1.1-1.2密堆积
一般物料的密度和安息角

一般物料的密度和安息角散料在堆放时能够保持自然稳定状态的最大角度(单边对地面的角度),称为“安息角”。
散物料在堆积到这一角度后,再往上堆加这种散物料,就会自然溜下,继续堆加,这个角度保持不变,只会增加高度,同时加大底面积。
在土堆、煤堆、粮食、砂子、石灰等散物料堆放时,就可以看见这种现象,不同种类的散料安息角各不相同,提供参考:松散物料的密度和安息角序号物料名称密度\t/m3运动安息角\(°)静止安息角\(°)1 无烟煤(干、小)0.7~1.0 27~30 27~452 烟煤0.8~1.0 30 35~453 褐煤0.6~0.8 35 35~504 泥煤0.29~0.5 40 455 泥煤(湿)0.55~0.65 40 456 焦炭0.36~0.53 35 507 木炭0.2~0.4 - -8 无烟煤粉0.84~0.89 - 37~459 烟煤粉0.4~0.7 - 37~4510 粉状石墨0.45 - 40~4511 磁铁矿2.5~3.5 30~35 40~4512 赤铁矿2.0~2.8 30~35 40~4513 褐铁矿1.8~2.1 30~35 40~4514 硫铁矿(块)- 4515 锰矿1.7~1.9 - 35~4516 镁砂(块)2.2~2.5 - 40~4217 粉状镁砂2.1~2.2 - 45~5018 铜矿1.7~2.1 - 35~4519 铜精矿1.3~1.8 - 4020 铅精矿1.9~2.4 - 4021 锌精矿1.3~1.7 - 4022 铅锌精矿1.3~2.4 –4023 铁烧结块1.7~2.0 - 45~5024 碎烧结块1.4~1.6 35 –25 铅烧结块1.8~2.2 - -26 铅锌烧结块1.6~2.0 - -27 锌烟尘0.7~1.5 - -28 黄铁矿烧渣1.7~1.8 - -29 铅锌团矿1.3~1.8 - -30 黄铁矿球团矿1.2~1.4 - -31 平炉渣(粗)1.6~1.85 - 45~5032 高炉渣0.6~1.0 35 5033 铅锌水碎渣(湿)1.5~1.6 - 4234 干煤灰0.64~0.72 - 35~4535 煤灰0.7 - 15~2036 粗砂(干)1.4~1.9 - -37 细砂(干)1.4~1.65 30 30~3538 细砂(湿)1.8~2.1 - 3239 造型砂0.8~1.3 30 4540 石灰石(大块)1.6~2.0 30~35 40~4541 石灰石(中块、小块)1.2~1.5 30~35 40~4542 生石灰(块)1.1 25 45~5043 生石灰(粉)1.2 - -44 碎石1.32~2.0 35 4545 白云石(块)1.2~2.0 35 –46 碎白云石1.8~1.9 35 –47 砾石1.5~1.9 30 30~4548 粘土(小块)0.7~1.5 40 5049 粘土(湿)1.7 - 27~4550 水泥0.9~1.7 35 40~4551 熟石灰(粉)0.5 - -52 电石~1.2 - -。
固体物理学-1

复式晶格
SC + 双原子基元
fcc + 双原子基元
由同种原子构成的金刚石晶格也是复式晶格。
1 2
3
1
1
4
41
2
1
32
4
4
1 2
A类碳原子的 共价键方向
B类碳原子的 共价键方向
hcp也是复式晶格。
复式晶格包含多个等价原子,不同等价原子的简 单晶格相同。复式晶格是由等价原子的简单晶格嵌 套而成。
二、基矢和原胞 a2 0 a1
固体物理学
固体物理学的特点
一、姓名:固体物理
物理学:凝聚态物理;理论物理;粒 子与原子核物理;原子分子 物理;光学;声学;等离子 物理;无线电物理
以固体物理为核心的凝聚态物理是当代物 理学中最重要、最丰富的分支科学,其特 点在于研究人员众多,研究结果丰富多彩, 对技术发展影响广泛,与其他学科相互渗 透迅速,凝聚态物理学是由固体物理学逐 渐演变而来的。
宏观物理性质
材料的外场响应
基态:能量最低,有序态 激发态:低激发态、元激发、准粒子
(声子、准电子、空穴、极化激元、等
离激元、自旋波量子)
相互作用多粒子系统的本征态问题
五、固体物理通用教材
1 黄 昆,韩汝琦,国体物理学 高等教育出版社 1988第1版,
(根据黄 昆,固体物理学 人民教育出版社 1966版扩充改编)
12. Ashcroft, Mermin Solid State Physics 1976
六、教材内容
通论部分:
1. 晶体结构 2. 固体的结合 3. 晶格振动和热学性质
4. 晶体中的电子——能带论
5. 晶体中电子在电场和磁场中的运动 6.金属电子论
1.2密堆积

A
B
构,称为立方密积。
立方密堆积=面心立方(fcc)
配位数的可能值
配位数:一个粒子周围最近邻的粒子数称为配位数.
配位数的可能值为:12(密堆积),8(氯化铯结构),6(氯化钠结构),4(金刚石型结 构),3(石墨层状结构),2(链状结构)。
思考:面心立方结构的配位数是? 答案:面心立方是立方密堆积,所以配位数为12.
度(堆积比率或最大空间利用率)。
配位数:一个粒子周围最近邻的粒子数称为配位数.它可 以描述晶体中粒子排列的紧密程度,粒子排列越紧密,配 位数越大。 密堆积:如果晶体由完全相同的一种粒子组成,而粒子被 看作小圆球,则这些全同的小圆球最紧密的堆积称为密堆 积。
密堆积特点:结合能低,晶体结构稳定;配位数最大为12。
1 1 N 6 8 4 2 8
ak
v 致 密 度: V
aj
ai
3
4 2 4 π 3 4
V a3 4 v N πR 3 3
4 R 2a
2 π 6
A B
六角密堆积的致密度
设晶格常量为a,原子半径为R,则
ak
V a
3
单胞体积
aj
4 v N πR 3 3
4 R 2a
单胞中原子所占体积 N是单胞中原子个数
ai
1 1 1 N ni n f ne nc 2 4 8
内部原子数 面上原子数 棱上原子数 顶角上 原子数
1 1 1 N ni n f ne nc 2 4 8
金刚石结构(半导体Si,Ge)
两套面心立方格子相 互沿对角线位移1/4 处套合。如C, Si, Ge, Sn;配位数=4;每个 原子有四个最近邻, 形成一个正四面体。
晶体结构.01

1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的 排列具有长程周期性结构
非晶体:组成固体的粒子只有短程序(在近邻或 次近邻原子间的键合:如配位数、键长 和键角等具有一定的规律性),无长程 周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
第一章 晶体结构(crystal structure)
1-1 几种常见的晶体结构 1-2 晶格的周期性 1-3 晶向、晶面和它们的标志 1-4 对称性和Brawais点阵
1-5 倒点阵及其基本性质
1-6 晶体衍射物理基础
1
1-1几种常见的晶体结构
主要内容
1.1简立方晶格结构(cubic)
1) NaCl晶体的结构 氯化钠由Na+和Cl-结合而成 —— 一种典型的离子晶体 Na+构成面心立方格子;Cl-也构成面心立方格子
20
2) CsCl晶体的结构 CsCl结构 —— 由两个简单立方子晶格彼此沿立方体空间对 角线位移1/2 的长度套构而成
21
CsCl晶体
22
3) ZnS晶体的结构 —— 闪锌矿结构 立方系的硫化锌 —— 具有金刚石类似的结构 化合物半导体 —— 锑化铟、砷化镓、磷化铟
六角密排晶格的原胞基矢选取 —— 一个原胞中包含A层 和B层原子各一个 —— 共两个原子 k
定义:
i
j
原胞基矢为:
a1 , a2 , a3
a1 a2 a3
(四)晶格周期性的描述 —— 布拉伐格子
Bravais lattices
由于组成晶体的组分和 组分的原子排列方式的 多样性,使得实际的晶 体结构非常复杂。
六方最密堆积和晶胞的关系-概述说明以及解释

六方最密堆积和晶胞的关系-概述说明以及解释1.引言1.1 概述六方最密堆积和晶胞是固体结构中两个重要的概念。
六方最密堆积是一种最紧密的原子排列方式,具有独特的结构特点和物理性质。
晶胞则是晶体中基本的结构单元,描述了晶体的周期性排列方式。
本文旨在探讨六方最密堆积和晶胞之间的关系,分析它们在固体结构中的相互作用和影响。
通过深入研究这一关系,可以更好地理解晶体的结构和性质,为材料科学领域的研究和应用提供理论支持和指导。
1.2 文章结构本文主要分为三个部分:引言、正文和结论。
在引言部分中,将会对六方最密堆积和晶胞的基本概念进行简要介绍,然后阐明本文的目的和结构。
在正文部分,将详细探讨六方最密堆积的定义和特点,晶胞的概念及其重要性,以及六方最密堆积和晶胞之间的关系。
最后,在结论部分将总结六方最密堆积和晶胞之间的关系,讨论其在材料科学中的应用,并展望未来的研究方向。
整个文章将会逐步展开,从基础概念到具体关系,向读者呈现一个完整的研究框架。
1.3 目的本文旨在探讨六方最密堆积和晶胞之间的关系,通过对六方最密堆积和晶胞的定义、特点以及重要性进行分析和比较,揭示它们之间的联系和相互作用。
我们希望通过本文的研究,能够深入理解六方最密堆积和晶胞在材料科学领域中的重要性和应用价值,为材料科学研究提供新的思路和方法。
此外,我们也希望能够为未来关于六方最密堆积和晶胞的研究提供一定的参考和借鉴,推动相关领域的发展和进步。
2.正文2.1 六方最密堆积的定义和特点六方最密堆积是一种密排结构,也称为紧密填充结构或堆积结构。
在这种结构中,原子或离子按照特定的规律排列,以使得它们之间的间隙最小化,从而实现最大的密度。
在六方最密堆积中,每个原子或离子的周围都被临近原子或离子所包围,形成了紧密的结构。
六方最密堆积有以下几个特点:1. 紧密堆积:六方最密堆积是一种最紧密的堆积结构,原子或离子之间的间隙非常小,使得整个结构具有高度的紧凑性。
2. 六方对称性:六方最密堆积具有六方对称性,即在堆积方向上,原子或离子被排列成六边形的堆积序列,这种对称性对于晶体的稳定性和性质具有重要意义。
C100混凝土弹性模量影响因素的研究分析

C100混凝土弹性模量影响因素的研究分析摘要:本文通过对影响高强混凝土弹性模量的各因素进行对比试验,分析高性能混凝土粗骨料、砂率、水胶比、坍落度等因素对C100高性能混凝土弹性模量的影响。
关键词:弹性模量粗骨料砂率水胶比坍落度在混凝土工程实际应用中,除了以强度、坍落度作为主要控制指标外,还经常规定混凝土的弹性模量,混凝土结构设计规范GB50010-2002第4.1.5条规定C30混凝土受压和受拉时的弹性模量为:3.00X104 MPa。
在计算钢筋混凝土的变形,裂缝扩展及大体积混凝土的温度应力时,都需要知道混凝土的弹性模量。
如目前我国高铁高性能混凝土的28d弹性模量要求达到3.55×104MPa,既35.5GPa。
同时在实际工程中,也出现过混凝土强度满足要求但弹性模量偏低,使混凝土构件变形较大而不能正常使用的问题,甚至会导致混凝土结构失稳而发生工程质量事故。
因此,研究哪些因素会影响混凝土弹性模量是非常必要的。
本次试验主要研究混凝土粗骨料、砂率、水胶比、坍落度等因素对C100高性能混凝土弹性模量的影响。
1 试验采用的原材料1.1 水泥采用大连小野田P.O42.5级水泥,水泥性能见表1-1表1-1 水泥性能品种及生产厂家大连小野田强度等级 P.O42.5抗压强度实测值(MPa) 3d 28.328d 59.6抗折强度实测值(MPa) 3d 6.028d 10.1凝结时间(min)初凝 150终凝 2251.2细集料采用沈阳浑河产河砂,性能见表1-2表1-2细集料性能项目细度模颗粒级表观密堆积密数配度度含泥量泥块含孔隙率(%)量(%)(%)。
晶体结构

[011]
E
uur a3 uur
a2
A
uur a3 uur
a2
O
ur
a1 B
uuur uur uur
BE a2 a3
O
ur a1
另解:
C uuur ur
OB a1
D
uuur ur uur uur
OE a1 a2 a3
uuur uuur uuur uur uur BE OE OB a2 a3
晶体的物理性质在不同方向上存在差异.
例如:电导率、热学性质、折射率等 石墨沿不同晶向电导率不同 方解石沿不同晶向折射率不同
晶体的宏观特性是由晶体内部结构的周期性决 定的,即晶体的宏观特性是微观特性的反映。
1.2 密堆积
晶体中的原子(或离子)由于彼此之间的吸引力会 尽可能地靠近,以形成空间密堆积排列的稳定结构。
(5)CsCl结构(CsBr、CsI、TlCl等)
Cl
Cs
Cl-和Cs+分别组成简立方子晶格. 氯化钠结构由两个简立方子晶格沿体对角线位移1/2的 长度套构而成为复式格子。 一个晶胞包含一个Cl-和一个Cs+. 其原胞为简立方, ,包含一个Cl-和一个Cs+.
(6)金刚石结构(Si、Ge等)
(3)原胞(Primitive Cell)
这个体积最小的重复单元即为原胞,代表原胞三个边 的矢量称为原胞的基本平移矢量,简称基矢。
基矢通常用 a 1 , a 2 表, a示3
a3 a2
a1
(3)原胞(Primitive Cell)
原胞的体积:
Ω a1 a 2 a 3
a3
a2
原胞的特点:
原胞和晶胞是一致的
面心立方堆积构成四面体空隙的粒子的位置-概述说明以及解释

面心立方堆积构成四面体空隙的粒子的位置-概述说明以及解释1.引言1.1 概述面心立方堆积是固体物理学中常见的结构排列方式,其具有密堆积度高、结构稳定等特点。
在面心立方堆积结构中,四面体空隙是一种常见的空隙结构,其在材料科学和晶体学等领域有着重要的应用价值。
本文旨在探讨面心立方堆积构成四面体空隙的粒子在空隙中的位置分布规律,通过分析粒子之间的相互作用和空间排布关系,揭示粒子在四面体空隙中的稳定位置,并探讨其对材料性能等方面的影响。
通过对这一现象的研究,可以更深入地理解固体材料的结构与性质之间的关系,为材料设计与制备提供理论指导。
综上所述,本文将探讨面心立方堆积构成四面体空隙的粒子位置分布规律,旨在拓展对固体材料微观结构的认识,并为相关领域的研究提供理论支持和启示。
1.2 文章结构文章结构部分包括了整篇长文的组织框架,帮助读者更好地理解文章的内容和逻辑发展。
本文的结构主要分为引言、正文和结论三个部分。
在引言部分,我们将简要介绍面心立方堆积构成四面体空隙的背景和意义,以及文章的写作目的和结构安排。
在正文部分,将详细探讨面心立方堆积的特点、四面体空隙的构成以及粒子在四面体空隙中的位置。
通过对这些内容的深入分析,读者将能够更清晰地理解粒子在四面体空隙中的位置关系。
最后,在结论部分,我们将对整篇文章进行总结,概括面心立方堆积构成四面体空隙的粒子位置的关键点,并探讨其应用和展望。
最终得出结论,总结本文的主要观点和研究成果。
1.3 目的本文旨在探讨面心立方堆积结构中四面体空隙的构成及其中粒子的位置关系。
通过深入分析和研究,我们希望能够深入了解这一特殊结构下粒子的排列规律,为相关领域的研究提供参考和启示。
同时,通过对粒子位置的研究,也可以为材料科学、晶体学等领域的应用提供理论支持,促进相关领域的发展和进步。
通过本文的研究,可以更好地理解和利用面心立方堆积构成的材料结构,为材料设计和工程应用提供有益的参考和指导。
2.正文2.1 面心立方堆积的特点面心立方堆积是一种常见的结构,在晶体学和材料科学领域中被广泛研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面心密排堆积和六角密排堆积
3.1 六角密堆
原子球排列 :AB AB AB …
Be(铍 )、Mg、Zn、Cd(镉)
3.1 六角密堆
六角密排结构单元
3.2 面心立方密堆
3.2 面心立方密堆
1蓝6红6黄1蓝(1661)
3.2 面心立方密堆
3.2 面心立方密堆
致密度 = 21/2π/6 =0.74
4 3 r : 原子球半径 r 3 致密度 : n V : 晶胞体积(立方体的体积) V n : 一个晶胞内含有的原子球的个数
4 3 r 23 1 V
4 3 r 3 3 a
3a (4r ) 3a 2r
2 2
4 3 r 3 3 2 0.68 V 8
两个世纪以前,人们认为晶体是由实心的基石 堆砌而成的,它形象地直观地描述了晶体内部的规则 排列。直到现在人们仍沿用这种堆积方式来形象地描 述晶体的简单晶格结构。
a
§1.2 密堆积
堆积: 松散的堆积和密堆积 。
基本思想:晶体是由半径相同的小球堆积而成!
两个基本概念: 配位数:一个刚性原子球最紧邻的刚性原子球的数目。 致密度:在结构单元(晶胞)中刚性原子球所占的体积比。
4 3 r : 原子球半径 r 3 致密度 : n V : 晶胞体积(立方体的体积) V n : 一个晶胞内含有的原子球的个数
4 3 r n 3 1 V
4 3 4 3 r r 3 3 0.524 3 3 a ( 2r ) 6
a
体心立方致密度
体心立方结构单元
2. 体心立方堆积
体心立方晶格 结构的金属:Li、Na、K、Rb、Cs、Fe 等
体心立方晶格中, A 层中原子球的距离等于 A - A 层之间的距
离,A层原子球的间隙 ——
3. 密堆积
一维:
二维正方堆积
二维密排堆积
3. 密堆积
原子球排列 : ABC ABC ABC ……
原子球排列 : AB AB AB ……
配位数 = ?
3.2 面心立方密堆
金刚石结构
小 结
晶体的共性:长程有序、自限性和各向异性 配位数:用来表征原子排列的紧密程度。 密堆积:在六角和立方两种密积中晶体的配 位数是12,是晶体结构中的最大的 配位数。
小 结
简立方
体心立方
面心立方
六角密排
简立方致密度
致密度:一个晶胞 中刚性原子球占据的体积与晶胞体积的比值。
§1.1 晶体的基本性质
性质3. 晶体的各向异性
晶体的各项异性是晶体的平移对称性在晶体物理性质上的 反映,是晶体区别于非晶体的主要性质!
光学性质和热学性质!
§1.1 晶体的基本性质
晶体的各向异性
光学特性:晶体折射率的各向异性。
解理面: 晶体易于沿某些特定方向的晶面发生劈裂, 解理面是 能量相对较低的稳定面
§1.2 密堆积(立方晶系)
堆积: 松散堆积和密堆积 松散堆积:简单立方堆积 体心立方堆积
密集堆积:面心立方堆积和六角堆积
一维
二维堆积 二维正方松散堆积 二维密排堆积
1 简单立方堆积
原子球在一个平面 内呈正方排列 平面的原子层叠加起的简单立方排列 配位数 :
简立方结构单元
2. 体心立方堆积
配位数 = 点介绍
原胞、晶胞、晶面、倒格子和对称性等基本概
念,从而研究晶体的结构。
§1.1 晶体的基本性质
组成晶体的原子的排列方式(晶体结构)决定了晶体的 性质!
§1.1 晶体的基本性质
性质1.长程有序: 晶体中的分子(原子)在较大
范围内(至 少微米量级) 按
一定方式的有序排列.
物理常数的各项异性: 弹性常数、压电常数、介电常数、 电导率等,采用张量表示
§1.1 晶体的基本性质
晶体的宏观特性: 长程有序 、各向异性、自限性、晶面夹角守恒、解理面、 对称性、固定的熔点等 晶体为什么会有这些宏观特性呢? 晶体的宏观特性是由晶体内部结构的周期性决定的。 即晶体的宏观特性是微观特性的反应。
特点: 晶面有规则、对称地配置.
§1.1 晶体的基本性质
性质2.自限性: 晶体具有自发地形成封闭 几何多面体的特性.
特点:相应晶面的面积相等。
图 不同生长条件下NaCl晶体
§1.1 晶体的基本性质
晶面夹角守恒定律:
同一品种的晶体,对应的两晶面 间夹角恒定不变.
石英晶体的mm两面夹角为60度,mR两面夹角为38度13分,mr两面夹角为 38度13分。