第一章化学反应的基本规律

合集下载

大学化学第一章1讲解

大学化学第一章1讲解
ΔU = Q + W
解:(1)△U系统=(-60)+(-40)=-100kJ (2)△U系统=(-40)+(+60)=+20kJ (3)△U系统=(+60)+(+40)=100kJ (4)△U系统=(+40)+(-60)=-20kJ
化学反应的反应热 化学反应系统与环境进行能量交换的 主要形式是热,称反应热或热效应。
化学反应动力学 现实性—速率 计算任意反应的∆U、∆H、∆S 、∆G和速率v。
为了便于讨论,我们先介绍以下几 个基本概念: 包括: 系统、 环境、 相、
质量守恒、 能量守恒、 状态 和 状态函数、 热和功
热力学基本概念
◆系统和环境 (system and surroundings) 系统: 作为研究对象的那一
∴ QP =△U +P△V
QP = △U +P△V
上式可化为: QP=(U2-U1)+ P(V2-V1)
即: QP=(U2+P2V2)-(U1+P1V1)
此时,令: H = U +PV 称:焓
则: QP =H2-H1=ΔH
意义:
焓:
符号:H ; H 是状态函数;
无绝对数值;
其值与n 成正比;
单位: kJ。 根据 Q 符号的规定,有:
• 也说明ΔU ,ΔH 可以通过量热实验进行直接测定。
注意下列各组状态函数表示的意义:
1.U , H 当泛指一个过程时状态函数改变量的
表示法
2.rU , r H
指明某一反应而没有指明反应进度即 不做严格的定量计算时,两个状态函
数改变量的表示法
3.rU m , r H m 表示某反应按所给定反应方程式进

大学化学课后习题1,2,3答案

大学化学课后习题1,2,3答案

大学化学课后习题1,2,3答案大学化学课后习题答案(吉林大学版)第1_2_3_章第一章化学反应的基本规律1.2习题及详解一、判断问题1.状态函数都具有加和性。

(×)2.系统的状态发生改变时,至少有一个状态函数发生了改变。

(√)3.由于caco3固体的分解反应是吸热的,故caco3的标准摩尔生成焓是负值。

(×)4.利用盖斯定律计算反应热效应时,其热效应与过程无关,这表明任何情况下,化学反应的热效应只与反应的起,始状态有关,而与反应途径无关。

(×)5.因为物质的绝对熵随温度的升高而增大,故温度升高可使各种化学反应的δs大大增加。

(×)6.δh,δs受温度影响很小,所以δg受温度的影响不大。

(×)7.凡δg大于零的过程都不能自发进行。

(×)8.273k,101.325kpa下,水凝结为冰,其过程的δs<0,δg=0。

(√)kt??(ph2o/p?)4(ph2/p?)49.反应Fe3O4(s)+4h2(g)的平衡常数表达式→ 3Fe(s)+4H2O(g)为10。

2No+O2反应速率方程→ 2no2是:v?kc2(no)?c(o2)。

(√),该反应一定是基元反应。

(×)二.选择题1.气体系统通过路径1和路径2扩展到相同的最终状态,两个变化过程产生的体积功相等,没有非体积功,则两个过程(b)a.因变化过程的温度未知,依吉布斯公式无法判断δg是否相等b.δh相等c、系统和环境之间的热交换不等于D。

上述所有选项都是正确的cucl2(s)+cu(s)→2cucl(s)δrhmθ(1)=170kj?mol-1cu(s)+cl2(g)→cucl2(s)δrhmθ(2)=-206kj?mol-1则δfhmθ(cucl,s)应为(d)kj.mol-1a、 36b.-36摄氏度。

18d.-十八3.下列方程式中,能正确表示agbr(s)的δfhmθ的是(b)a.ag(s)+1/2br2(g)→agbr(s)b.ag(s)+1/2br2(l)→agbr(s)c.2ag(s)+br2(l)→2agbr( s)d.ag+(aq)+br-(aq)→agbr(s)在4.298k下,在下面对参考状态元素的描述中,正确的一个是(c)aδfhmθ≠0,δfgmθ=0,smθ=0b。

第一章 化学反应基本规律

第一章 化学反应基本规律

3.标准摩尔生成焓
指定温度T 时由参考态元素生成 B 时的标准摩尔焓变称标准摩尔生成焓。
例如: C(石)+O2(g)→CO2(g) ΔrHm (T)
其中,C(石)为碳的参考态元素,O2(g)为氧

的参考态元素,此反应是生成反应。所以 此反应的焓变即是CO2(g)的标准摩尔
生成焓:
ΔrHm
⊖(T)=Δ H ⊖(CO
化学反应的能量守恒定律
―在任何过程中,能量既不能创造, 也不能消灭, 只能从一种形式转化
为另一种形式。”
此即热力学第一定律,通常表示为:
ΔU=Q+W
1.状态与状态函数 系统的状态是指描述该系统的性质的综合。 (1) 对一系统,各种性质都有确定数
值,该系统的状态便被确定;反之,
当系统状态已确定时,该系统的各种
‥ ‥ ‥林林总总,纷繁复杂

如果要认识、掌握、利用化学反应, 就需要了解化学反应的基本规律。
其中最重要的是化学热力学。
化学热力学——研究化学变化和相变化 过程中能量转换规律的科学。
热力学来自于大量实践的归纳、总结, 因此任何自然过程皆不违背热力学规律。
化学热力学有三个定律,我们重点讨
论第一、第二定律。
通常用化学反应计量方程表示这种系统。
通式:
0=B BB
B称化学计量数。
以合成氨反应为例:N2 +3H2 ==2NH3
可写为:
即: 对于一般的反应:
0 = -N2 -3H2 +2NH3
N2 +3H2 == 2NH3 aA+bB == gG+dD
其化学反应计量方程为: 0=BBB
其中B的符号: a、b为负;g、d为正

化学反应基本原理

化学反应基本原理

状态函数的广度性质:具有加和性。如V,m等
(Ⅰ)
终态
始态
(Ⅱ)
一、表征化学反应的用语和概念
系统的热力学能(内能)是系统内部能量的总和,
其中包括系统内部分子的平动能、转动能、振动
能,分子间势能,电子运动能,核能等。用符号 U表示。
U 2 U1 U
在一定条件下,系统的热力学能与系统 中物质的量成正比,即热力学能具有加和 性。热力学能是一个状态函数。
t 0
3.0
10.0
7.0
0
2.0
(mol)
(mol)
t t1时 2.0

' 1
n N2
N
2

(2.0 3.0)mol 2.0mol 1/ 2
反应进度必须对应具体的反应方程式。
一、表征化学反应的用语和概念
反应进度的单位也是摩尔(mol),从下式可以 看出,摩尔表示原子、分子微粒,也可以表示他
△fHmθ(H2O,l,298.15K ) = − 285.83kJ·mol-1。
四、反应的标准摩尔焓变的计算
1.盖斯定律(Hess’s law):
无论化学反应是一步完成还是 分几步完成,其热效应(恒压或恒容) 只与反应系统的始态和终态有关, 而与变化的途径无关。此定律是 1840 年 ,俄国化学家盖斯分析总 结大量化学反应热效应的实验数据, 得出的一条重要定律。例如,在标 准条件下,298.15 K下,碳完全燃 烧生成CO2有两种途径,
氢离子的标准摩尔生成焓为零,即
△fHmθ(H+,aq,298.15K)=0
H+(aq)表示水合氢离子。
三、物质的标准摩尔生成焓
例如:C(石墨)+ O2(g)= CO2(g)

同济大学普通化学第一章、二章习题答案(详细)

同济大学普通化学第一章、二章习题答案(详细)
kJmol1=3fG (298k, CO2(g) )2 (kJmol1)
∴fG (298k, CO2(g) ) = 1/3 )kJmol1=kJmol1
19.解6CO2(g)+ 6H2O(l)==C6H12O6(s)+ 6O2(g)
fG (298k)kJmol10
∴rG (298k)=[( 6 ) ( 6 ) ]kJmol1=kJmol1>0
∴lnK(500k)= = =
∴K(500k) =1010
解法二:
∵ ln =
= =
∴ =10-7
∴K(500k) =10-7K(298k)=10-7(1016) =1010
23.解:N2(g) +3H2(g) ==2NH3(g)
fH (298k)/ kJmol100
S (298k)/ Jmol1k1
∴rG (298k)=[(2(2] kJmol1=kJmol1>0
∴此反应不能自发进行。
21.解 (1)MgCO3(s) ==MgO(s)+CO2(g)
fH (298k)/ kJmol1
S (298k)/ Jmol1k1
fG (298k) /kJmol1
∴rH (298k)=[+((]=kJmol1
∴该正反应为吸热反应。
25.解: 平衡反应2SO2(g)+O2(g)2SO3(g)
= ( )Jmol1k1=Jmol1k1
18.解:2Fe2O3(s) + 3C (s ,石墨)==4 Fe (s) + 3 CO2(g)
fH (298k)/ kJmol1
S (298k)/ Jmol1k1
fG (298k)/ kJmol1

无机化学-化学反应的一般原理

无机化学-化学反应的一般原理
△fHm⊙ -393 -286 -278 0
ST⊙
214
70
161
205
第二节 反应限度 化学平衡
反应方向确定后,反应进行到什么程度才停止呢?
2-1 反应限度的判据
1、能量判据 [分析] 恒温恒压下,根据最小自由能原理,反应之所以 自发进行,是因为△G<0 。 随着反应进行,必有∑G产增大,∑G反降低。故有 △G →0趋势。 当△ G=0 时,反应失去推动力,宏观上反应“不 再进行”,即自发反应进行到△ G=0 而“停止”。 反应限度的能量判据: △G=0
2-2多重平衡规则——K的组合
一定温度下,若反应可表示为多个分反应之和或差, 则该反应平衡常数等于各分反应平衡常数之积或商。 即平衡常数与达到平衡的途径无关。 [分析]∵△Go= -RTlnKo 若:总反应=反应1+反应2 △Go总=△Go1+△Go2 -RTlnKo =-RTlnKo1-RTlnKo2 ∴KO=KO1×KO2 [注] 各反应必须是同一温度,各物质集聚状态相同 才能组合。
2-3 应用——平衡计算
[内容] ko的确定及平衡组成的有关计算 1、K的确定 Ⅰ.根据△Go= -RTlnKo Ⅱ.多重平衡规则 Ⅲ.实验测定 2、计算平衡组成 平衡转化率:简称转化率 平衡时已转化的某反应物的量与转化前该物质的量 之比。 还有离解率、分解率之说 它也反映了反应进行的程度
例:已知反应CO2(g)+H2(g)==CO(g)+H2O(g) T=1473K时 Kc=2.3,求: ①当CO2、H2起始浓度均为0.01mol/L ② 当 CO2 起 始 浓 度 为 0 . 0 1 mol/L,H2 起 始 浓 度 为 0.02mol/L 两种情况下。CO2的转化率。 [小结]: K和转化率都可表示反应进行的程度,但转化率与 反应物起始浓度和反应温度有关,K而仅为温度的 函数 注意解题步骤。

A 第一章 化学反应基本规律 3节资料


D) △U
8. 按热力学上通常的规定,下列物质中标准 摩尔生成焓为零的是( A) C(金刚石) C) O3(g) )
√ B) P4(白磷)
D) I2(g)
前面的学习发现,化学反应的自发性与ΔH 或ΔS 都有关系,但究竟是怎样的关系?
二、吉布斯函数变与化学反应进行的方向
利用“水往低处流”这一自发过程,可 以发电,做了非体积功——电功。
5. 在一定温度下,下列反应的ΔrSmӨ>0的是( A. 2C(s) + O2(g) → 2CO(g)


B. CH3COOH(l) → CH3COOH(s)
C. CO(g) + 2H2(g) → CH3OH(g)
D. Al(s) + 3/2 Cl2(g) → AlCl3(s)
6. 下列反应的标准摩尔焓变等于生成物的标
ΔfGmӨ(T) 标准摩尔生成吉布斯函 数:T, 由参考态单质生成1mol化 合物B的标准摩尔生成吉布斯函数 变 单位:kJ· mol-1
ΔfGmӨ(参考态单质, T) = 0
ΔfHmӨ(参考态单质, T) = 0
3
吉布斯函数变的计算
(1)标准态,298K下 ΔrGmӨ(298K)的计算 aA + bB → gG + dD
D Ag+(aq)+Br-(aq)→ AgBr(s)
2. 已知
CuCl2(s)+Cu(s)→2CuCl(s)
Cu(s)+Cl2(g) → CuCl2(s) A.36 B. -36
ΔrHmӨ(1) =170kJ· mol-1
ΔrHmӨ(2) =-206kJ· mol-1
则ΔfHmӨ (CuCl,s)应为( )kJ.mol-1

化学反应基本规律

单质、氧化物、酸、碱、盐的相互反应基本关系以下各类别物质间可发生反应:1、金属+酸2、金属+盐3、酸性氧化物+碱4、碱性氧化物+酸5、酸+碱6、酸+盐7、碱+盐8、盐+盐具体情况是:1、金属单质+ 酸→盐+ 氢气(置换反应)规律:在金属活动性顺序中排在氢之前的金属,才能置换酸中的氢;注意:常见的盐酸和稀硫酸可以与氢前面的金属反应生成氢气。

因浓硫酸、硝酸具有氧化性,与金属反应,但一般不能生成氢气;如Zn与稀硝酸反应生成Zn(NO3)2、H2O和NO如:锌+稀硫酸:Zn + H2SO4 =ZnSO4 + H2↑铁+稀硫酸:Fe + H2SO4 = FeSO4 + H2↑铝+稀硫酸:2Al + 3H2SO4 =Al2(SO4)3 + 3H2↑铁+稀盐酸:Fe + 2HCl = FeCl2 + H2↑镁+稀盐酸:Mg+ 2HCl = MgCl2 + H2↑铝+稀盐酸:2Al + 6HCl = 2AlCl3 + 3H2↑铜+稀盐酸:不反应银+稀硫酸:不反应特别提示:铁与盐酸、稀硫酸反应生成的盐中铁元素显+2价。

2、金属单质+ 盐溶液→另一种金属+ 另一种盐反应条件:①盐可溶;②在金属活动性顺序中,排在前面的金属才能置换后面的金属。

注意:钾、钙、钠很活泼,在盐溶液中不能置换出金属。

(因先与水反应)如:铁+硫酸铜溶液:Fe + CuSO4 =FeSO4 + Cu锌+硫酸铜溶液:Zn + CuSO4 = ZnSO4 + Cu铜+硝酸汞溶液:Cu + Hg(NO3)2= Cu(NO3)2 + HgMg+NaCl溶液:不反应Cu+AgCl:不反应特别提示:铁与盐溶液发生置换反应时,生成物中铁显+2价。

3、碱性氧化物+酸→盐+ 水规律:酸为HCl、H2SO4、HNO3时,它们与任何碱性氧化物都可反应。

其它酸目前暂时不要求掌握。

如:氧化铁+稀盐酸:Fe2O3 + 6HCl =2FeCl3 + 3H2O氧化铁+稀硫酸:Fe2O3 + 3H2SO4 =Fe2(SO4)3 + 3H2O氧化铜+稀盐酸:CuO + 2HCl = CuCl2 + H2O氧化铜+稀硝酸:CuO + 2HNO3 =Cu(NO3)2 + H2O氧化镁+稀硫酸:MgO + H2SO4 =MgSO4 + H2O氧化钙+稀盐酸:CaO + 2HCl= CaCl2 + H2O4、酸性氧化物+碱→盐+ 水规律:碱为NaOH、KOH、Ca(OH)2、Ba(OH)2时,它们与任何酸性氧化物都可反应。

化学反应的基本规律

当生成物和反应物的温度相同,且反应过程中只做体积功时,化学反应过程中所吸收或放出的热量称为化学反应的热效应,通称反应热。
反应热(Q)
四、恒容反应热和恒压反应热
恒容反应:
即:恒容反应热等于体系的内能变化。
ΔU=Q-W=Qv-W体 = Qv
恒压反应:
W = W体= p·△V = p(V2 - V1 )
20、适用条件:
应用:对于一定状态下的理想气体,已知其中几个物理量,可以求未知量:p、V、n、T。
40、公式变换:
二、分压定律
如果几种理想气体混合在一起,相互之间不发生化学反应,那么每种气体的分压和混合气体的总压之间,遵循道尔顿分压定律: 即:混合气体的总压力等于混合气体中各组分的分压之和。 A,B,C …i…
两个容器的器壁承受的压力是否相同?
A B
每种组分气体仍然遵守理想气体状态方程
01
02
03
04
设混合气体含有A、B两组分气体,方程变换如下:
xi- i组分气体的摩尔分数。
即:组分气体的分压等于总压与该组分气体的摩尔分数的乘积。
05
已知总压、组分的物质的量,可以计算分压。
按体系和环境的相互关系不同,可将体系分为以下三类:
敞开体系
封闭体系
孤立体系
状态函数
状态函数就是描述体系状态的物理量。状态函数的2大特性: 体系的状态一定,状态函数就有确定的值; 体系的始态和终态一定时,状态函数的变化值为一定值, 与体系的变化途径无关。
二、内能、热和功的概念
一杯水:
ΔT=80℃-20℃=60℃
PO2= 同理PN2=
【例1】 某温度下,将2×105Pa的O2(3 dm3)和3×105Pa的N2(6 dm3)的充入6 dm3的真空容器中,求混合气体的各组分的分压及总压。 PA=PO2 +P N2= 1×105+3×105= 4×105(Pa)

化学反应基本原理

高中反应基本原理1.复分解反应原理1)生成水的反应最先发生,也就是生成弱电解质的反应会发生(水被认为是高中最弱的电解质)2)生成沉淀的容易发生化学反应有一个基本规律:都趋向于生成稳定结构。

(比如原子都趋向于生成八电子稳定结构)所以越稳定的越易生成,越难溶的越易生成。

Eg1:在一个溶液中有等物质量浓度的kcl、kbr、kI,向其中倒入足量硝酸银溶液,会怎样反应?答:会依次生成AgI、AgBr、AgCl沉淀,现象就是先生成黄色沉淀。

然后淡黄色沉淀、最后白色沉淀。

因为AgI的溶解性最差,然后以此类推。

这个可以当规律记,更加科学的解释就是溶度积(Ksp),溶度积越小越先生成。

Eg2:将kI溶液倒入AgCl沉淀中会有什么现象?答:白色沉淀溶解,生成黄色沉淀。

因为反应趋向于生成更稳定的物质。

3)生成气体的反应(反应之所以能发生可以归结为:生成气体后,气体跑掉,使反应不可逆。

)注意:其中有一个度,根据外界条件不同,反应的先后会有变化。

2.水解反应:1)顾名思义就是,在溶液中盐电离出的弱离子与水电离出的氢离子和氢氧根结合生成弱电解质的反应。

水解反应很普遍,很多反应都是因为弱离子水解和发生的。

比如制取氢氧化铁胶体:FeCl3+3H2O=Fe(OH)3(胶体)+3HCl(条件为沸水,中间是等号,而非可逆号,Fe(OH)3的状态为胶体)、明矾净水:(Al3+)+3H2O==(可逆号)Al(OH)3+3H+等等。

(所谓的弱离子就是弱酸的阴离子、弱碱的阳离子,如ch3coo-、NH4+、Al3+、Fe3+、S2-、CO32-、HCO3-、SO32-、HSO3-......)2)双水解(也称双水促解)大多数弱酸弱碱盐,虽然阴阳离子的水解相互促进,水解程度依然不大(具体地说,水解反应反应的程度并不是很大,也就是1~2%,而不完全的双水解也才只有10%),如碳酸氢铵,可配成溶液。

某些阳离子与某些阴离子在溶液中由于水解反应相互促进可使水解反应趋于完全,这类反应就是双水解反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章化学反应的基本规律1在下列哪种情况时,真实气体的性质与理想气体相近?(A)低温和高压(B) 高温和低压(C) 低温和低压(D) 高温和高压2对于一个确定的化学反应来说,下列说法中正确的是:(A) ∆r G m︒越负,反应速率越快(B) ∆r S m︒越正,反应速率越快(C) ∆r H m︒越负,反应速率越快(D) 活化能越小,反应速率越快3在什么条件下CO2在水中的溶解度最大?(A)高压和低温(B) 高压和高温(C) 低压和低温(D) 低压和高温 (E) 往溶液中加HCl1–4 当KNO3是按下式溶解于一烧杯水中时:KNO3→K+ + NO3-∆r H m︒ = 3.55 kJ⋅mol-1其结果是:(A) 离子比KNO3分子具有的能量少(B) 水变暖(C) 1摩尔KNO3电离时将放出3.55千焦热量(D) 烧杯变冷(E) 烧杯的温度保持不变5 下述诸平衡反应中,如反应物和生成物都是气体,增加压力时,不受影响的反应是:(A) N2 +3H2⇔2NH3(B) 2CO + O2⇔2CO2(C) 2H2 + O2⇔2H2O (D) N2 + O2⇔ 2NO(E) 2NO2⇔N2O46反应A + B ⇔C + D为放热反应,若温度升高10℃,其结果是:(A) 对反应没有影响(B) 使平衡常数增大一倍(C) 不改变反应速率(D) 使平衡常数减少7下列关于熵的叙述中,正确的是:(A) 298K时,纯物质的S m︒ = 0 (B) 一切单质的S m︒ = 0(C) 对孤立体系而言,∆r S m︒ > 0的反应总是自发进行的。

(D) 在一个反应过程中,随着生成物的增加,熵变增大。

8 从化学动力学看,一个零级反应,其反应速率应该:(A)与反应物浓度呈反比(B)随反应物浓度的平方根呈正比(C)随反应物浓度的平方呈正比(D)与反应物浓度呈正比(E) 不受反应物浓度的影响9任何一个化学变化,影响平衡常数数值的因素是:(A) 反应产物的浓度(B) 催化剂(C) 反应物的浓度(D) 体积(E) 温度10在绝对零度时,所有元素的标准熵为:(A)0 (B) 约10焦耳/摩尔·度(C) 1焦耳/摩尔·度(D) 正值(E) 负值11有两个平行反应A → B和A → C,如果要提高B的产率,降低C的产率,最好的办法是:(A) 增加A的浓度(B) 增加C的浓度(C) 控制反应温度(D) 选择某种催化剂12能量守恒定律作为对化学反应的应用,是包含在下面哪位科学家所发现的原理的阐述中?(A) 卡诺(Carnot) (B) 盖斯(Hess) (C) 勒夏特列(Le Chatelier)(D) 奥斯特瓦尔特(Ostwald) (E) 傅里叶(Fourier)13反应A2(g) + 2B2(g) ⇔2AB2(g)的∆r H m︒> 0,采用下述的哪种方法可以使平衡移向左边?(A) 降低压力和温度(B) 增加压力和温度(C) 降低压力,增加温度(D) 增加压力,降低温度(E) 加入较多的A2气体14阿仑尼乌斯公式适用于:(A) 一切复杂反应(B) 发生在气相中的复杂反应(C) 计算化学反应的∆r H m︒(D) 具有明确反应级数和速率常数的所有反应15下列各热力学函数中,哪一个为零::(A) ∆f G m︒(I2, g. 298 K) (B) ∆f H m︒(Br2, l. 298 K)(C) S m︒(H2, g. 298 K) (D) ∆f G m︒(O3, g. 298 K) (E) ∆f H m︒(CO2, g. 298 K)16 在298K,反应H2(g) + 1/2O2(g) == H2O(l)的Q p与Q v之差是:(A) -3.7 kJ⋅mol-1(B) 3.7 kJ⋅mol-1(C) 1.2 kJ⋅mol-1(D) -1.2 kJ⋅mol-117某化学反应A(g) + 2B(s) → 2C(g)的∆r H m︒ < 0,则下列判断正确的是:(A) 仅在常温下,反应可以自发进行(B) 仅在高温下,反应可以自发进行(C) 任何温度下,反应均可以自发进行(D) 任何温度下,反应均难以自发进行18反应2HCl(g) → Cl2(g) + H2(g)的∆r H m︒ = 184.9 kJ⋅mol-1,这意味着:(A) 该反应为吸热反应(B) HCl(g)的∆f H m︒为负值(C) 该反应体系是均相体系(D) 上述三种说法均正确19 298K时,1/2∆f G m︒(CCl4(g)) > 2∆f G m︒(HCl(g)) > 1/2∆f G m︒(SiCl4(g)) > 1/2∆f G m︒(TiCl4(g)) >∆f G m︒(MgCl2(s)),且反应H2(g) + Cl2(g) → 2HCl(g)的∆r S m︒ > 0,下列反应中,哪一个可在高温下进行?(1) TiCl4(g) + C(s) → Ti(s) + CCl4(g) (2) TiCl4(g) + 2Mg(s) → Ti(s) + 2MgCl2(s)(3) SiCl4(g) + 2H2(g) → Si(s) + 4HCl(g) (4) 2MgCl2(s) + C(s) → 2Mg(s) + CCl4(g)(A) (1)、(2)、(3)、(4) (B) (2)、(3)、(4)(C) (2)、(3) (D) (3)、(4)20关于催化剂的说法正确的是:(A) 不能改变反应的∆r G m、∆r H m、∆r U m、∆r S m(B) 不能改变反应的∆r G m,但能改变反应的∆r U m、∆r H m、∆r S m(C) 不能改变反应的∆r G m、∆r H m,但能改变反应的∆r U m、∆r S m(D) 不能改变反应的∆r G m、∆r H m、∆r U m,但能改变反应的∆r S m21二级反应速率常数的量纲是:(A) s-1(B) mol⋅dm-3⋅s-1(C) mol-1⋅dm-3⋅s-1(D) mol-1⋅dm3⋅s-122如果系统经过一系列变化,最后又回到起始状态,则下列关系式均能成立的是:(A) Q = 0;W = 0;∆U = 0;∆H = 0 (B) Q≠ 0;W≠ 0;∆U = 0;∆H = Q(C) ∆U = 0;∆H = 0;∆G = 0;∆S = 0 (D) Q≠W;∆U = Q-W;∆H = 023若下列反应都在298 K下进行,则反应的∆r H m︒与生成物的∆f H m︒相等的反应是:(A) 1/2H2(g) + 1/2I2(g) → HI(g) (B) H2(g) + Cl2(g) → 2HCl(g)(C) H2(g) + 1/2O(g) → H2O(g) (D) C(金刚石) + O2(g) → CO2(g)(E) HCl(g) + NH3(g) → NH4Cl(s)24 下列关于活化能的叙述中,不正确的是:(A) 不同的反应具有不同的活化能(B) 同一反应的活化能愈大,其反应速率愈大(C) 反应的活化能可以通过实验方法测得(D) 一般认为,活化能不随温度变化25已知反应H2(g) + Br2(g) ⇔2HBr(g)的标准平衡常数K1︒= 4.0⨯10-2,则同温下反应1/2H2(g) + 1/2Br2(g) ⇔HBr(g)的K2︒为:(A) (4.0⨯10-2)-1(B) 2.0⨯10-1(C) 4.0⨯10-2(D) (4.0⨯10-2)-1/226反应A + B ⇔C + D的∆r H m︒ < 0,当升高温时,将导致:(A) k正和k逆都增加(B) k正和k逆都减小(C) k正减小,k逆增加(D) k正增大,k逆减小(E) k正和k逆的变化无法确定27反应CaCO3(s) ⇔CaO(s) + CO2(g)的∆r H m︒ = 178 kJ⋅mol-1,∆r S m︒ = 161 J⋅mol-1⋅K-1,则CaCO3(s)开始分解的温度是:(A) 900 K (B) 500 K (C) 800 K (D) 1106 K28已知反应3O2(g) → 2O3(g)的∆r H m︒ = -288.7 kJ⋅mol-1。

若使反应向右进行,需采取下列哪一种措施?(A) 高温低压(B) 高温高压(C) 低温低压(D) 低温高压29已知反应H2O(g) ⇔1/2O2(g) + H2(g)在一定温度、压力下达到平衡。

此后通入氖气,若保持反应的压力、温度不变,则:(A) 平衡向左移动(B) 平衡向右移动(C) 平衡保持不变(D) 无法预测30某一液相反应的K︒在几乎所有情况下都较小,然而却可以用来大规模生产。

实际中,采取的措施是:(A) 反应在低温下进行(B) 反应在非常高的温度下进行(C) 使用了另外的一系列反应,得到同样的结果(D) 产物生成后,不断地从系统中被分离出来31若使弱酸强碱盐、弱碱强酸盐的水解度都增大,可采取下列哪一种措施?(A) 降低温度(B) 稀释溶液(C) 增加盐的浓度(D) 升高溶液的pH值32已知反应N2(g) + 3H2(g) ⇔2NH3(g)的K︒ = 0.63,反应达到平衡时,若再通入一定量的N2(g),则K︒、反应商Q和∆r G m︒的关系是:(A) Q = K︒,∆r G m︒ = 0 (B) Q > K︒,∆r G m︒ > 0(C) Q < K︒,∆r G m︒ < 0 (D) Q < K︒,∆r G m︒ > 033某气体反应的∆r H m︒ = 10.5 kJ⋅mol-1,∆r S m︒ = 41.8 J⋅mol-1⋅K-1,平衡时,各物种的分压均为p︒,则反应温度约为:(A) 0℃(B) 25℃(C) -22℃(D) 100℃34已知298 K时,2NH3(g) → N2(g) + 3H2(g) ∆r H m︒ = 92.2 kJ⋅mol-1 H2(g) + 1/2O2(g) → H2O(g) ∆r H m︒ = -241.8 kJ⋅mol-14NH3(g) + O2(g) → 4N O(g) + 6H2O(g) ∆r H m︒ = -905.5 kJ⋅mol-1则NO(g)的∆f H m︒等于:(A) 92.2 kJ⋅mol-1(B) -92.2 kJ⋅mol-1(C) -709.8 kJ⋅mol-1(D) 360.8 kJ⋅mol-135下列哪一个反应的焓变等于CO2(g)的标准摩尔生成焓:(A) CO(g) + C(s) == CO2(g) ∆r H m︒1(B) CO(g) + 1/2O2(s) == CO2(g) ∆r H m︒2(C) O2(g) + C(s) == CO2(g) ∆r H m︒3(D) 2O2(g) + 2C(s) == 2CO2(g) ∆r H m︒436 A → B + C是吸热的可逆基元反应,正反应的活化能为E正,逆反应的活化能为E逆,那么:(A) E正< E逆(B) E正> E逆(C) E正= E逆(D) 无法确定37 在恒温下,对于同一反应来说,下列说法正确的是:(A) 一反应物浓度增大,该反应的转化率就增大(B) 反应方程式中,化学计量系数相同的反应物的转化率总是相等 (C) 转化率和平衡常数都可以表示化学反应进行的程度 (D) 转化率和平衡常数都与反应物的最初浓度无关38 已知反应H 2(g) + Br 2(g) ⇔2HBr(g),在1297 K 和1495 K 时的K ︒分别为1.6⨯105和3.5⨯104,则该反应的焓变或自由能变:(A) ∆r H m ︒ > 0 (B) ∆r H m ︒ < 0 (C) ∆r G m ︒ < 0 (D) ∆r G m ︒ = 039 已知298 K 下,下列反应的相关条件为:2NH 3(g) → N 2(g) + 3H 2(g) 起始压力/kPa 101 101 1.01∆f G m ︒(NH 3(g)) = -16.64 kJ ⋅mol -1,由此可判断,该反应:(A) 不能自发进行 (B) 处于平衡状态 (C) 能自发进行 (D) 无法判断40 已知K ︒稳([HgCl 4]2-) = 9.1⨯1015,K ︒稳([HgI 4]2-) = 1.9⨯1030。

相关文档
最新文档