原码反码补码说课
原码、反码、补码课件

160
二进制数相加
10000110 + 00011010
10100000
看成补码
-122
+
26
-96
出现问题
• 错误的结果:
11001011 10010001
01011100
-0110101 + -1101111
+1011100
-53 + -111
-+19624
思考:为什么出现了错误?
补码 • 溢出
补码 •补码的求法(1)
• 正数:与原码相同;
• 负数:“求反加一”
例:
x=+1001100B,则[x]补=01001100B=[x]原
x=-1001100B,则[x]补=10110100B
x=-1001100时, [x]补=28-1001100B
11111111 01001100
=256 -1001100B =255 -1001100B +1
溢出
图d 有进无出
补码 • 溢出的判别(3)
• 课堂练习
1、请判断下列8位补码的运算是否会产生溢出?
11001001 11100111
10110000
有进有出,无溢出
01100011 01001010
10101101
有进无出,溢出
补码小结
真值 机器数
无符号数 有符号数
原码 反码
真值的方法 已知[x]补,求[-x]补的方法 溢出
• 拨针方法小结: 8- 2=6
8 + 10 = 6 • 思考:为什么会出现这种现象?计算机中是否
也有这种现象? (表盘是圆的,可循环计时。)
《原码反码补码》教案

《原码、反码、补码》教学设计一、教材分析二教学目标描述1)知识与能力目标掌握真值,机器数的概念掌握用真值求出原码,反码,补码的方法掌握原码,反码,补码的互相转换,及其取值范围.2)过程与方法通过本节课的学习,能根据实际需要,求出相应的机器数3)情感态度价值观培养学生的创新能力和分析问题、解决问题的能力;注重发挥学生的集体协作能力;注重实际操作,提高学生的独立思考能力三、重难点分析【教学重点】求出原码,反码,补码的方法【教学难点】真值与机器数之间的关系根据需要求出原码,反码,补码四、学习者特征分析和相关策略设计五教学方法任务驱动法、小组协作法六、教学过程教师活动学生活动教师活动学生活动〖引入〗大家都知道,用计算机表示数只能用0和1来表示,因为计算机只认识0和1。
提问:但在计算机里如何来表示正、负号呢?所以我们要表示一个数的符号(+号或者-号)也只能借用0和1这两个数字来表示,就是将符号数字化,我们规定:用0表示正,1表示负,即当符号位为0,表示其后的数值为正;当符号位为1,表示其后的数值为负。
例如:8位字长的数N1=+1001100表示为01001100,N2=-1001100表示为11001100。
从上面的例子大家都可以看到,N1、N2有两种不同的表示方法,这就涉及到两个概念——机器数和真值。
〖新课〗1.真值---带有正负号的数。
例如:+1001100,-1001100。
2.机器数---把符号数字化了的数,也就是一个数在计算机中的表示形式,例如:01001100,11001100。
假设用8位二进制数表示一个数,如图所示。
图用8位二进制表示一位数实际上,大家可以看到,机器数就是真值的“+”、“-”号数值化得到的计算机实际能表示的数。
用机器数的最高位代表符号(若为0,则代表正数;若为1,则代表负数),其数值位为真值的绝对值。
在数的表示中,机器数与真值的区别是:真值带符号如-0011100,机器数不带数符,最高位为符号位,如10011100,其中最高位1代表符号位。
计算机基础--原码、反码、补码

计算机基础--原码、反码、补码声明:以下⼆进制数据都是指⼋⽐特位长度的⼆进制数;以下⼗进制数都是指的整数。
1、什么是原码?我们来看⼀下百度百科的定义:原码(true form)是⼀种计算机中对数字的⼆进制定点表⽰⽅法;原码表⽰法在数值前⾯增加了⼀位符号位(即最⾼位为符号位):正数该位为0,负数该位为1,其余位表⽰数值的⼤⼩。
举个例⼦:100的源码怎么表⽰?--答案是:0 110 0100-100的源码怎么表⽰?--答案是:1 110 0100此外,还要注意⼀点:百度百科中看到⼀句话:原码不能直接参加运算,可能会出错。
他举出⼀个例⼦:在数学中 1+(-1)=0;但是⽤⼆进制进⾏计算的时候就会变成:0000 0001+1000 0001=1000 0010,换算成⼗进制是 -2。
显然结果是错误的。
2、什么是反码?反码通常是⽤来由原码求补码、或者由补码求原码的过渡码。
那么同⼀个数的反码与原码的对应关系是什么呢?反码跟原码是正数时,⼀样;负数时,反码就是原码符号位除外,其他位按位取反。
举个例⼦:100的原码是?0 110 0100100的反码是?0 110 0100========-100的原码是?1 110 0100-100的反码是?1 001 1011从上⾯的例⼦来看I、想知道⼀个⼗进制数的⼆进制反码表⽰形式,得先知道这个⼗进制数的原码。
也就是说,原码虽然简单,但却⾮常重要。
II、原码、反码都是数值在计算机中的表⽰⽅法,他们俩⾸位都表⽰符号位,即1为负、0为正;其余的为数值位。
原码的数值位的值就是所表⽰数的真值。
反码的数值位的意义我们不去深究。
3、什么是补码?在了解什么是原码的时候,我们就发现了原码在⼆进制加减运算中存在问题。
所以,计算机系统,数值⼀律采⽤补码来表⽰和存储。
原因是,补码能够将符号位和数值位统⼀处理;同时,减法和加法也可以统⼀处理。
这个例⼦解释了以n值为模的系统⾥,减法问题如何转化成加法问题的--把减数⽤相应的补数表⽰就可以了。
原码补码反码ppt课件

3. 定点整数补码的定义
x
当2n x0
[x]补=
2n+1+x
当 0x -2n
例:完成下列数的真值到补码的转换
X1= +1011011
[X1]补= 0,1011011
X2= -1011011
[X2]补= 27+1+x = 1,0100101
● 机器字长为8位,定点整数补码表示范围: -27≤ x ≤ 27-1
— 1011011
10100100
0的补码表示是: [+0]反=00000000; [-0]反 =11111111
结论: 正数:反码与原码相同, 负数:对原码,符号位不变,其余各位取反
为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
原码--补码
正数 [X]补=[X]原 负数 符号位除外,每位取反,末位加1
例:X= -1001001 求[X]补 [X]原=1,1001001, [X]补=1,0110110+1=1,0110111 [X]补= 27+1 +X=100000000-01001001= 1,0110111
由此可见, “-1”既可以在整数范围内表示,也能在小数范 围内表示,在计算机中有两种不同的补码表示。
(2) 再看负数-2n的补码表示 {-2n}补=2n+1-2n=2n-1=1,0...0(n个0)
因此,“-1”的补码小数表示与“-2n”的补码表示结构 相同,都是:符号位为1,数值部分为n个0。
原码、反码与补码知识讲解

原码、反码与补码知识讲解2.2 原码、反码与补码在计算机内的数(称之为“机器数”)值有3种表示法:原码、反码和补码。
所谓原码就是带正、负号的二进制数,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
由此可见,这三种表示法中,关键是负数的表示方式不一样。
2.2.1 正负数表示、定点数与浮点数在计算机内,通常把1个二进制数的最高位定义为符号位,用“0”表示正数,“1”表示负数;其余位表示数值。
规定小数点位置固定不变的数称为“定点数”;小数点的位置不固定,可以浮动的数称为“浮点数”。
2.2.2 原码原码表示法是定点数的一种简单的表示法。
用原码表示带符号二进制数时,符号位用0表示正,1表示负;数值位保持不变。
原码表示法又称为符号-数值表示法。
1. 小数原码表示法设有一数为x,则原码表示可记作[x]原(下标表示)。
例如,X1= +1010110 ;X2= -1001010原码表示数的范围与二进制位数有关。
设二进制小数X=±0.X1X2…Xm,则小数原码的定义如下:例如:X=+0.1011时,根据以上公式可得[X]原=0.1011;X=-0.1011时,根据以上公式可得[X]原= 1-(-0.1011)=1.1011=1.1011当用8位二进制来表示小数原码时,其表示范围为:最大值为0.1111111,其真值约为(0.99)10 ;最小值为1.1111111,其真值约为(-0.99)10。
根据定义,小数“0”的原码可以表示成0.0…0或1.0…0。
2. 整数原码表示法整数原码的定义如下:例如:X=+1101时,根据以上公式可得[X]原=01101;X=-1101时,根据以上公式可得[X]原=24-(-1101)=10000+1101=11101当用8位二进制来表示整数原码时,其表示范围为:最大值为01111111,其真值为(127)10 ;最小值为11111111,其真值为(-127)10 。
原码、反码与补码的详细讲解

一、概述大家都知道,一个十进制数在计算机中都是以二进制数的形式存储的。
十进制数是有正负之分的,那么如何在计算机中来表示正号和负号呢?我们通常使用二进制数的最高位来表示数的符号:“0”来表示正号,“1”来表示负号。
在计算机中整型数值数据的编码主要有:z原码z反码z补码在开始讲述这三种编码方法前,我们首先介绍一下机器数、真值、模数的概念。
1.机器数数(含符号)在机器中的编码表示。
2.真值机器数所对应的真实数值。
3.模数一个计量器的容量或与零等价的数。
z对于一个n位计数器,每1位有R种状态,每种状态代表1个数,从“0”开始计数。
z计数器所能计的数值的个数即模数。
z计数器的模数 = 计数器的最大值+1 。
z计数器的模数(R n)取决于基数(R)和位数(n)例子01 2位十进制计数器的模数是多少?解:R=10 n=2 模数=R n = 102 = 99(最大的2位十进制数)+1 = 100 例子02 8位二进制计数器的模数是多少?解:R=2 n=8 模数=R n = 28 = 255(最大的8位二进制数)+1 = 2564. 为什么使用编码来表示“数”?为了方便计算机的处理,简化计算过程。
二、原码1. 定义022011≤<−−<≤−−XX X n n 21−X n =原][X其中:n 为二进制的位数原码的表示范围: )12(~)12(11−−−−−n n 问题:当n=8时,原码的表示范围是多少?请用十进制数表示。
2. 求原码的方法求原码的方法概括起来有两种z 根据定义求原码z 直接写出原码(1) 根据定义求原码例子03已知:a = +2 ,b = -2 ,根据定义求a ,b 的原码[ a ]原和[ b ]原。
设n = 8 。
解:根据公式有 [ a ]原 = a = (0000 0010)2[ b ]原 = 2 n-1 – b= 28-1 – ( -2) = 27+21000 0000+ 101000 0010(2) 直接写出原码这种方法跟我们书上一样,不再赘述。
《原码、反码、补码》教案

《原码、反码、补码》教案一、教学目标1. 让学生理解计算机中数值的表示方法,包括原码、反码和补码。
2. 让学生掌握原码、反码和补码的转换方法。
3. 让学生能够运用原码、反码和补码进行计算机中的数值计算。
二、教学内容1. 原码的概念和表示方法2. 反码的概念和表示方法3. 补码的概念和表示方法4. 原码、反码和补码的转换方法5. 原码、反码和补码的应用实例三、教学重点与难点1. 教学重点:原码、反码和补码的概念、表示方法及转换方法。
2. 教学难点:原码、反码和补码的转换方法和应用实例。
四、教学方法1. 采用讲授法,讲解原码、反码和补码的概念、表示方法及转换方法。
2. 采用案例分析法,分析原码、反码和补码的应用实例。
3. 采用互动教学法,引导学生参与讨论,提高学生的思考能力和实践能力。
五、教学过程1. 导入:讲解计算机中数值表示的必要性,引出原码、反码和补码的概念。
2. 讲解原码:介绍原码的定义和表示方法,举例说明原码的表示方式。
3. 讲解反码:介绍反码的定义和表示方法,举例说明反码的表示方式。
4. 讲解补码:介绍补码的定义和表示方法,举例说明补码的表示方式。
5. 转换方法讲解:讲解原码、反码和补码之间的转换方法,引导学生理解转换过程。
6. 应用实例分析:分析原码、反码和补码在计算机中的实际应用,让学生加深理解。
7. 课堂练习:布置练习题,让学生巩固所学内容。
9. 作业布置:布置课后作业,巩固所学知识。
10. 课后辅导:提供课后辅导资源,帮助学生解决学习中的问题。
六、教学评估1. 课堂练习:通过布置练习题,评估学生对原码、反码和补码的理解和转换能力。
2. 课后作业:通过批改课后作业,评估学生对原码、反码和补码的掌握程度。
3. 小组讨论:通过小组讨论,评估学生的合作能力和解决问题的能力。
七、教学资源1. 教材:提供相关教材,供学生自学和参考。
2. 课件:制作课件,辅助讲解原码、反码和补码的概念和转换方法。
原码、反码、补码

原码、反码、补码⼀、什么是原码、反码、补码原码:将⼀个整数,转换成⼆进制,就是其原码。
如单字节的5的原码为:0000 0101;-5的原码为1000 0101。
反码:正数的反码就是其原码;负数的反码是将原码中,除符号位以外,每⼀位取反。
如单字节的5的反码为:0000 0101;-5的反码为1111 1010。
补码:正数的补码就是其原码;负数的反码+1就是补码。
如单字节的5的补码为:0000 0101;-5的补码为1111 1011。
⼆、为什么要有这三类码计算机只能识别0和1,使⽤的是⼆进制。
⽽在⽇常⽣活中⼈们使⽤的是⼗进制,并且我们⽤的数值有正负之分。
于是在计算机中就⽤⼀个数的最⾼位存放符号(0为正,1为负)。
这就是机器数的原码了。
有了数值的表⽰⽅法就可以对数进⾏算术运算,但是很快就发现⽤带符号位的原码进⾏乘除运算时结果正确,⽽在加减运算的时候就出现了问题,如下:假设字长为8bits(1) 10 - (1)10 = (1)10 + (-1)10 = (0)10(0 0000001)原 + (1 0000001)原 = (1 0000010)原 = ( -2 ) 显然不正确。
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数⾝上。
对除符号位外的其余各位逐位取反就产⽣了反码。
反码的取值空间和原码相同且⼀⼀对应。
下⾯是反码的减法运算:(1)10 - (1)10 = (1)10 + (-1)10= (0)10(0 0000001)反 + (1 1111110)反 = (1 1111111)反 = ( -0 ) 有问题。
(1)10 - (2)10 = (1)10 + (-2)10 = (-1)10(0 0000001)反 + (1 1111101)反 = (11111110)反 = (-1) 正确。
问题出现在(+0)和(-0)上,在⼈们的计算概念中零是没有正负之分的。
(印度⼈⾸先将零作为标记并放⼊运算之中,包含有零号的印度数学和⼗进制计数对⼈类⽂明的贡献极⼤)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
教学目标
精选课件
知识目标
让学生理解真值、机器数、原码、反码、补 码的概念,了解原码、反码和补码的表示范 围,能够熟练完成定点数的原码、反码和补 码之间的计算方法。
目标 要求
能力目标
通过讲练结合法、提问引导法、纠正错误法、分 组讨论法、自主探究法,唤醒学生的学习意识、 挖掘学生的潜能,调动其积极性和主动性,培养
学生自主学习的精神及科学探究能力。
情感目标
通过学习培养学生实事求是的学风、耐心 细致的工作作风和严谨的工作态度。
4
精选课件
❖ 本节内容,在运算方法、运算器、存储系统等后续内容讲解 中,也都涉及原码、反码和补码等知识。我确定如下的重点 、难点:
1、自主探究法
2、讲练结合法
3.分组讨论法
多种方法并 用
提高教学效
果
6
三、说学法
学情分析
(1)我校计算机学生入 学基础差,专业理论基础 不佳,理解和接受新知识 能力反应较慢。 (2)部分学生没有养成 良好的学习方法、对学习 计算机原理的重要性认识 不够。 (3)有少数同学学习兴 趣浓厚,喜欢多练、多思 考,具备一定的自主探究 能力。
9
精选课件
Ⅱ、新课讲授(30分钟左右)
一、机器数与真值
[老师]上面刚提到在机器中应该如何表示+、-号的呢?请同学们自学课 本[老P1师9对]好应了的,机请器张数明与同真学值说部下分如。何表示+、-号的。 [学生]通常,数的正负号是用符号“+”、“-”来表示的,在微机中常 将符号数字化,即用0表示正,用1表示负。 [老师]为了区分正负号数值化前后的两个对应数,需要引入真值和机器 数两个术语。请陈怡同学归纳总结下,什么是真值、机器数,分别举个 例子。 [学生]1.真值:适合计算机表示的带“+”、“-”号的二进制数。如: +0001001B 2.机器数:将真值的“+”、“-”号数值化后得到的计算机实际能表示 的数。如:X=0 0001001B [老师]作点评并展示总结结论(真值、机器数的概念)。 【设计意图】:借助复习引入时的设疑,为学生创设自主探究的学习情境, 帮助学生主动建构知识,充分调动了学生的学习积极性,突出“教师为主导, 学生为主体,探究为主线”的三为主原则,让学生真正成为学习的主人,亲 身体验知识形成的过程,同时培养了学生观察、分析、归纳问题的能力。
学习方法
针对同学们的学情,倡 导自主学习、探究学习、 合作学习,让学生从机 械的“学答”向“学问” 转变,从“学会”向 “会学”转变,要求同 学们思考和回答问题时, 要积极主动,以便及时 发现和解决问题,并且 要多想、多问,成为学 习的主人。
精选课件
7
四、说教学过程
对上节内容进行检查,以 激发学习兴趣
教学重点 难点
重点
原码、反码和补码的概念 原码、反码和补码的计算方法 原码、反码和补码的表示范围
难点
原码、反码和补码的计算方法
5
精选课件
二、说教法
为了更好地突出重点,突破难点,使教学效果事半 功倍,达到教与学的和谐完美统一。在教学过程中, 我始终坚持教师的主导作用和学生的主体作用相统 一的原则,基于此,我采用的教学方法如下:
10
精选课件
二、原码
[老师]通过PPT展示 1.概念:符号位为0表示正数,符号位为1表示负数,其余各位表示真值 本身。 [[练老习师]]尝12试..回设设答XX==上+面-100的.110两0111个1,1练,则习则[题X[]X。原]原为为________________________________ [学生]踊跃回答 [老师]进行点评,进一步解释原码的概念、求法。 [老师]通过PPT展示 2.表示范围: +(2n-1-1) ~-(2n-1-1)如n=8,则为+127~-127。 [练习]一个16位二进制原码的表示范围是_________________ [学生]踊跃回答 [老师]进行点评,进一步解释原码的表示范围。 [老师]通过PPT展示 3.特殊的值:+0为:00000000,-0为10000000。 【设计意图】:课本中对原码计算方法复杂,这里通过原码的概念,让学生 直接说出真值对应的原码。对答错的内容及时进行点拨纠正,进一步强化对 原码概念的理解。同样的方法,介绍原码的表示范围,对原码特殊的值,简 明扼要展示下、解释即可。 通过自主探究法,唤醒学生的学习意识、挖掘学生的潜能,调动其积极性和 主动性,培养学生自主学习的精神及科学探究能力;通过提问引导法,激发 学生学习兴趣、引起学生注意、反馈教学信息与检验教学效果等作用。
说课课题:原码、反码和补码
精选课件
1
说课内容
6
精选课件
说教材 说教法 说学法 说教学过程 说板书设计 说教学反思
2
Hale Waihona Puke 选课件一、说教材教材简析
❖ 《计算机组成原理》是计算机专业的一门主干专业课程,既 有理论、又有实践。我选用的教材是中等职业教育计算机及 应用专业国家规划教材《计算机组成原理》第二版,主编武 马群,由高等教育出版社出版。
1.复习导入
细讲,引导设问
2.新课讲授
简单总结本节课所学 要点
3、课堂小结
精选课件
4.课堂测试
通过测试及时发现问 题,为解决问题做好 基础
巩固所学内容,为后续学 习打基础
5.作业布置
8
精选课件
Ⅰ、复习导入(3分钟左右)
[老师]上节课我们学习了数的定点与浮点表示,那什么是定点表示法? 什么是浮点表示法?请王华同学回答下。 [学生]小数点在数中的位置是固定不变的数,小数点本身不表示出来, 是隐含的,称为定点表示法;小数点在数中的位置是浮动的、不固定的 数称为浮点表示法。 [老师]对回答情况进行点评,并展示二个数据:+1010101 - 0101011 [老师]这是两个定点整数,请张东说下:它们对应的十进制值为多少? [学生]+1010101的十进制值为+85,-0101011的十进制值为-43。 [老师]那在机器中应该如何表示+、-号的呢?有哪些方法?这就是本节 课我们要讨论解决的问题。好了,本节课我们学习§2.5 原码、反码和 补码 【设计意图】:这样的导入一方面与教学内容相符;另一方面这样的 导入以旧知作为桥梁,容易激发学生的学习兴趣,使师生之间很快地 营造一个教与学的课堂氛围,使学生积极主动进入学习状态。