2)
21
du( t ) Tf u( t ) u' ( t ) dt
(3)
du( t ) 1 Tf u( t ) K P [e( t ) dt Ti
de ( t ) 0 e( t )dt Td dt ] (4)
t
进行离散化,得到不完全微分PID位臵型控制算式
u(k ) u(k 1) (1 )u' (k )
变速积分的PID积分项表达式为 k 1 ui (k ) K i e(i ) f e(k )e(k )T i 0 系数与偏差当前值的关系可以是线性的或非线性的,可 设为
1 A e( k ) B f e( k ) A 0 f 值在 0, 1 区间内变化 。 e( k ) B B e( k ) A B e( k ) A B
其中: K P 为比例系数;
e
1 1 0
t0
t
u0 为控制量的基准。
比例调节的特点:比例调节器对于 偏差是即时反应,偏差一旦产生, 调节器立即产生控制作用使被控量 朝着减小偏差的方向变化,控制作 用的强弱取决于比例系数。只有当 偏差发生变化时,控制量才变化。
2015/12/8
u
Kp
u0
0
t0
图2 P调节器的阶跃响应
25
③选择控制度; 控制度
m i n e 2 ( t )dt 0 D m i n e 2 ( t )dt 0 A
④按扩充临界比例度法参数整定计算公式,求 取 T 、K P 、Ti 、 Td 。 ⑤按求得的参数运行,在运行中观察控制效果, 用试凑法适当调整有关控制参数,以便获得满意 的控制效果。
2015/12/8 24
2)PID参数的工程整定法
(l)扩充临界比例度法
整定步骤如下:
① 选择一足够小的采样周期。若系统存在
纯滞后,采样周期应小于纯滞后的1/10。 ② 投入纯比例控制,使 控制系统出现临界振荡。记 下临界比例系数和临界振荡
y (t )
Tτ
周期。
图10
2015/12/8
t
系统的临界振荡状态
T k e( k ) e( k 1) u( k ) K P e( k ) e( j ) Td u0 Ti j 0 T
或:
u(k ) K Pe(k ) K i e( j ) K d e(k ) e(k 1) u0
k j 0
方法。
2.应用采样控制理论直接设计数字控制器,这是一
种直接设计方法(或称离散化设计)
• 数字PID控制器的设计是按照 1 进行的。
2015/12/8 4
1.模拟PID调节器
e ( t ) r ( t ) y( t )
r
PID
Kp