筏板基础计算书
地基基础课程设计(梁板式筏形基础)

梁板式筏形基础课程设计计算书一、 荷载计算1. 假定不考虑风载与地震作用。
不考虑地下水对基底的上浮力。
2. 基础承受的荷载根据建筑结构每平方米的重量估算。
(1)建筑每平米重量=10.8 kN/㎡ (2)建筑面积计算:地上主体结构:(7.8.2×7.8.0+0.8)×(3×7.8.2.0+0.8)+(3×7.8.0+0.8)×2=97.8.20.7.84㎡ 97.8.20.7.84㎡×11=107.87.8.27.8.2.04㎡ 局部突出屋面的电梯机房,层高3.0m>2.2m , 建筑面积为a×b=7.8.2.0×7.8.0=42.00㎡总建筑面积=107.87.8.27.8.2.04+42.00=107.8.219.04㎡ (3)基础承受荷载=10.8×107.8.219.04=1137.8.288.80kN二、 基础尺寸初步估算1. 基础底板面积确定:用荷载标准值,全反力(包括筏基底板自重),根据地下一层层高及建筑面积,设筏板厚0.7.8m ,基础埋深d=3.9+1.4-0.45=4.85 m ,基础板(7.8.2×7.8.0+0.8)×(3×7.8.2.0+0.8)+(3×7.8.0+0.8)×2=97.8.20.7.84㎡ 2. 基础梁尺寸确定:计算梁高:mm l h 1000666==≥计算梁宽:⎥⎦⎤⎢⎣⎡∈h h b 21,31,h 为梁高。
梁宽取7.800mm ,梁高取1200mm 。
如图1所示:图1 梁截面尺寸示意图(尺寸单位:mm )3.地基承载力特征值的修正对于0.80.850.750.85L e =<=<,I 的粘性土,查承载力修正系数表得:0.3, 1.6b d ηη==,则:2/48.341)5.085.4(186.1)36(183.0200)5.0()3(m kN d b f f m d b ak a =-⨯⨯+-⨯⨯+=-+-+=γηγη4.验算地基承载力 上部荷载总和为:∑=kN Fk80.113788筏基底板自重为:kN G k 00.14310256.000.954=⨯⨯= 基底反力平均值:=k p =+∑AG Fkk970.6414310.0013788.801+=134.282/kN m 2/48.341m kN f a =<所以地基承载力满足要求。
筏板基础计算

深度 宽度 承载力
修正 修正 抗震调
0.10 7.20 5.50 6.60
1.2 计算内容 (1) 基底反力计算 (2) 地基承载力验算 (3) 软弱下卧层验算
2 计算过程及计算结果 2.1 基底反力计算
(1) 基底全反力计算 基底面积 A=B×L=3.900×6.000=23.400m2 竖向荷载 Nk=2544.000kN, Gk=A×γ0×h=23.400×19.000×2.000=889.200kN 偏心距 ex=Myk/(Fk+Gk)=0.000m, ey=-Mxk/(Fk+Gk)=-0.003m
筏板基础计算 1 设计资料 1.1 已知条件
(1) 计算简图
(2) 设计参数 基础长 L (m) 基础宽 B (m) 轴力标准值(kN) 弯矩标准值Mx(kN.m) 弯矩标准值My(kN.m) 基础与覆土平均容重(kN/m3) 地面标高 (m) 基底标高 (m) 考虑地震 基底零应力区容许率(%) 软弱下卧层验算方法
3
粉土 7.00 18.50 ---
4
红粘土 22.50 19.00 19.00Fra bibliotek饱和重度
(kN/m3)
fak ηd 100.00 1.600 230.00 1.600 180.00 1.000 190.00 1.000
承载力特
征值(kPa)
ηb 0.300 1.00 0.300 1.00 1.000 1.00 1.000 1.00
p z p cz f az
lb p k p c
p z b 2 ztan l 2 ztan
基底附加压力计算不考虑偏心作用,按均布考虑(取平均附加压力)
Nk Gk
pa
筏板基础及侧壁计算书

a l 2 1b 2 筏板基础及侧壁计算书一、基本数据:根据 xx 省 xx 护国房地产开发有限公司护国广场岩土工程勘察报告,本工程以③层圆 砾层为持力层,地基承载力特征值为 220KP a 。
基础形式为筏板基础,混凝土强度等级为 C 40 , f c = 19.1N / mm 2 ;受力钢筋均采用HRB 400 级,f y =360 N / mm 2;根据地质 报告,地下水位取 − 1.700m 。
二、地基承载力修正及验算:f a = f ak + ηb γ (b − 3) + ηd γ m (d − 0.5) = 220 + 0.3 × 8 × (6 − 3) + 1.5 × 8 × (5.65 − 0.5) = 289.0kN / m 2上部荷载作用下地基净反力(由地下室模型竖向导荷得)f = 61.6kN / m 2 < f = 289.0kN / m 2地基承载力满足要求。
三、地下室侧壁配筋计算:(1)双向板:l y 5.175 ① l x = 8.400m , l y = 5.175m , = x 8.4 = 0.62E 土 = rhK a = 8.0 × 5.175 × tan 2 45o = 41.4KN / m E 水 = rh = 10.0 × 3.475 = 34.75KN / mE 合 = 1.27E 土 + 1.27E 水 = 52.6 + 44.1 = 96.7KN / m查静力计算手册,得:M x max = 0.0072ql 2= 0.0072 × 96.7 × 5.1752 2= 18.6KN ·m M y max = 0.0209ql '= 0.0209 × 96.7 × 5.175 2= 54.1KN ·m 2Mx max' = −0.0354ql 2= 0.0354 × 96.7 × 5.1752= −91.7KN ·mM y= −0.0566ql = −0.0566 × 96.7 × 5.175 = −146.6KN ·m配筋计算:取弯矩最大处进行计算。
筏板计算书

20m角钢塔筏板基础计算书编制:校核:审批:2014年5月目录1柱截面设计 (3)1.1已知条件及计算要求: (3)1.1.1已知条件:矩形柱 (3)1.1.2计算要求: (3)1.2受压计算 (3)1.2.1偏压计算 (3)1.3计算信息 (6)1.3.1几何参数 (6)1.3.2材料信息 (7)1.3.3计算信息 (7)1.3.4修正后的地基承载力特征值 (7)1.4计算参数 (7)1.5计算作用在基础底部弯矩值 (8)1.6验算地基承载力 (8)1.6.1验算轴心荷载作用下地基承载力 (8)1.6.2验算偏心荷载作用下的地基承载力 (8)2基础抗弯验算: (8)3筏板基础冲切验算 (9)3.1计算要求 (9)3.2筏板抗冲切计算过程和计算结果 (9)3.3筏板抗冲切验算 (10)3.3.1受冲切承载力验算 (10)4混凝土局压验算 (13)4.1局部受压区截面尺寸验算 (13)4.2局部承压力验算 (13)1 柱截面设计1.1 已知条件及计算要求:1.1.1 已知条件:矩形柱b=800mm ,h=800mm 计算长度 L=2.00m砼强度等级 C30,fc=14.30N/mm 2 ft=1.43N/mm 2纵筋级别 HRB400,fy=360N/mm 2,fy'=360N/mm 2 箍筋级别 HPB300,fy=270N/mm 2 轴力设计值 N=316.00kN弯矩设计值 Mx=25.5*2=51 kN ·m 剪力设计值 Vy=0.00kN ,Vx=25.50kN1.1.2 计算要求:1.受压计算2.受剪计算3.冲切计算-----------------------------------------------------------1.2 受压计算1.2.1 偏压计算(1)计算相对界限受压区高度ξb 《混凝土规范》式6.2.7-1:(2)计算轴向压力作用点至钢筋合力点距离 e:b 1f E scu=-=-=h 0h a s 80045755mm(3)计算配筋按照小偏心受压构件计算:计算相对受压区高度ξ, 根据《混凝土规范》式6.2.17-8:1.2.2 轴压验算(1)计算稳定系数φ根据《混凝土规范》表6.2.15: 取稳定系数φ=1.000 (2)计算配筋, 根据《混凝土规范》公式6.2.15:==e a max{20,h/30}26.7mm=+=+=e i e 0e a 161.426.7188.1mm==≤=e i 188.1mm 0.3h 0⨯0.3755226.5mm+=-b 1f +0.431f -1b-h 0a1f b316.00⨯0.517614.3⨯⨯10543.10.80-1f 20()10.5-a 543⨯⨯14.3755360.0755-0.9取A s =0mm 2偏压计算配筋: x 方向A sx =-9591mm 2: y 方向A sy =0mm 2轴压计算配筋: x 方向A sx =0mm 2: y 方向A sy =0mm 2计算配筋结果: x 方向A sx =0mm 2y 方向A sy =0mm 2最终配筋面积:x 方向单边: A sx =0mm 2 ≤ ρmin ×A=0.0020×640000=1280mm 2, 取A sx =1280mm 2y 方向单边: A sy =0mm 2 ≤ ρmin ×A=0.0020×640000=1280mm 2, 取A sy =1280mm 2全截面: A s =2×A sx +2×A sy =5120mm 2 > ρmin ×A=0.0055×640000=3520mm 21.2.3 受剪计算x 方向受剪计算λx =0.0 < 1.0, 取λx =1.0(1)截面验算, 根据《混凝土规范》式6.3.1: h w /b=0.9 ≤ 4, 受剪截面系数取0.25截面尺寸满足要求。
筏板基础模板计算书3

筏板基础3.0墙模板(非组合式钢模板)计算书一、工程属性新浇混凝土墙名称筒体模板新浇混凝土墙墙厚(mm) 800混凝土墙的计算高度(mm) 3000 混凝土墙的计算长度(mm) 6000二、荷载组合混凝土重力密度γc(kN/m3) 24 新浇混凝土初凝时间t0(h) 4外加剂影响修正系数β1 1.2 混凝土坍落度影响修正系数β2 1.15混凝土浇筑速度V(m/h) 1 混凝土侧压力计算位置处至新浇混凝土顶面总高3度H(m)4倾倒混凝土时对垂直面面板荷载标准值Q3k(kN/m2)新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1.2×1.15×11/2,24×3]=min[29.15,72]=29.15kN/m2承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]=0.9max[1.2×29.15+1.4×4,1.35×29.15+1.4×0.7×4]=0.9max[40.58,43.27]=0.9×43.27=38.95k N/m2正常使用极限状态设计值S正=G4k=29.15 kN/m2三、面板布置小梁布置方式竖直左部模板悬臂长(mm) 0小梁间距(mm) 300 小梁一端悬臂长(mm) 0主梁间距(mm) 500 主梁一端悬臂长(mm) 0对拉螺栓横向间距(mm) 600 对拉螺栓竖向间距(mm) 500模板设计立面图四、面板验算面板类型复合木纤维板 面板厚度(mm) 18 面板抗弯强度设计值[f](N/mm 2)15面板弹性模量E(N/mm 2)10000墙截面宽度可取任意宽度,为便于验算主梁,取b =0.5m ,W =bh 2/6=500×182/6=27000mm 3,I =bh 3/12=500×183/12=243000mm 41、强度验算q =bS 承=0.5×38.95=19.47kN/m面板弯矩图(kN·m)M max =0.22kN·mσ=M max /W =0.22×106/27000=8.11N/mm 2≤[f]=15N/mm 2 满足要求! 2、挠度验算q =bS 正=0.5×29.15=14.58kN/m面板变形图(mm)ν=0.63mm≤[ν]=l/400=300/400=0.75mm 满足要求!五、小梁验算小梁类型矩形木楞 小梁材料规格(mm) 100×50 小梁抗弯强度设计值[f](N/mm 2) 15.44 小梁弹性模量E(N/mm 2) 9350 小梁截面抵抗矩W(cm 3)41.67小梁截面惯性矩I(cm 4)104.171、强度验算q=bS承=0.3×38.95=11.68kN/m小梁弯矩图(kN·m)小梁剪力图(kN)M max=0.31kN·mσ=M max/W=0.31×106/41670=7.41N/mm2≤[f]=15.44N/mm2 满足要求!2、挠度验算q=bS正=0.3×29.15=8.74kN/m小梁变形图(mm)ν=0.37mm≤[ν]=l/400=300/400=0.75mm 满足要求! 3、支座反力计算R 1=3.31kN ,R 2=...R 20=6.63kN ,R 21=3.31kN六、主梁验算主梁类型双钢管 主梁材料规格(mm) Ф48×3 主梁抗弯强度设计值[f](N/mm 2) 205 主梁弹性模量E(N/mm 2) 206000 主梁截面抵抗矩W(cm 3)8.98主梁截面惯性矩I(cm 4)21.561、强度验算主梁弯矩图(kN·m)M max=0.68kN·mσ=M max/W=0.68×106/8980=75.64N/mm2≤[f]=205N/mm2满足要求!2、挠度验算主梁变形图(mm)ν=0.26mm≤[ν]=l/400=500/400=1.25mm满足要求!七、对拉螺栓验算对拉螺栓类型M12 轴向拉力设计值N t b(kN) 12.9 对拉螺栓横向验算间距m=max[600,600/2+0]=600mm对拉螺栓竖向验算间距n=max[500,500/2+0]=500mmN=0.95mnS承=0.95×0.6×0.5×38.95=11.1k N≤N t b=12.9kN满足要求!。
筏板基础模板计算书

Appendix 1附件1Calculation of the Formworks模板计算书1、Side Formwork Construction侧模施工1.1、设计说明Design description: using site processed wood formwork, face plate is plywood of 15mm, secondary keel is timber of 50mm×100mm (the material is northeast larch) with 250mm space in between. Main keel is the timber of 80mm×200mm as modeling with the min. height no less than 150mm. 2 main keel set up with spacing of 700mm, 250mm as bottom and 255mm as upper side of slab.侧模采用现场加工木模板,面板为15厚胶合板;次龙骨为50mm×100mm木方(材质为东北落叶松),间距250mm;主龙骨使用80mm×200mm木方做造型木(材质为东北落叶松),造型木中心最小高度不小于150mm。
主龙骨设置两道,间距700mm,距底部250mm和上侧255mm.1.2、Computational Checking of Secondary Keel次龙骨验算1)Load and Combination of Load荷载及荷载组合a.side pressure on the form for concrete混凝土对模板的侧压力t0=200/(25+15)=5h (即混凝土的温度按25℃计算)F1=0.22γc t0β1β2V1/2=0.22×25×5×1.2×1.15×21/2 =53.67KN/m2F2=γc H=25×1.2=30KN/m2(取此值做强度验算)(take this value for computational checking of strength )b.load of concrete pouring混凝土倾倒荷载:4KN/m2c.load of concrete vibrating混凝土振捣荷载:4KN/m2combination of load荷载组合:1.2×30+1.4×(4+4)=47.2KN/m2line load化为线荷载:q=47.2×0.25=11.8KN/m2)Computational Checking of Flexural Strength抗弯强度验算M max =11.8×0.7^2×(1-4×0.252/0.72)/8=0.52KN·m (建筑施工手册表Construction Manual 2-10)W n =1/6bh2 =1/6×50×1002 =250000/3σm = M/W n =0.52×106 /(250000/3)=6.24N/mm2≤ f m =17 N/mm2Flexural Strength meets the requirement抗弯强度满足要求。
筏板基础及侧壁计算书
al 2 1 b 2 筏板基础及侧壁计算书一、基本数据:根据 xx 省 xx 护国房地产开发有限公司护国广场岩土工程勘察报告,本工程以③层圆 砾层为持力层,地基承载力特征值为 220KP a 。
基础形式为筏板基础,混凝土强度等级为 C 40 , f c = 19.1N / mm 2 ;受力钢筋均采用HRB 400 级,f y =360 N / mm 2;根据地质 报告,地下水位取 − 1.700m 。
二、地基承载力修正及验算:f a = f ak + ηb γ (b − 3) + ηd γ m (d − 0.5) = 220 + 0.3 × 8 × (6 − 3) + 1.5 × 8 × (5.65 − 0.5) = 289.0kN / m 2上部荷载作用下地基净反力(由地下室模型竖向导荷得)f = 61.6kN / m 2 < f = 289.0kN / m 2地基承载力满足要求。
三、地下室侧壁配筋计算:(1)双向板:l y 5.175 ① l x = 8.400m , l y = 5.175m , = x8.4 = 0.62E 土 = rhK a = 8.0 × 5.175 × tan 2 45o = 41.4KN / m E 水 = rh = 10.0 × 3.475 = 34.75KN / mE 合 = 1.27E 土 + 1.27E 水 = 52.6 + 44.1 = 96.7KN / m查静力计算手册,得:M x max = 0.0072ql 2= 0.0072 ×96.7 × 5.1752 2= 18.6KN ·m M y max = 0.0209ql '= 0.0209 × 96.7 × 5.175 2= 54.1KN ·m 2Mx max' = −0.0354ql 2= 0.0354 × 96.7 × 5.1752= −91.7KN ·mM y= −0.0566ql = −0.0566 × 96.7 × 5.175 = −146.6KN ·m配筋计算:取弯矩最大处进行计算。
筏板基础计算书
1 * 平板基础的内筒进行抗冲切和抗剪计算结果*说明:1.本结果是对平板基础的内筒进行抗冲切和抗剪计算2.计算依据是GB50007-2011的8.4.8和8.4.103.内筒外边界由程序使用者指定4.土反力按筏板平均反力确定筏板参数:筏板厚度h= 600.mm 保护层厚度a0=75.mm截面有效高度h0= 525.mm 混凝土强度等级C30.0最大荷载组load: 7筏板内荷载= 5550.0 kN 筏板底面积= 15.910 m2 平均基底反力= 348.8kPa平板基础的内筒抗冲切验算:内筒最大荷载Nmax= 5550.0kN 破坏面平均周长Um= 15.900m冲切锥体底面积= 20.160 m2 冲切力Fl= -1482.6kNFl/Um*h0=-177.6055<0.7*Bhp*ft/ita=802.4189平板基础的内筒抗剪验算:内筒外H0处边长= 18.00m 冲切锥体底面积= 20.16m2单位长度剪力Vs= -82.36kN/mVs=-82.3646<0.7*Bhs*ft*h0=526.5875*结束*2* 平板基础的内筒进行抗冲切和抗剪计算结果*SS说明:1.本结果是对平板基础的内筒进行抗冲切和抗剪计算2.计算依据是GB50007-2011的8.4.8和8.4.103.内筒外边界由程序使用者指定4.土反力按筏板平均反力确定筏板参数:筏板厚度h= 600.mm 保护层厚度a0=75.mm截面有效高度h0= 525.mm 混凝土强度等级C30.0最大荷载组load: 7筏板内荷载= 4514.3 kN 筏板底面积= 13.775 m2 平均基底反力= 327.7kPa 平板基础的内筒抗冲切验算:内筒最大荷载Nmax= 4514.3kN 破坏面平均周长Um= 14.910m冲切锥体底面积= 17.778 m2 冲切力Fl= -1311.7kNFl/Um*h0=-167.5640<0.7*Bhp*ft/ita=802.4189平板基础的内筒抗剪验算:内筒外H0处边长= 17.01m 冲切锥体底面积= 17.78m2单位长度剪力Vs= -77.11kN/mVs=-77.1097<0.7*Bhs*ft*h0=526.5875*结束*。
筏板基础计算书
高层建筑地基基础课程设计学年学期:2014~2015学年第2学期院别:土木工程学院专业:勘查技术与工程专业方向:岩土工程班级:勘查1201学生:学号:指导教师:***《高层建筑地基基础课程设计》成绩评定表班级姓名学号目录一、工程概况几工程地质条件 (5)1.1柱位图 (5)1.2土层信息 (5)1.3上部荷载 (6)二、基础选型 (6)三、设计尺寸与地基承载力验算 (6)3.1基础底面积尺寸的确定 (6)3.2地基承载力验算 (7)四、沉降验算 (9)五、筏板基础厚度的确定 (11)5.1抗冲切承载力验算 (11)5.2抗剪承载力验算 (12)5.3局部受压承载力计算 (13)六、筏板、基础梁内力计算 (15)6.1基础底板内力计算 (15)6.2基础梁内力计算 (17)6.2.1边缘横梁(JL1)计算 (17)6.2.2中间横梁(JL2)计算 (19)6.2.3边梁纵梁(JL3)计算 (20)6.2.4中间纵梁(JL4)计算 (22)七、梁板配筋计算 (24)7.1底板配筋 (24)7.1.1板顶部配筋(取跨中最大弯矩) (25)7.1.2板底部(取支座最大弯矩) (26)7.2基础梁配筋 (27)八、粱截面配筋图 (34)九、心得体会 (36)十、参考文献 (36)一、工程概况几工程地质条件某办公楼建在地震设防六度地区,上部为框架结构8层,每层高 3.6m。
地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离4.5m。
地下室外墙厚300mm。
柱截面400×400,柱网及轴线如图所示。
室内外高差0.4m。
不考虑冻土。
上部结构及基础混凝土均采用C40。
1.1柱位图1.2土层信息1.3上部荷载二、基础选型根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。
筏板基础计算书
筏板基础计算书WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】高层建筑地基基础课程设计学年学期: 2014~2015学年第2学期院别:土木工程学院专业:勘查技术与工程专业方向:岩土工程班级:勘查1201学生:学号:指导教师:陈国周《高层建筑地基基础课程设计》成绩评定表班级姓名学号目录一、工程概况几工程地质条件 (13)柱位图 (13)土层信息 (13)上部荷载 (14)二、基础选型 (14)三、设计尺寸与地基承载力验算 (14)基础底面积尺寸的确定 (14)地基承载力验算 (15)四、沉降验算 (17)五、筏板基础厚度的确定 (19)抗冲切承载力验算 (19)抗剪承载力验算 (20)局部受压承载力计算 (21)六、筏板、基础梁内力计算 (22)基础底板内力计算 (23)基础梁内力计算 (24) (25) (26) (27) (29)七、梁板配筋计算 (31)底板配筋 (31) (32) (33)基础梁配筋 (34)八、粱截面配筋图 (41)九、心得体会 (44)十、参考文献 (44)一、工程概况几工程地质条件某办公楼建在地震设防六度地区,上部为框架结构8层,每层高。
地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离。
地下室外墙厚300mm。
柱截面 400×400,柱网及轴线如图所示。
室内外高差。
不考虑冻土。
上部结构及基础混凝土均采用 C40。
柱位图土层信息上部荷载柱1 柱7 柱13 (单位:kN)基本标准准永久基本标准准永久基本标准准永久1650 1222 1100 2300 1704 1533 1830 1356 1220 柱2 柱8 柱14基本标准准永久基本标准准永久基本标准准永久2450 1815 1633 2910 2156 1940 2500 1852 1667 柱3 柱9 柱15基本标准准永久基本标准准永久基本标准准永久2830 2096 1887 3140 2326 2093 2830 2096 1887 柱4 柱10 柱16基本标准准永久基本标准准永久基本标准准永久2630 1948 1753 3150 2333 2100 2680 1985 1787 柱5 柱11 柱17基本标准准永久基本标准准永久基本标准准永久2500 1852 1667 2970 2200 1980 2490 1844 1660 柱6 柱12 柱18二、基础选型根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑地基基础课程设计学年学期: 2014~2015学年第2学期院别:土木工程学院专业:勘查技术与工程专业方向:岩土工程班级:勘查1201 学生:学号:指导教师:陈国周《高层建筑地基基础课程设计》成绩评定表班级姓名学号目录一、工程概况几工程地质条件 (5)柱位图 (5)土层信息 (5)上部荷载 (5)二、基础选型 (6)三、设计尺寸与地基承载力验算 (6)基础底面积尺寸的确定 (6)地基承载力验算 (7)四、沉降验算 (8)五、筏板基础厚度的确定 (9)抗冲切承载力验算 (9)抗剪承载力验算 (10)局部受压承载力计算 (11)六、筏板、基础梁内力计算 (13)基础底板内力计算 (13)基础梁内力计算 (15)边缘横梁(JL1)计算 (15)中间横梁(JL2)计算 (16)边梁纵梁(JL3)计算 (17)中间纵梁(JL4)计算 (20)七、梁板配筋计算 (22)底板配筋 (22)板顶部配筋(取跨中最大弯矩) (22)板底部(取支座最大弯矩) (23)基础梁配筋 (25)八、粱截面配筋图 (32)九、心得体会 (36)十、参考文献 (36)一、工程概况几工程地质条件某办公楼建在地震设防六度地区,上部为框架结构8层,每层高。
地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离。
地下室外墙厚300mm。
柱截面 400×400,柱网及轴线如图所示。
室内外高差。
不考虑冻土。
上部结构及基础混凝土均采用 C40。
柱位图土层信息上部荷载二、基础选型根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。
三、设计尺寸与地基承载力验算基础底面积尺寸的确定根据《建筑地基基础设计规范GB5007-2011》筏形基础底板各边自外围轴线挑出,则筏形基础的底板尺寸为× A=×=²NPk 29667.1∑=永久准永久荷载总组合:2.偏心校验(荷载效应为准永久值):m044.0296672.7)110016601787188716671220110016671753188716331100(m0403.02966715.317872100175318872093188745.9)166019801667166719401633(7.15110015601100120015331100-=⨯------+++++==⨯---+++⨯---+++⨯---++=y x e e )()(263.068.151.01.0548.069.321.01.0=⨯=⨯<=⨯=⨯<A W e A W e y x 故筏板尺寸满足偏心要求。
地基承载力验算根据资料,已知地下室地板至一楼室内地面竖向距离,室内外高差,故板厚确定为60×8=480mm ,取板厚500mm ,则基础埋深为,持力层为粘土层。
基础梁截面尺寸初步估算:基础梁的高跨比不小于 1/6,截面宽高比 1/2~1/3。
则梁截面初步定为500×1400mm先对持力层的承载力特征值f ak 进行计算:已知持力层粘土的孔隙比e=, I L =查规范《建筑地基基础设计规范GB50007-2011》表的得承载力修正系数:0.10d b ==ηη,1.基础底面以上土的加权平均重度γm3m m /k 439.126.46.27.823.17γN =⨯+⨯=2.修正后的地基承载里特征值:3.筏形基础及其上覆土的自重:N G k 983.148506.27.823.176.45382.519252)4.145.31(5.43.025]28.1539.325.09.05.082.519[k =⨯+⨯⨯-+⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯+⨯=)()()(4.基地平均附加应力:aw f P AF G P <=⨯-+=-+=∑a k 988.656.21082.51932963983.14850h k k k γ5.惯性矩:433y 433x m 989.108138.159.32121h 121m 197.468889.328.15121bh 121=⨯⨯===⨯⨯==b I I6.竖向荷载对形心的力矩(标准组合)m k 14402.7200m k 7.175715.325245.97375.15105y x ⋅-=⨯-=⋅=⨯+⨯-⨯=N M N M7.基地边缘压力最大值和最小值ak 558.66989.108131440197.468889.77.1757295.66x y 1.2a k 418.66989.108131440197.468889.77.1757295.66x y y y x x k k mina y y x x k k maxP I M I M P P f P I M I M P P =-⨯-=±±=<=+⨯+=±±=故地基承载力满足要求四、沉降验算1.计算基地附加应力(准永久组合荷载效应)ak 420.26.4439.126.21082.51929667983.14850dh m w 0P AF G P K =⨯-⨯-+=--+=∑γγ永久2.求地基变形的计算深度m 058.228.15ln 4.05.28.15lnb 4.05.2b Z n =⨯-⨯=⋅-=)()(因粉质粘土以下为基岩,筏板底至基岩面的厚度为< 故计算深度取至基岩面,即Z n = 表13.求地基形变深度范围内的压缩模量的当量值故查表可得(《建筑地基基础设计规范》沉降计算经验系数ψs)4.计算地基最终变形量S<S][=200五、故地基沉降满足规范要求,其中[s]为建筑物地基变形允许值,参考《建筑地基基础设计规范GB5007-2011》表筏板基础厚度的确定进行筏板基础板厚的验算:板厚h=500mm,柱截面尺寸400×400mm,基础梁的截面尺寸500×1400mm,基础板和基础梁的混凝土等级都为C40,最不利跨板的跨度为×。
抗冲切承载力验算板格的短边净长度l n1= 长边净长l n2=基础板厚,双层布筋,上下保护层厚度总计70mm,底板有效高度为,受冲切承载力截面高度影响系数βhp=,C40混凝土轴心抗拉强度设计值f t=1800kPa。
底板受冲切力按下式计算:计值;合的地基平均净反力设相应于荷载效应基本组度影响系数;受冲切的承载力截面高为底板的有效高度;处冲切截面的周长,距基础梁边净反力设计值;作用在板上的地基平均--------------+-=--=≤p h h u F h h l h l u p h l h l F h u f F hp m l n n m n n l t hp l ββ00020102010m 24)2(2)2(2)2)(2(7.0kPap 607.85519.8244500==.. 抗剪承载力验算验算距基础梁边缘h 0=处底板斜截面受剪承载力作用在图5-2阴影部分面积上的地基平均净反力设计值应满足下式:410hs 01012002/800k 584.71243.028.543.028.57.6607.85)2)(2()2(7.0)()()(h Nh lh l l p V h h l f V n n n S n t hS S ==-⨯--⨯=---=-≤βββhs 为受剪切时的截面高度影响系数,当板的有效高度h 0小于800mm时,h 0取800mm 故本次βhs =则斜截面受剪承载力:Sn t hS V N h h l f >=⨯⨯-⨯⨯⨯=-k 112.316443.043.027.618000.17.0)2(7.0002)(β故抗剪承载力满足要求。
局部受压承载力计算根据《建筑地基基础设计规范》GB 50007-2002.梁板式筏基的基础梁除满足正截面受弯及斜截而受剪承载力外,尚应按现行《混凝土结构设计规范》GB 50010有关规定验算底层柱下基础梁顶面的局部受压承载力。
根据《混凝土结构设计规范》GB 50010 ,其局部受压区的截面尺寸应符合下列要求:图5-3A bA l;局部受压的计算底面积混凝土局部受压面积;提高系数;混凝土局部受压时强度计值;混凝土轴心抗压强度设值;部荷载或局部压力设计局部受压面上作用的局---------------=≤b l c c l lb l ll c l A A f F A A A F ββββ35.1只需验算竖向最大轴力即可,荷载效应基本组合最大柱下荷载为F=3150kN, 计算示意图如下(图5-3)1.局部受压面积为:2.局部受压计算面积:3.混凝土局部受压时的强度提高系数:25.1106.1105.255=⨯⨯==l b l A A β4.受压面上局部压力设计值为:NF l k 3150=5.计算顶面局部受压承载力:C40混凝土的轴心抗压强度设计值f c =,混凝土影响系数βc =ll c l c F N A f >=⨯⨯⨯⨯⨯=k 5157106.11.1925.10.135.135.15ββ故筏板基础梁满足局部受压承载力要求。
六、筏板、基础梁内力计算荷载效应的基本组合的地基平均净反力 已知。
双向板示意图和纵横梁荷载分布图见图6-1 基础底板内力计算由于, 所以底板按双列双向板计算。
弯矩计算:kN l p kN l p y j x j 867.44372.7607.85672.32783.6607.852222=⨯==⨯=根据教材《基础工程》表4-4两邻边固定两邻边简支板系数表和表4-5三边固定一边简支板系数表,查得弯矩系数:773.0,0139.0,0267.0628.0,0203.0,0341.0444333======x y x x y x x x ϕϕϕϕ边缘区格3:mkN l p M m kN l p M y j y y x j x x ⋅-=⨯-=-=⋅-=⨯-=-=089.90867.44370203.0801.111627.32780341.0233233ϕϕ中间区格4:mkN l p M m kN l p M y j y y x j x x ⋅-=⨯-=-=⋅-=⨯-=-=686.61867.44370139.0539.87627.32780267.0244244ϕϕ支座弯矩:mkN l p x M mkN l p x x M x j x b x j x x a ⋅=⨯==⋅=⨯⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=198.211627.327812773.012285.234627.327824773.016628.0241624243mkN l p x M mkN l p x M y j x d y j x c ⋅=⨯-=-=⋅=⨯-=-=924.125867.44378773.0181361.206867.44378628.01812423基础底板支座弯矩调整基础梁宽b=,根据《基础工程》教材公式进行调整mkN b l p x M M mkN b l p x M M mkN b l p x M M m kN b p x M M y j x d dyy j x c cy x j x b bx j x a ax ⋅=⨯⨯⨯-⨯-=--=⋅=⨯⨯⨯-⨯-=--=⋅=⨯⨯⨯⨯-=-=⋅=⨯⨯⨯⨯-=-=434.1085.02.7607.85)773.01(25.0924.125)1(41800.1775.02.7607.85)628.01(25.0361.206)1(41085.1595.03.6607.85773.025.0198.21141948.1915.03.6607.85628.025.0285.234414343悬臂板弯矩该方案基础板四周均从基础梁轴线向外悬挑,减去基础梁宽的1/2,剩下的则为悬臂带的宽度。