6.数字传输技术考点汇总(共28页)
数据通信基础知识

电气特性:指明在接口电缆的各条线上出现的电压的范围。 功能特性:指明某条线上出现的某一电平的电压的意义。 过程特性 :指明对于不同功能的各种可能事件的出现顺序。
1 数据通信系统的模型
一个数据通信系统包括三大部分:源系统(或发送端、发送方)、传输系统(或传输网络)和目的系
从自同步能力来看,不归零制不能从信号波形本身中提取信号时钟频 率(这叫做没有自同步能力),而曼彻斯特编码和差分曼彻斯特编码 具有自同步能力。
(2) 基本的带通调制方法
基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道 并不能传输这种低频分量或直流分量。为了解决这一问题,就必须对 基带信号进行调制 (modulation)。
从概念上讲,限制码元在信道上的传输速率的因素有以下两个: 信道能够通过的频率范围 信噪比
(1) 信道能够通过的频率范围
具体的信道所能通过的频率范围总是有限的。信号中的许多高频分量 往往不能通过信道。
1924 年,奈奎斯特 (Nyquist) 就推导出了著名的奈氏准则。他给出 了在假定的理想条件下,为了避免码间串扰,码元的传输速率的上限 值。
到较高的频段,并转换为模拟信号,这样就能够更好地在模拟信道中 传输(即仅在一段频率范围内能够通过信道) 。 带通信号 :经过载波调制后的信号。
(1) 常用编码方式
不归零制:正电平代表 1,负电平代表 0。 归零制:正脉冲代表 1,负脉冲代表 0。 曼彻斯特编码:位周期中心的向上跳变代表 0,位周期中心的向下跳
r
由于 4 bit 编码共有 16 种不同的组合,因此这 16 个点
中的每个点可对应于一种 4 bit 的编码。数据传输率可
数字通信知识点整理

第一章 绪论1. 数字通信系统模型通信系统结构:信源-发送设备-传输媒质-接收设备-收信数字通信系统模型:信源-信源编码-信道编码-调制-信道-解调-信道解码-信源解码-收信 其中干扰主要来至传输媒质或信道部分 信源编码的作用: 信道编码的作用:2. 香农信道容量公式对上式进行变形后讨论其含义:令0b E S C N N W=,代入上式有 ())021C Wb E N C W =-,讨论当信道容量C 固定时,0b E N 和W 的关系。
注意,W 的单位是Hz ,SN是瓦特比值! (1) 00b E N C W W ↑⇒↑⇒↓→,功率可以无限换取带宽 (2) 0 1.6b W C W E N dB ↑⇒↓⇒↓→-,带宽不能无限换取功率(3)max 22log 1log 1P P R C I W I TW N N ⎛⎫⎛⎫=⇒=+⇒=+ ⎪ ⎪⎝⎭⎝⎭,信噪比PN 一定时,传输时间和带宽也可以互换第三章 模拟线性调制1. 调制分类A. AM (双边带幅度调制)载波 ()()0cos c c C tA t ωθ=+已调信号 产生方式:将调制信号()f t 加上一个直流分量0A 然后再乘以载波()cos c c t ωθ+ AM 调制信号信息包含在振幅中其频谱为 ()()()()()012AM c c c c S A F F ωπδωωδωωωωωω⎡⎤⎡⎤=-+++-++⎣⎦⎣⎦ 实现频谱的搬移,注意直流分量的存在。
B. DSB-SC (抑制载波双边带调制)产生方式:相对于AM 调制,仅是00A =,即不包含直流分量 DSB-SC 调制信号信息包含在振幅和相位中 已调信号 ()()()cos AM c c S t f t t ωθ=+其频谱为()()()12AM c c S F F ωωωωω⎡⎤=-++⎣⎦C. SSB (单边带调制)产生方式:DSB 信号通过单边带滤波器......,滤除不要的边带 已调信号 ()()()SSB DSB SSB S S H ωωω=实际物理信号频谱都是ω的偶函数,可去掉其中一个边带,节省带宽和功率任何信号....()f t 可以表示为正弦函数的级数形式,仅讨论单频正弦信号的单边带调制不失一般性...................................()()()cos cos DSB m m c c s t t t ωθωθ=++ ()()()()()cos cos sin sin SSB m m c c m m c c s t t t t t ωθωθωθωθ=++++令0c θ=,0m θ=,式中“-”取上边带,“+”取下边带()()()()()cos cos sin sin SSB m c m c s t t t t t ωωωω=通过移相相加或相减可以得到相应边带的调制信号。
基本传输知识点总结

基本传输知识点总结传输是信息技术领域中一个重要的概念,它涉及到数据、信号、能量等在不同媒介中的传递过程。
而在网络通信中的传输则是涉及到网络包在网络中的传递和交换,这是一个非常重要的环节。
通过传输,数据能够在不同的终端设备之间进行传递,以实现信息的传输和共享。
因此,了解传输的基本知识是非常重要的。
下面将从传输的基本原理、传输媒质、传输信道、传输协议等方面对传输知识点进行总结。
一、传输的基本原理1. 信号传输在信息传输中,最基本的就是信号的传输。
信号的传输是指将表达信息的波形从一个地方传送到另一个地方。
通常,信号可以通过电磁波、光波或者声波进行传输。
在数字通信中,主要使用数字信号进行传输。
2. 数据传输数据传输是指将数据从一台设备传输到另一台设备的过程。
数据传输需要通过网络或者数据线进行,可以是有线传输,也可以是无线传输。
传输的数据可以是文本、图片、音频、视频等形式的信息。
3. 传输过程传输过程包括数据的编码、传输介质、传输协议等环节。
在传输过程中,信号需要经过编码、调制、调制解调等处理,然后通过传输介质进行传播。
传输介质可以是导线、光纤、空气等媒介,不同的传输介质对传输速率、传输距离、抗干扰能力等都有不同的影响。
二、传输媒质1. 有线传输介质有线传输介质主要包括双绞线、同轴电缆和光纤。
其中,双绞线是最常见的传输介质,它可以传输音频、视频和数据。
同轴电缆主要用于电视信号、数据通信等传输。
而光纤则是一种高速传输介质,能够传输大容量数据,广泛应用于网络通信和数据中心。
2. 无线传输介质无线传输介质主要包括微波、红外线、无线电波等。
无线传输介质主要用于无线通信、卫星通信、蓝牙、Wi-Fi等领域,适用于移动通信、宽带接入、无线局域网等应用。
三、传输信道1. 单工传输单工传输是指数据只能在一个方向上传输,不能实现双向通信。
常见的单工传输包括广播、电视信号等。
2. 半双工传输半双工传输是指数据能够在两个方向上传输,但是不能同时进行。
信息传输知识点总结

信息传输知识点总结信息传输是指在网络中传递数据和信息的过程。
了解信息传输的相关知识点对于理解网络通信、数据传输以及网络安全都非常重要。
本文将从信息传输的基本概念、传输媒介、传输协议、网络拓扑结构和安全等方面进行总结,希望能够对读者有所帮助。
一、信息传输的基本概念1. 信息传输的定义信息传输是指将信息从一个地方传递到另一个地方的过程。
在网络中,信息传输通常涉及到数据的发送和接收,数据可以是文本、图片、视频等形式的信息。
2. 信号与数据在信息传输中,信号是指用来携带信息的载体,而数据是实际要传输的信息。
信号可以是模拟信号或数字信号,数据可以是模拟数据或数字数据。
3. 信道信道是指信息传输的媒介,是信息在发送端和接收端之间传递的通道。
在网络中,可以通过有线信道(如光纤、双绞线)或者无线信道(如无线电波)来传输信息。
4. 数据传输速率数据传输速率是指单位时间内传输的数据量,通常用比特率(bps)来表示。
数据传输速率越高,传输的信息量就越大,传输速度也就越快。
5. 传输延迟传输延迟是指信息从发送端到接收端的传输时间,包括传输延迟、处理延迟和排队延迟等。
传输延迟的大小直接影响到数据的实时性和可靠性。
二、传输媒介1. 有线传输媒介有线传输媒介是指利用导线或光纤等物理介质来传输信息的方式。
有线传输媒介的优点是传输速度快、抗干扰能力强,但缺点是需要布线和维护成本高。
2. 无线传输媒介无线传输媒介是指利用无线电波或红外线等无线介质来传输信息的方式。
无线传输媒介的优点是布线方便、移动性强,但缺点是受到环境和干扰的影响。
3. 光纤传输光纤是一种利用光信号来进行信息传输的技术,具有传输速度快、带宽大、抗干扰能力强等优点,是目前网络传输中最为常用的一种传输媒介。
4. 传输媒介的选择在选择传输媒介时,需要综合考虑传输距离、带宽需求、成本等因素,根据实际情况选择合适的传输媒介进行信息传输。
三、传输协议1. 传输控制协议(TCP)TCP是一种面向连接的、可靠的传输协议,它通过建立连接、数据分段、流量控制等机制来保证数据的可靠传输。
数据通信与传输的基础知识

数据通信与传输的基础知识在现代信息社会中,数据通信与传输已经成为了我们日常生活和工作中不可或缺的一部分。
无论是通过互联网发送电子邮件,还是通过手机发送短信,数据通信与传输技术都在背后支撑着这些应用的顺利运行。
在本文中,我们将讨论数据通信与传输的基础知识,包括数据的传输方式、数据编码与解码、传输介质以及数据传输的错误控制等方面的内容。
首先,让我们来了解一下数据的传输方式。
数据可以通过多种方式进行传输,其中最常见的是串行传输和并行传输。
串行传输是指将数据位逐个按照顺序发送,而并行传输则是同时发送多个数据位。
串行传输相对于并行传输来说,具有传输距离远、抗干扰能力强、线路成本低等优点,因此在现代通信中更为常见。
为了能够将数据准确地传输,传输的数据需要进行编码与解码。
编码是将数据转换成一定的规则或格式,以便在传输过程中能够正确地识别和解析数据。
解码则是将接收到的编码数据重新还原为原始的数据。
常见的编码方式有ASCII码、二进制编码等。
例如,在计算机系统中,文字和符号通常采用ASCII码进行编码,将字符转换成相应的二进制数值进行传输和存储。
除了编码与解码,选择合适的传输介质也是数据传输中的重要环节。
传输介质是指数据在传输过程中所需经过的物理媒介,例如电线、光纤等。
根据传输介质的不同,数据的传输速率以及传输距离也会有所变化。
在传统的有线通信中,铜缆是常见的传输介质,具有较低的成本和较高的传输带宽;而在现代网络通信中,光纤逐渐替代了铜缆,因为它能够提供更高的传输速率和更长的传输距离。
此外,为了确保数据的可靠传输,我们还需要进行错误控制。
在数据传输的过程中,可能会出现噪声干扰或数据位损坏等情况,导致接收端接收到的数据与发送端发送的数据不完全一致。
为了解决这个问题,常用的错误控制技术包括奇偶校验、循环冗余校验(CRC)以及前向纠错编码等。
这些技术通过增加冗余信息、校验和等方式,可以检测和纠正数据传输中的错误,提高数据传输的可靠性。
传输知识介绍

155/622/2500+单板常见告警分析
三.交叉时钟板:
XCS板
PS告警: 复用段保护倒换告警. syn-loss告警: 当前跟踪的时钟源丢失。如由于光 纤断引起的跟踪上游时钟源丢失。
155/622/2500+单板常见告警分析
四.主控板:
SCC板
1.WRG-BDTYPE告警: 配置错误告警。如实际插的单板与该板位定义的类型
问题。
155/622/2500+单板常见告警分析
一.线路板:
S16、SL4、SD4、SQ1、SL1、SQE、SE2等
7.AU-AIS 告警:
整个STM-N帧内除STM-N RSOH 和 MSOH 外 全 部 为 “ 1” 。 一 般 由 R-LOS 、 MS-AIS 告 警 引 起 , 常 见 业务配置有问题,如前 站业务未穿通到本站。
5. MS-AIS告警:
检测接收到的复用段开销 字 节 K2(bit6,7,8)=111 时 , 上报此告警。告警含义是 整个STM-N帧内除RSOH外 全 部 为 “ 1” 。 一 般 由 RLOS 告 警 派 生 或 上 游 站 发 来。
6.MS-RDI告警:
检测接收到的复用段开 销 字 节 K2 ( bit6,7,8) =110 。 一 般 由 下 游 站 回 告上来,表示下游站接收 到的本站信号有故障,说 明本站至对端 线路段有
OptiX Metro3000
T2000具有强大的管理能力和端到端路径管理功能,能
统一管理城域接入层,城域骨干层,长途骨干传输网。
分层管理网络
网络级网管中心
iManager T2100
子网级网管中心
DCN
iManager T2000
基本传输知识点总结大全

基本传输知识点总结大全在日常生活中,我们经常会接触到各种形式的传输,无论是信息传输、能量传输还是物质传输。
这些传输形式不仅在日常生活中起到关键作用,也在工业、科学等领域中扮演着重要角色。
因此,了解基本的传输知识点对于我们理解世界、提高工作效率都是非常有益的。
在本文中,我们将对基本传输知识点进行总结,包括信息传输、能量传输和物质传输。
一、信息传输信息传输是指将信息从一个地方传输到另一个地方的过程。
信息传输可以通过多种方式来实现,最常见的包括电信传输、无线传输和光纤传输。
1. 电信传输电信传输是通过电信设备和电信网络将信息传输到目的地的过程。
常见的电信传输设备包括电话、传真机、电报机等,而电信网络则包括电话网络、因特网、有线电视网络等。
在电信传输中,信息会被转化为电信号,通过电缆或无线信号传输到接收端,然后再转化为信息。
电信传输的优点是传输距离远、速度快、传输内容广泛,但也存在受限于线路和设备的缺点。
2. 无线传输无线传输是通过无线信号将信息传输到目的地的过程。
无线传输通常使用电磁波来传输信息,包括无线电、微波、红外线等。
常见的无线传输设备包括无线电、手机、卫星通信等。
无线传输的优点是传输距离远、不受地理限制、维护简单,但也存在受天气、电磁干扰等因素影响的缺点。
3. 光纤传输光纤传输是通过光信号将信息传输到目的地的过程。
光纤传输使用光纤作为传输介质,通过光纤传输设备将信息以光信号的形式传输。
光纤传输的优点是传输速度快、带宽大、抗干扰能力强,但也存在设备成本高、维护难度大等缺点。
二、能量传输能量传输是指将能量从一个地方传输到另一个地方的过程。
能量传输可以通过多种方式来实现,最常见的包括电能传输、热能传输和机械能传输。
1. 电能传输电能传输是指通过电力线将电能从发电厂传输到用户的过程。
电能传输通常使用输电线路将发电厂产生的电能传输到变电站,然后再通过配电线路将电能传输到用户。
电能传输的优点是传输效率高、传输距离远、使用灵活,但也存在输电损耗、安全隐患等缺点。
数据通信技术基础的知识点整理

数据通信技术基础的知识点整理数据通信技术基础是计算机科学与技术中的重要领域,主要研究计算机之间的数据传输,包括信号传输、数字编码、调制解调、传输介质、网络传输协议等方面。
以下是对数据通信技术基础的知识点整理。
一、数字信号传输数字信号传输是指将数据转换成数值信号后,以数字模式传输。
在数字信号传输过程中,需要选择合适的传输介质、信号调制方式,以及正确的信号编码方式等。
数字信号传输的主要知识点有:1.二进制编码二进制编码是将数据转换为二进制形式的编码方式。
二进制编码有 ASCII码、BCD码、格雷码等形式。
2.信号调制信号调制是将数字信号转换为模拟信号的过程,主要有模拟调制和数字调制两种方式。
在数字调制中,常用的调制方式有ASK、FSK和PSK等。
3.传输介质传输介质是数字信号传输的物理媒介,包括电缆、光纤、无线电波、卫星、载波等。
不同的传输介质具有不同的传输速度、误码率等特性。
4.差错控制差错控制是数据传输过程中一种重要的技术,它主要是指如何在传输过程中检测和纠错错误,以保证数据的可靠传输。
常用的差错控制方式有循环冗余检验(CRC)和海明码等。
二、模拟信号传输模拟信号传输是指将连续的信号以模拟的方式传输。
在模拟信号传输过程中,需要选择合适的传输介质、信号调制方式,以及正确的信号编码方式等。
模拟信号传输的主要知识点有:1.模拟调制模拟调制是将模拟信号经过调制器调制为可以传输的信号形式。
在模拟调制中,常用的调制方式有调幅、调频和调相等。
2.传输介质传输介质也是模拟信号传输的物理媒介,常用的传输介质包括电缆、无线电波等。
3.信噪比信噪比是指传输信号和噪声信号之间的比例。
在模拟信号传输中,信号的质量主要是通过信噪比来衡量的。
4.线路衰减线路衰减是指随着传输距离的增加,信号的功率逐渐减弱的现象。
在模拟信号传输中,最容易受到线路衰减影响的是高频信号。
三、计算机网络计算机网络是连接两台或多台计算机的互联网络,主要分为局域网、广域网和互联网三大类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字传输技术考点汇总传送网(G.805定义),是在不同地点之间传递用户信息的网络的功能资源,即逻辑功能的集合。
传送网是完成传送功能的手段,其描述对象是信息传递的功能过程,主要指逻辑功能意义上的网络。
当然,传送网也能传递各种网络控制信息。
传输网是在不同地点之间传递用户信息的网络的物理资源,即基础物理实体的集合。
传输网的描述对象是信号在具体物理媒质中传输的物理过程,并且传输网主要是指由具体设备所形成的实体网络,如光缆传输网、微波传输网。
人们往往将传输和传送相混淆,两者的基本区别是描述的对象不同,传送是从信息传递的功能过程来描述,而传输是从信息信号通过具体物理媒质传输的物理过程来描述。
因而,传送网主要指逻辑功能意义上的网络,即网络的逻辑功能的集合。
而传输网具体是指实际设备组成网络。
当然在不会发生误解的情况下,则传输网(或传送网)也可以泛指全部实体网和逻辑网。
电信传输网基本上是由传输设备和网络节点构成,传输设备有光缆线路系统、微波接力系统和卫星通信系统。
网络节点实现终结、交叉链接和交换功能。
网络节点接口(NNI)的工作定义是网络节点之间的接口,图1.1中所示出的可说明网络节点接口在网络中的位置。
图1.1NNI在网络中的位置传送网技术发展,经历了已经逐渐淘汰的电通信网络、正在使用的光电混合网络,正加速向全光网络迈进。
光传送网是在SDH光传送网和WDM光纤系统的基础上发展起来的,我们从SDH、MSTP、ASON、WDM等各种传送网的传输方式入手,分别讲述基于各种技术的光传送网的特点。
1.1.1基于SDH技术的传送网特点一、SDH技术简介SDH(Synchronous Digital Hierarchy,同步数字体系)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。
国际电话电报咨询委员会(CCITT)(现ITU-T)于1988年接受了SONET概念并重新命名为SDH,使其成为不仅适用于光纤也适用于微波和卫星传输的通用技术体制。
它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。
二、基于SDH技术传送网的特点1.使1.5Mbit/s和2Mbit/s两大数字体系(3个地区性标准)在STM-1等级上获得统一。
今后数字信号在跨越国界通信时,不再需要转换成另一种标准,第一次真正实现了数字传输体制上的世界性标准。
2.采用了同步复用方式和灵活的复用映射结构。
各种不同等级的码流在帧结构净负荷内的排列是有规律的,而净负荷与网络是同步的,因而只须利用软件即可使高速信号一次直接分插出低速支路信号,即所谓的一步复用特性。
3.SDH帧结构中安排了丰富的开销比特,因而使网络的OAM能力(诸如故障检测、区段定位、端到端性能监视等)大大加强。
4.SDH具有完全的后向兼容性和前向兼容性。
5.SDH网具有信息净负荷的透明性。
即网络可以传送各种净负荷及其混合体而不管其具体信息结构如何。
6.由于将标准光接口综合进各种不同的不少网元,减少了将传输和复用分开的需要,从而简化了硬件,缓解了布线拥挤。
例如网元有了标准光接口后,光纤可以直接通到DXC,省去了单独的传输和复用设备,以及又贵又不可靠的人工数字配线架。
此外,有了标准光接口信号和通信协议后,使光接口成为开放式接口,还可以在基本光缆段上实现横向兼容,满足多厂家产品环境要求,使网络成本节约10%到20%。
7.由于用一个光接口代替了大量的电接口,因而SDH网所传输的业务信息,可以不必经由常规准同步系统所具有的一些中间背靠背电接口而直接经光接口通过中间节点,省去了大量相关电路单元和跳线光缆,使网络可用性和误码性能都获得改善,而且,由于电接口数量锐减导致运行操作任务的简化及备件种类和数量的减少,使运营成本减少20%~30%。
8.SDH信号结构的设计已经考虑了网络传输和交换应用的最佳性,因而在电信网的各个部分(长途、中继和接入网)中都能提供简单、经济和灵活的信号互连及管理,使得传统电信网各个部分的差别正在渐渐消失,彼此的直接互联变得十分简单和有效。
此外,由于有了唯一的网络节点接口标准,因而各个厂家的产品可以直接互通,从而可能使电信网最终工作于多厂家的产品可以直接互通,从而可能使电信网最终工作于多厂家产品环境并实现互操作。
上述特点中最核心的有3条,即同步复用、标准光接口和强大的网管能力。
当然,SDH也有它的不足之处。
例如:1.频带的利用率不如传统的PDH系统。
以2.048Mbit/s为例,PDH的139.264Mbit/s可以收容64个2.048Mbit/s系统,而SDH的155.520Mbit/s却只能收容63个2.048Mbit/s系统,频带利用率从PDH的94%下降到83%;以34.368Mbit/s为例,PDH的139.264Mbit/s可以收容4个系统,而SDH的155.520Mbit/s却只能收容3个,频带利用率从PDH的99%下降到66%。
当然,上述安排可以换来网络运用上的一些灵活性,但毕竟使频带的利用率降低了。
2.采用指针调整机理增加了设备的复杂性。
以一个复用映射支路为例,容器和虚容器电路加上指针调整电路,以及POH和SOH插入功能,大约共需6~7万个等效门电路。
好在采用亚微米超大规模集成电路技术后,成本代价不算太高。
3.由于大规模的采用软件控制和将业务量集中在少数几个高速链路和交叉连接点上,软件几乎可以控制网络中的所有交叉连接设备和复用设备。
这样,在网络层上的人为错误、软件故障,乃至计算机病毒的侵入可能导致网络的重大故障,甚至造成全网瘫痪。
为此必须仔细的测试软件。
选用可靠性较高的网络拓扑。
3.1多路复用的概念为了提高信道利用率,在传输过程中都采用复用方式即多个信号在一条信道上传输。
一般有频分多路复用(FDM)、时分多路复用(TDM)和码分复用(CDM)等多种方法。
频分复用是通过对信号进行处理使它们占据频率域中不同的频段,而在时间上共用整个时间坐标。
时分多路复用是各路占用信道的时刻各不相同,但因各样值都有无限宽的频谱,所以它们同时占据全部频域。
而码分复用以不同、互成正交的码序列来区分用户,这种扩频技术一般用于移动通信中的码分多址技术(CDMA)。
图3.1.1给出了在一三维空间中时分多路和频分多路的原理示意图。
三维变量时间、频率和幅度,代表了一实际的空间信道,多路频带受限信源信号如何进入信道传输就决定了信号的复用方法。
TDM的特点是:可以把时间离散样值数字化,数字传输的抗干扰能力,远距离传输、高速复用和终端处理多是模拟通信无法比拟的。
但是,由于实际信道,无论是有线还是无线信道,都是模拟信道,而且带宽也相对有限,为了充分利用信道资源,得到最佳的传输效果,各种技术的综合运用是现代传输技术的特点。
然而,现代通信网的传输是建立在大容量、宽带化、数字化、个人化的基础上的综合数字通信网。
数字信号的复用、组帧、高速复接是通信传输的基本技术、TDM技术是各种通信传输系统的公共技术。
3.1多路复用的概念为了提高信道利用率,在传输过程中都采用复用方式即多个信号在一条信道上传输。
频分多路复用(FDM)、时分多路复用(TDM)和码分复用(CDM)等多种方法。
3.2双工技术在有线数字传输系统中,双向通信的两个传输信号通常在不同的信道(如光缆等)中,这种通信方式称为四线制。
无论是模拟还是数字信号都可以实现双工通信。
当光纤和数字信号向用户终端延伸,要在模拟的金属用户环路上实现双向的数字通信或在一条宽频带的光缆上实现多用户的数字接入,尤其是无线通信(GSM、CDMA)的发展,双工技术变成通信中最常见的应用技术之一。
应用双绞线实现二线全双工通信的方法见图3.2.1。
1、二线/四线概念3.2.1二线数字双工传输所谓二线数字双工传输,是指在二线用户环路上实现收、发双向数字传输,这是一种信道收发复用技术。
最常用的有两种方法:频分双工和时分双工。
频分双工是把信道的使用频带分为高、低两部分,收、发双向传输信号分别占用一部分;时分双工是把信道的使用时间分为若干个收、发周期,在每个收发周期内又分为收、发两个时隙,收、发双向传输信号在每个收、发周期内分别轮流占用一个时隙。
二线用户环路上实现数字双工传输的常用方法有两种:一种是基于时分(TDM)双工原理的时间压缩法;一种是传统模拟二线原理和数字信号处理技术为基础的回波抵消法。
1、时间压缩法时间压缩(TC)法又称乒乓法。
这就可以求出容许的最大传输延时:c r T T T -=21(3.2.1)T r 原脉宽T c 发送脉宽T d 传输延时T dMAX 允许的最大传输延时Tg 延时余量2/max g d d T T T -=(3.2.2)当传输线缆确定之后,单位距离上的延时时间K 也就确定了,则传输延时与传输距离L 的关系为:KL T d =(3.2.3)鉴于在一个重复周期内,连续数字信号的全部码元要以突发形式全部传给收端,则存在如下关系式:rc L o T T f f =(3.2.4)从而求得TDM 方案的基本关系式为:r g L T T KL f f 2/210--=(3.2.5)例如,均匀码流速率f 0=64kbit/s,采样周期T r =125us,线路突发传码速率f l =256kbit/s,电缆每公里延时时间K=5us/km,延时余量T g =22.5us,则求得传输距离为L=4km,当不留延时余量T g =0,则求得最大传输距离L max =6.25km。
在0.5mm 线径的铜线上,其传输距离可以达到4~5km。
2.回波抵消法回波抵消法允许收发双方同时把发送信号送到二线用户环路上,这样线路上将同时存在收发两端的发送信号。
接收端根据信道的传输特性和本端的发送信号特性,自动估算出接收信号中包含的本端发送信号分量,并将其从接收信号中减去,即得到对端发来的信号。
)()(1*i k x h k y n i i -=∑=(3.2.6)式中,M 是等效路径数,h i 是第i 条等效路径的脉冲响应。
由复制网络复制的回波为:)()(ˆ1i k x h k yM i i -⋅=∑=(3.2.7)式中,h i (k)是数字横向滤波器第i 抽头在第k 个采祥时刻的加权值。
这时相应的残余回波为:)())(()(ˆ)()(1*i k x k h h k yk y k e i M i i--=-=∑=(3.2.8)可见,要想最大限度地限制回波,必须调整所有的h i (k)值尽可能地接近对应的h i *值。