(古代问题)希腊数学家丢番图
丢番图故事的延伸

“丢番图故事”引发的联想关于著名的古代希腊数学家丢番图的生平历史,很少保留下来,我们现在所知道的一点,都是从他的墓碑上的题词来的:过路人,这里埋有丢番图的骨灰,下面的数目可以告诉你他的寿命有多长。
“生命的六分之一是幸福的童年。
再活了十二分之一,颊上长起了细细的胡须。
再过七分之一点起了结婚的蜡烛,五年之后天赐贵子。
可怜的孩子宁馨儿,享年只有其父的一半。
儿子死后悲痛不已,只有用数论的研究去弥补,四年后他也走完了人生的旅途。
”书本上的一个阅读材料,我由此而联想到了很多相关的典例,或许可以是一份很好的教学材料:“数数”一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是97。
“毕达哥拉斯”问题一个人问毕达哥拉斯:“尊敬的毕达哥拉斯先生,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中的1/2在学习数学,1/4在学习音乐,1/7沉默无言,此外,还有3名妇女。
”“铜像注水”问题这是一座独眼巨人的铜像,雕塑家技艺高超,铜像里设计机关:巨人的手,口,和独眼都连接着大,小水管,通过手的水管三天注满水池,通过独眼的水管需要一天,从水中吐出的水管要快得多,9个半小时就够了,试问,三处同时放水,水池何时流满?爱神的烦恼爱罗斯在路旁哭泣,泪水一滴接一滴。
吉波莉达向前问道:波利尼“是什么事让你如此悲伤?我可能够帮助你?”爱罗斯回答道:“九位文艺女神不知来自何方把我从赫尔康山采回的苹果,几乎一扫而光。
叶芙特尔波飞快的抢走了十二分之一,爱拉托抢的更多——七个苹果中拿走了一个。
八分之一被达利娅抢走,比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,只取走了二十分之一,可又来了个克里奥,他的收获是这的四倍。
还有三位女神,个个都不空手,30个归波利尼亚,120个归乌拉尼亚,300个归卡利奥帕,我,可怜的爱罗斯,还剩下50个苹果?这是«希腊文集»中著名的问题“爱神的烦恼”。
古代有趣的题目

在古代,有许多有趣的题目,其中一些是数学问题,还有一些涉及到文字游戏、谜语和哲学思考。
以下是一些古代有趣的题目:
1.鸡兔同笼:这是一个经典的古代数学问题。
题目描述了一个笼子里有一些鸡
和兔子,总共有若干头和脚,要求找出鸡和兔子各有多少只。
2.百钱百鸡:另一个古代的数学问题。
有一个人用100钱买了100只鸡,公鸡
5钱一只,母鸡3钱一只,小鸡1钱三只,问公鸡,母鸡,小鸡各买了多少只?
3.韩信点兵:韩信带兵打仗,只知道自己的兵数是5的倍数,而且在1000~
2000人之间,他利用“韩信点兵”的方法求出士兵数。
问:这个士兵数是多少?
4.百僧分百馍:唐诗云:“一百馒头一百僧,大僧三个更无争,小僧三人分一
个,大小和尚各几丁?”意思是有100个和尚分100个馒头,大和尚每人分3个,小和尚3人分一个,问大和尚、小和尚各多少人?
5.丢番图的墓志铭:丢番图(Diophantus)是古希腊的一位数学家。
他的墓志
铭上刻着:“过路人,这里埋着丢番图的骨灰。
下面的数目可以告诉你他的一生经过了多少寒暑。
他生命的六分之一是童年;再活了十二分之一,他颊上长出了胡须;又过了生命的七分之一,他走上了婚床;五年后喜得贵子,可怜的小孩活了生命的一半就撒手人间;此后,四年中老伴相继而去;五年前蜡烛燃尽了生命之光。
不知道他逝世多少时,那空空的墓穴将是他的归宿。
”
你知道丢番图到底活了多少岁吗?
以上只是一部分古代有趣的题目,如果您对此感兴趣,可以阅读数学史或相关文献以获取更多信息。
阅读章前图丢番图(Diophantus)是古希腊数学家.人们对

3 x+(10-x)=22
• 阅读章前图:
丢番图(Diophantus)是古希腊数学家.人们对他的生平事 迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬 着丢番图, 多么令人惊讶, 它忠实地记录了其所经历的人生旅 程.上帝赐予他的童年占六分之一, 又过十二分之一他两颊长 出了胡须, 再过七分之一,点燃了新婚的蜡烛.五年之后喜得 贵子, 可怜迟到的宁馨儿, 享年仅及其父之半便入黄泉.悲伤 只有用数学研究去弥补, 又过四年,他也走完了人生的旅途.
知道数学就在我们身边,并在对其它实际问 题研究中感受了方程作为刻画现实世界有效 模型的作用。
2.通过观察归纳出方程及一元一次方程和解
的概念.
3. 在分析课本设置的例题的过程中初步体会
了列方程的“核心”与“关键”。
1、你能找到题中的等量关系,列出方程吗? 2、你对方程有什么认识? • 3、列方程解决实际问题的关键是什么?
第五章 一元一次方程
授课教师:谢哲纯 授课班级:初一2班
学习目标:
1.通过观察归纳出方程及一元一次方程和解的 概念. 2.通过对多个实际问题的分析,寻找等量关系, 建立方程。
重点:掌握方程及一元一次方程和解的概念. 难点:寻找等量关系列方程。
情境 1
小彬,我能 猜出你年龄。
不信
你的年龄乘2减5 得数是多少?
他怎么知道 的我年龄是13
岁的呢?
21
小彬
如果设小彬的年龄为x岁,那么“乘2再减5”就
是__2__x_-5__,所以得到等式: 2x-_5_=_2_1____。
情境 2
小颖种了一株树苗,开始时树苗高40厘米,栽种后
每周升高约5厘米,大约几周后树苗长高到1米?
丢番图

除了《算书》一书外,丢番图还著有《论多角 数》、《不定方程》,但是《论多角数》现仅存 一些残篇,《不定方程》早已失传了。他的著作 的拉丁文版本于1575年才第一次出版。他的著作 不仅是数学史上的珍贵资料,而且成为后来许多 数学家,如费巴、欧拉、高斯等进行数论研究的 出发点。数论中两大部分就是以丢番图名字命名 的,即“丢番图方程”和“丢番图近似理论”。
对于丢番图的生平事迹,人们知道得很少。但在一本《希腊诗文选》﹝The Greek antholog 【这是公元500年前后的遗物,大部份为语法学家梅特罗多勒斯﹝Metrodorus﹞所辑, 其中有46首和代数问题有关的短诗﹝epigram﹞】。 亚历山大时期的丢番图对代数学的发展起了极其重要的作用, 对后来的数论学者有很深的影响。丢番图的《算术》是讲数论的, 它讨论了一次、二次以及个别的三次方程,还有大量的不定方程。 现在对于具有整数系数的不定方程,如果只考虑其整数解, 这类方程就叫做丢番图方程,它是数论的一个分支。 不过丢番图并不要求解答是整数,而只要求是正有理数。 从另一个角度看,《算术》一书也可以归入代数学的范围。 代数学区别于其它学科的最大特点是引入了未知数,并对未知数加以运算。 就引入未知数,创设未知数的符号, 以及建立方程的思想﹝虽然未有现代方程的形式﹞这几方面来看, 丢番图的《算术》完全可以算得上是代数。 希腊数学自毕达哥拉斯学派后,兴趣中心在几何, 他们认为只有经过几何论证的命题才是可靠的。 为了逻辑的严密性,代数也披上了几何的外衣。 一切代数问题,甚至简单的一次方程的求解,也都纳入了几何的模式之中。 直到丢番图,才把代数解放出来,摆脱了几何的羁绊。 他认为代数方法比几何的演绎陈述更适宜于解决问题, 而在解题的过程中显示出的高度的巧思和独创性,在希腊数学中独树一帜。 他被后人称为『代数学之父』不无道理。
计算思维导论4~7单元答案

【单元测验4】返回本次得分为:40.00/40。
00,本次测试的提交时间为:2017—04—22,如果你认为本次测试成绩不理想,你可以选择再做一次。
1单选(4分)古希腊数学家丢番图(Diophantus)对代数学的发展有极其重要的贡献,并被后人称为“代数学之父”.他在《算术》(Arithmetica)一书中提出了有关两个或多个变量整数系数方程的有理数解问题.对于具有整数系数的不定方程,若只考虑其整数解,这类方程就叫丢番图方程。
“丢番图方程可解性问题”的实质为:能否写出一个可以判定任意丢番图方程是否可解的算法.下面给出判定方程3x+5y=2是否有整数解的过程:首先使用欧几里德算法求出系数3和5的最大公因子:(1) 3除5余数为2;(2)2除3余数为1;(3) 1除2余数为0,算法结束,输出结果1。
3和5的最大公因子是1,1能整除2,故该方程有整数解。
根据以上方法,判定下面没有整数解的是 ( )得分/总分A。
2x+4y=54。
00/4。
00B.3x+4y=2C。
2x+3y=5D.2x+3y=2正确答案:A你选对了2单选(4分)十六进制数(88)16转换为二进制数为()得分/总分A.100010004。
00/4.00B.01010101C。
11001100D。
01000100正确答案:A你选对了3单选(4分)根据顺序存储和链式存储各自的优势,判断以下案例应选择哪种存储方式:若想编写一个下跳棋的游戏程序,那么表示棋盘的数据结构将会是一个静态数据结构,这是因为棋盘的大小在游戏过程中不会改变,所以应该选择;而若要编写一个多米诺游戏的程序,则根据表构建的多米诺模式的数据结构将会是一个动态数据结构,这是因为这个模式的大小是可变的,而且不能预先确定,因此应该选择。
()得分/总分A.顺序存储链式存储4.00/4.00B.链式存储顺序存储C.顺序存储顺序存储D.链式存储链式存储正确答案:A你选对了4单选(4分)已知一个采用一维数组形式实现的队列Q(每项占一个存储单元),当前队头地址为11,队尾地址为17。
丢番图逼近

1丢番图逼近数论的一个分支,以研究数的有理逼近问题为主。
这里所谓的数是指实数、复数、代数数或超越数。
数的有理逼近问题,可表为求某种不等式的整数解问题。
由于在整数范围求解的方程称为不定方程或丢番图方程,因而把求不等式的整数解问题称之为丢番图逼近。
1842年,P.G.L.狄利克雷首先证明了实数有理逼近的一个结果:如果α是任意实数,Q是大于1的实数,那么存在整数对p、q,满足两个不等式:1≤q≤Q和|αq-p|≤Q-1。
由此可得,如果α是任意无理数,那么存在无穷多对互素的整数对p、q,满足不等式|α-p/q|<q-2。
当α是有理数时,上式不成立。
1891年,A.胡尔维茨将上式改进为并指出,对于某些无理数,常数是最佳值,不可再减小。
但是对于很多无理数,常数不是最佳值,还可再减小。
1926年,A.Я.辛钦证明了:在勒贝格测度意义下对几乎所有的实数α,不等式|α-p/q|<ψ(q)/q的整数解p、q有无穷多对还是只有有穷多对,由级数是发散的还是收敛的而定,这里ψ(q)(q>0)是正的非增函数。
此即所谓丢番图逼近测度定理。
例如,对几乎所有的实数α和任意的δ>0,不等式|α-p/q|<q只有有穷多对整数解,而不等式|α-p/q|<q-2(ln q)-1有无穷多对整数解。
丢番图逼近与连分数有密切联系。
一个数的连分数展开,往往就是具体构造有理逼近解的过程。
例如,对于任意无理数α,有无穷多个渐近分数p n/q n,满足不等式1844年,J.刘维尔开创了实代数数的有理逼近的研究,他证明了:如果α是次数为d的实代数数,那么存在一个常数C(α)>0,对于每个不等于α的有理数p/q,有|α-p/q|>C(α)/q d。
亦即如果μ>d,那么不等式|α-p/q|<q-μ只有有穷多个解p/q。
根据这一结果,刘维尔构造出了历史上的第一个超越数。
以后一些数学家不断改进指数μ的值,直到得出μ与d无关的结果。
丢番图的墓志铭

丢番图的墓志铭
古希腊数学家丢番图的墓志铭是以一道数学题的形式写出来的:
过路人,这里埋着丢番图的骨灰。
他的寿命有多长,下面这些数字可以告诉你。
他的生命的6
1是幸福的童年。
再活了寿命的十二分之一,细细的胡须长上了脸。
丢番图结了婚,还没有孩子,这样又过去一生的七分之一。
又过了五年,儿子降
临人世,他幸福无比。
可是这孩子生命短暂,只有父亲的一半。
儿子死后,这老头在悲痛中度过四年,终于了却尘缘。
请你讲一讲,丢番图活了多大年纪,才和死神相见?
丢番图到底活了多少岁?让我们再来看
看墓志铭,上面有两个整数—5和4,其他都是分数—占丢番图年龄的几分之几,那么只要我们知道这9年(5+4=9)占了丢番图年龄的几分之几,就可以知道他的年龄了。
我们来算一下: 1-61-121-71-21=84
9
也就是说,已知的9年占了丢番图年龄的84
9。
那么丢番图的年龄应该是84岁。
如果你学过方程,那么可以根据墓志铭列出一个方程式,设丢番图的年龄为x.
61x+121x+71x+5+21x+4=x
解方程,就能算出x=84,也就是说丢番图活了84岁。
丢番图的巧妙思路

于 是他 设 四个 数 分 别 为 X, g t Y, ,,则依 题 意 得 方 程 组 可 在 具 体求 解 时 他 被 这 个 方 程组 搞 得 昏头 昏脑 , 来 算 去 算 也 难 以顺 利 进 行 , 在 不 断 出 现 而 未知 数 并 未 减 少 的算 式 陷
g t x= 4, ++ 2 t x+ = 7 + y 2 .
程 却 比较 繁琐 . 因为 题 中有 四个 未 知数 . 按照 通 常列 方 程 解应 用 题 的方 法 , 必须 设 出 四个 未 知 数 , 出 四个 方 程 , 到 一个 四元 一 次方 程 组 , 列 得
然 后再 解方 程 组.
x+ g 0, y+ =2
Y t 2, =2
一
个 极为 简 单 的解 法 . 丢番 图也 是 设 未 知 数 列 方 程 再解 答 。 是 他 的 设 法 出人 意 料 . 一 反 常 规 , 只 他
不 去 分设 四 个未 知 数 , 而是 设 这 四 个未 知 数 之 和 为 X 于是 , 四个 数就 分 别 为 X . 这
减 去其 余 三个 数 之 和 所 得 的差 , 即分 别 为 X 2 , 2 ,一 4和 X 2 . 可 列 方 一 0 一 2X 2 一 7由此 程 : 一 0+ 一 2+ 一4+ 2 )x 解 得 := 1 进 而 可 得 这 四 个 数 分 别 为 2) 2 ) 2) 一 7= . x 3,
E a s@2… f辑沈 艳 /、 - h 1. 0O∞ m  ̄ 6 编 :红
丢 番 图 是古 希 腊 杰 出 的数 学 家 , 解题 技 巧 高超 著 称 . 后 人 誉 为 “ 数 学 以 被 代
之 父 ”下 面介绍 的就 是 丢番 图巧妙 解 题 的一 则 小 故事 : .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(古代问题)希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你算出:(1)丢番图的寿命;(2)丢番图开始当爸爸时的年龄;(3)儿子死时丢番图的年龄.
设丢番图活了x岁。
(1).丢番图的寿命:
解:x=1/6x+1/12x+1/7x+5+1/2x+4
x=25/28x+9
x-25/28=9
3/28x=9
x=9*3/28
x=84
答:由此可知丢番图活了84岁。
(2).丢番图开始当爸爸的年龄:
84×(1/6+1/12+1/7)+5=38(岁)
答:丢番图开始当爸爸的年龄为38岁。
(3).儿子死时丢番图的年龄:
84-4=80(岁)
答:儿子死时丢番图的年龄为80岁。