勾股定理全章综合复习
勾股定理总复习

勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三c b a H G F E D C B A b a c b a c c a b c a b abc c b a E D C B A边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,勾三股四弦五:3,4,55·12记一生:5,12,13连续的偶数:6,8,10企鹅是二百五 7,24,25八月十五在一起:8,15,17还有2组,不是勾股数,不过经常使用,也需要记住。
《勾股定理》复习学案(单元复习)

《勾股定理》复习学案★知识汇总1.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:设直角三角形的两直角边和斜边长由短到长分别为a,b,c 方法一:如图,S △AFD = EF= S 正方形EFGH = S 正方形ABCD = = 化简过程为:方法二:如图,S △= S 大正方形= S 小正方形= = 化简过程为:方法三:如图,S △AED = S △BEC = S △AEB = S 梯形ABCD = = , 化简过程为:2.面积问题:⑴如图1,以直角三角形的三边长作正方形,则三个正方形的面积之间存在关系是 ⑵如图2,以直角三角形的三边长为直径作半圆,则三个半圆的面积之间存在关系是 ⑶如图3,以直角三角形的三边长为斜边作等腰直角三角形,则三个三角形的面积之间存在关系 是 小练习:1.如图1,①若S 1=9 S 2=16,则S 3= ,BC= ;②若AB=2,S 3=10,则S 2= ; ③若S 3=10,则S 1+S 2+S 3= ;④若S 1+S 2=5,则S 1+S 2+S 3= 。
2.如图2,①若S 1=2π S 3=258π,则S 2= ;②若S 1=3π,S 2=32π,则S 3= ,BC= ; ③若BC=10,则S 1+S 2= 。
3.如图3,BC=6,则S 1+S 2+S 3= 。
4.如图4,以直角三角形的三边长为直径作半圆,若AB=12,AC =5,则S 阴影= 。
5.如图5,所有的四边形都是正方形,所有的三角形都是直角三角形,①若最大的正方形的边长为7㎝,则正方形A 、B 、C 、D 的面积之和为 ;②若最大的正方形的边长为10㎝,正方形A 的边长为6㎝,B 的边长为5㎝,C 的边长也为5㎝,则正方形D 的边长为 。
初中数学勾股定理复习

勾股定理复习1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.一、勾股定理:___________________________________在Rt△ABC中,∠C=90°,则有________________【例1】在Rt△ABC中,∠C=90°,若a=3,b=4,则c= ;若b=8,c=17,则a=_______;【变式1-1】如图1,等腰△ABC中,AB=AC=17cm,BC=16cm,则BC边上的高AD=_______.【变式1-2】如图2:在一个高6米,长10米的楼梯表面铺地毯,则该地毯的长度至少是米.【变式1-3】一根旗杆在离地面9 m处断裂,旗杆顶部落在离旗杆底部12 m的地面上,旗杆在折断之前高度为.【变式1-4】一直角三角形两条边长分别是12和5,则第三边平方为.二、勾股定理逆定理_____________________________________ 【例2】下列各组数中不能作为直角三角形的三边长的是( ) A. 1.5,2,3; B. 7,24,25; C. 6,8,10; D. 9,12,15.【变式2-1】将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形; B.锐角三角形; C. 直角三角形; D. 等腰三角形.【变式2-2】在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是 .三、最短距离问题:主要运用的依据是______________________________【例3】如右图,有一长70cm ,宽50cm ,高50cm 的长方体盒子,A 点处有一只蚂蚁,想吃到B 点处的食物,它爬行的最近距离是 厘米..【变式3-1】如图,一个无盖的圆柱纸盒:高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃,要爬行的最短路程(取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.四、本章注意事项勾股定理是平面几何中的重要定理,其应用极其广泛,在应用勾股定理时,要注意以下几点:1、要注意正确使用勾股定理例1 在Rt △ABC 中,∠B =Rt ∠,a=1,b =,求c .2、要注意定理存在的条件例2 在边长为整数的△ABC 中,AB >AC ,如果AC=4,BC =3,求AB 的长. 3、要注意原定理与逆定理的区别π例3 如图1,在△ABC 中,AD 是高,且2AD BD CD =•,求证:△ABC 为直角三角形.4、要注意防止漏解例4 在Rt △ABC 中,a =3,b =4,求c . 5、要注意正逆合用在解题中,我们常将勾股定理及其逆定理结合起来使用,一个是性质,一个是判定,真所谓珠联壁合.当然在具体运用时,到底是先用性质,还是先用判定,要视具体情况而言. 例5 在△ABC 中,D 为BC 边上的点,已知AB =13,AD =12,AC =15,BD =5,那么DC =_________.6、要注意创造条件应用例6 如图3,在△ABC 中,∠C =90°,D 是AB 的中点,DE ⊥DE ,DE 、D F 分别交AC 、BC 、于E 、F ,求证:222EF AE BF =+一.选择题1. 在△中,若,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形 2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则△ABC 的度数为( )A .90°B .60°C .45°D .30°3.下列满足条件的三角形中,不是直角三角形的是( ) A .三内角之比为1:2:3 B.三边长的平方之比为1:2:3 C .三边长之比为3:4:5D.三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )ABC 1,2,122+==-=n c n b naA .2900mB .1200mC . 1300mD . 1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( )A .ab =h 2B .a 2+b 2=h 2C .D .6.如图,Rt△ABC 中,△C =90°,CD △AB 于点D ,AB =13,CD =6,则(AC +BC )2等于( )A.25B.325C.2197D.4057. 已知三角形的三边长为,由下列条件能构成直角三角形的是( ) A. B. C. D.8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,△BAC =90°,AB =3,AC =4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )111a b h +=222111a b h +=a b c 、、()()2222221,4,1a m b m c m =-==+()()222221,4,1a m b m c m =-==+()()222221,2,1a m b m c m =-==+()()2222221,2,1a m b m c m =-==+A . 90B .100 C .110 D .121二.填空题9. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE =1cm ,P 为对角线BD 上的任意一点,则AP +EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP =BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm .1414.小明把一根70cm 长的木棒放到一个长宽高分别为30cm ,40cm ,50cm 的木箱中,他能放进去吗?答: (选填“能”或“不能”).15. 已知长方形OABC ,点A 、C 的坐标分别为OA =10,OC =4,点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,CP 的长为________.16. 如图所示,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,△BAD =________.三.解答题17.如图所示,已知D 、E 、F 分别是△ABC 中BC 、AB 、AC 边上的点,且AE =AF ,BE =BD ,CF =CD ,AB =4,AC =3,,求:△ABC 的面积.18.如图等腰△ABC 的底边长为8cm ,腰长为5cm ,一个动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究,当P 运动几秒时,P 点与顶点A 的连线P A 与腰垂直.32BD CD。
勾股定理复习纲要

第十八章 勾股定理1.勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
2.勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
3.如果用勾股定理的逆定理判定一个三角形是否是直角三角形(1)首先确定最大边(如:C ,但不要认为最大边一定是C )(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形。
(若c 2>a 2+b 2则△ABC 是以∠C 为钝角的三角形,若c 2<a 2+b 2则△ABC 是以∠C 为锐角三角形)4.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)例1 直角三角形两直角边长为5,12,求斜边上的高.分析 利用勾股定理先求斜边,再用面积公式求斜边的高.解 设直角边a=5,b=12,斜边为c ,斜边高为h,∵a 2+b 2=c 2.∴c=22125+=13.又21ab=21ch ∴h=136013125=⨯=c ab . 例2 直角三角形三边长为连续偶数,求三边的长.分析 三边长为连续偶数,可分别设为a,a+2,a+4,显然a+4为斜边,再利用勾股定理列方程.注意a 为偶数.若求出的结论中a 可以取奇数值,则舍去.解 设三边长为a,a+2,a+4(a 为偶数且a >0),斜边最长为a+4.由勾股定理a 2+(a+2)2=(a+4)2 a 2-4a-12=0.(a-6)(a+2)=0 ∵a >0 ∴a+2>0,a-6=0 a=6.三边为6,8,10.例3 等腰三角形顶角为120°,求底与腰的比.(图3.16-1)分析 合理的作高,将斜三角形的问题转化到直角三角形中,再利用勾股定理来解决问题是一种常用的方法,也是本题的基本思路.解 △ABC 中,AB=AC ∠BAC=120°,求ABBC .∵AB=AC ,∠BAC=120° ∴∠B=∠C=30°,作AD ⊥BC 于D ,∴BD=DC.Rt △ABD中,∠B=30°,∠ADB=90°, ∴AD=21AB. BD 2=AB 2-AD 2=AB 2-41AB 2=43AB 2 ∴BD=23AB,BC=3AB,∴3=AB BC . 例4 已知CD 为Rt △ABC 斜边上的高(图3.16-2),求证(1)CD 2=AD ·DB(2)AC 2=AD ·AB (3)BC 2=BD ·AB分析 本题中有三个直角三角形Rt △ACD,Rt △BCD ,Rt △ABC,合理利用这些直角三角形,用勾股定理建立边的关系,再利用代数变形得结论是本题的基本思路.证 (1)∵CD 为Rt △ABC 斜边上的高.∴△ACD ,△BCD 均为直角三角形∴AD 2+CD 2=AC 2 ① BD 2+CD 2=BC 2 ②①+② AD 2+BD 2+2CD 2=AC 2+BC 2=AB 2=(AD+DB)2=AD 2+BD 2+2AD ·BD.∴2CD 2=2AD ·BD ∴CD 2=AD ·BD.(2)∵AC 2=AD 2+CD 2 由(1)CD 2=AD ·DB.∴AC 2=AD 2+AD ·DB=AD(AD+DB)=AD ·AB.(3)BC 2=BD 2+CD 2 由(1)CD 2=AD ·DB∴BC 2=BD 2+AD ·BD=(BD+AD)·BD=AB ·BD.注:本例的三个结论又称“射影定理”例5:已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。
八下数学17.3勾股定理全章复习

知识回顾
10
1313或 5
10
(1)(2)(3)
到线段两短点距离相等的点在线段的平分线上
知识回顾
B
D
(1)a= 7
(2) a=6,b=8
(1)a= 7 (2) a=6,b=8
你会做么
1、小红折叠长方形纸片ABCD的一 边AD,点D落在BC边上的点F处,已知 AB=8CM,BC=10CM,求EC的长.
第18章 勾股定理
全章复习
学习目标
1.掌握勾股定理及勾股定理的逆定理。 2.勾股数常用的请记住的记住。 3.勾股定理的应用。
自学指导
• 1.复习勾股定理的定理与逆定理。长为无理 数线段的画法,互逆定理及勾股数的概念。
• 2.会运用勾股定理求直角三角形的边长,和 运用勾股定理的逆定理判定一个三角形是 不是指教三角形。
10
Dபைடு நூலகம்
A
8-X
8 10
E
8-X X
B
6
F4 C
牛刀小试
比一比谁做得好
当堂达标
B
B D
当堂达标
C 504 CD=6
本章你学到了些什么? c
a
• 拼图验证法
勾股定理
勾
• 勾股定理的应用 b
股
定 理
• 互逆命题、互逆定理
勾股定理的 • 勾股数 逆定理 • 勾股定理的逆定理的应用
作业
• 基础训练总复习.
八年级上册第一章《勾股定理》复习要点

八年级上册第一章《勾股定理》复习要点知识点一:勾股定理要点:⑴•勾股定理:直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边分别为a、b,斜边为c,那么,a2 +b2 =c2,(2).历史文化:勾股定理在西方文献中又称毕达哥拉斯定理。
我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边为弦。
⑶格式:a=8 b=15 解:由勾股定理得c2 =a2 +b2=82+152=64+225=289•/ C>0 ••• C=17【典例精析】1•一架2.5m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m •那么梯子的顶端距墙脚的距离是( )•(A)0.7m (B)0.9m (C)1.5m (D)2.4m2•如图,为了求出湖两岸A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160m, BC长128m ,则AB长________________ m.3•利用四个全等的直角三角形可以拼成如图所示的图形, 这个图形被称为弦图•从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c2= +•化简后即为c2= __________ •知识点二:直角三角形的判别要点;*如果三角形三边长为a、b、c, c为最长边,只要符合a2 +b2 =c2,这个三角形是直角三角形。
(勾股定理逆定理,是直角三角形的判别条件)【典例精析】1、在下列长度的各组线段中,能组成直角三角形的是( )A.5、6、7B.1 、4、9C.5 、12、13D.5、11、122、满足下列条件的厶ABC不是直角三角形的是(A.b2=c2- a2B.a : b : c=3 : 4 : 5C. / C=Z A-Z BD. / A:/ B:/C=12: 13 : 1553、三角形的三边长分别是15, 36, 39,这个三角形是______ 三角形。
4、将直角三角形的三条边同时扩大4倍后,得到的三角形为()A.直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5•有两棵树,一棵高6米,另一棵高2米, 两树相距5米•一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?知识点三:勾股定理的综合应用【典例精析】1、如图1- 1,在钝角VABC 中,CB = 9, AB = 17, AC = 10, AD BC 于D,求AD 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理全章综合复习
A. 1个B . 2个C . 3个D . 4个
(2)已知a, b, c为厶ABC三边,且满足(a2—b2)(a2+b2—c2)= 0,则它的形状为( )
A.直角三角形
B.等腰三角形
C.等腰直角三
角形 D.等腰三角形或直角三角形
(3)三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )
2 2 2
A. a: b: c=8 : 16 :仃
B. a - b =c
C. a2=(b+c)(b-c)
D. a: b: c=13 : 5 : 12
(4)三角形的三边长为(a+b ) 2=c2+2ab,则这个三角形是( )
A.等边三角形;
B.钝角三角形;
C.直角三角形;
D.锐角三角形
(5)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为________
(6)若厶ABC的三边长a,b,c满足a2 b2+c2 +200 = 12a + 16b + 20c,试判断△ ABC的形状。
例3:求最大、最小角的问题
(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。
(2)已知三角形三边的比为
1 : 3 : 2,则其最小角为。
考点三:勾股定理的应用
例1:面积问题
(1)下图是一株美丽的勾股树,其中所有的四边形都 是正方形,所有的三角形都是直角三角形,若正方形A 、 B 、C 、D 的边长分别是3、 3)
(2)如图,△ ABC 为直角三角形,分别以 为直径向外作半圆,用勾股定理说明三个半
圆的面积 关系,可得( ) A. S 1+ S 2> S 3
B. S 1+ S 2= S 3
C. S 2+S 3< S I
D.以上都不是 (3 )如图所示,分别以直角三角形的三边向外作三个 正三角形,其面积分别是 S 、S 、S,贝陀们之间的关 系是( )
A. S 1- S 2= S 3
B. S 1+ S 2= S 3
C. S 2+Sv S 1
D. S 2- S 3=S 5、2、3,则最大正方形E
D.
(图
AB, BC
47 2)
例2:求长度问题
(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
(2)在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;?另外一只爬到树顶D 处后直接跃到A夕卜,距离以直线计算,如果两只猴子
所经过的距离相等,试问这棵树有多高?
例3:最短路程问题
(1)如图1,已知圆柱体底面圆的半径为2,高为2,
71
AB CD分别是两底面的直径,AD BC是母线,若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短路线的长度是 ____________ 。
(结果保留根式)
(2)如图2,有一个长、宽、高为3米的封闭的正方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只
昆虫爬行的最短距离为 ______________
(图1) (图2)
例4:航海问题
(1)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方
向航行,经过1.5小时后,它们相距________ 里. (2)(深圳)如图1,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C 在北偏东60°的方向上。
该货船航行30 分钟到达B处,此时又测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无暗礁危险?试说明理由。
(图1)
例5:网格问题
(1)如图,正方形网格中,每个小正方形的边长为1, 则网格上的三角形ABC中,边长为无理数的边数是
()
A. 0
B. 1 C . 2 D. 3
(2)如图,正方形网格中的△ ABC,若小方格边长
为1,
则厶ABC 是 ()
A.直角三角形
B.锐角三角形
C.钝角三角形
D.以上答案都不对 (3)如图,小方格都是边长为 1的正方形,则四边形 ABCD 的面积是()
(图1)
(图2)
(图3)
例6:图形问题
(1) 如图1,求该四边形的面积 (2) 如图2,已知,在厶ABC 中,/ A= 45 ° AC= 2, AB= 3+1,则边BC 的长为 __________________
(图
1 )
(图2) (3)将一根长24 cm 的筷子置于地面直径为 5 cm,高为 12 cm 的圆柱形水杯中,设筷子露在杯子外面的长为 h D. 8.5
25 B. A
C.
D
cm,贝U h的取值范围______________ 。
4)已知直角三角形的三边长为6、8 x,则以x为边的正方形的面积为 __________ .
(5) _______________________________________ 如
图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要______ 米.
(6)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢
则它至少要飞行 _____ 米.
(7)“交通管理条例”规定:小汽车在城街路上行驶速
度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了
吗?
小汽车小汽车
拓展提高:
例1.如图MBC 中^ Z C=90° , Z1=N2 , CD =1.5 , BD =2.5,求AC 的长
B
例2•已知:如图,△ ABC中,/ C= 90° D为AB的中点,E、F分别在AC、BC上,且DE丄DF .求证:AE2+ BF2= EF2.
例3 .如图,两个村庄A、B在
河CD的同侧,A、B两村到河的
距离分别为AC= 1
千米,BD = 3千米,CD= 3千米.现要在河边CD 上建造一水厂,向A、B两村送自来水.铺设水管
的工程费用为每千米20000元,青你在CD上选择
水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W・
提咼练习:
1、已知△ ABC是边长为1的等腰直角三角形,以Rt△ ABC的斜边AC为直角边,画第二个等腰Rt△ ACD,再以Rt△ ACD的斜边AD为直角边,画第三个等腰Rt△ ADE,…,依此类推,第n个等腰直角三角形的斜边长是
E F
B
2、如图,在Rt A ABC 中,/ C= 90° AC= 8, BC= 6, 按图中所示方法将△ BCD沿BD折叠,使点C落在边
AB上的点C处,则折痕BD的长为 ______________
A DC
第16题
3、如图,长方形 ABCD 中,AB = 8, BC = 4 将长方
4.如图,如果以正方形 ABCD 的对角线AC 为边作第 二个
正方形ACEF ,再以对角线AE 为边作第三个正方 形AEGH ,如此下去,……已知正方形AB S i 为1,按上述方法所作的正方形的面积依次为 S 3,…,S n (n 为正整数),那么第8个 = ,第n 个正方形的面积S n =.
6、如图所示,在 △ ABC 中,AB : BC : CA=3 : 4: 5,
且周长为36,点P 从点A 开始沿AB 边向B 点以 每秒
1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,问过3秒 时,△ BPQ 的面积为多少?
形沿AC 扌 的
点D 落在D /
处,则重叠部分△ AFC
的面积
'S 2,
C
S 8
悬多
F B D
A
D
H A
7、如图,C为线段BD上一动点,分别过点B、D作AB 丄BD ,ED 丄BD,连接AC、EC •已知AB=5 ,DE=1,
BD=8,设CD=x.
(1)用含x的代数式表示AC+CE的长;并求AC+CE 的最小值;
(2)若x+y=12,x>0,y>0请仿照(1)中的规律,运用构图法求出代数式I广的最小值.
8 梯形ABCI中AB// CD / ADC# BCD=90,以AD AB
BC为斜边向形外作等腰直角三角形,其面积分别是S、S2、S3,且S +S3 =4S2,贝y CD=( )
A. 2.5AB
B. 3AB
C. 3.5AB
D. 4AB
9、如图,梯形ABC[中, AB// DC / ADC# BCD=90 , 且DC=2AB分别以DA AB, BC为边向梯形外作正方形,其面积分别为S, S, S3,贝V S , S, S3之间的关系是
D C
10、如图:在Rt△ ABC 中,AB=AC,/ BAC=90 , O 为BC的中点.
(1)写出点O到厶ABC的三个顶点A、B、C距离之间的关系;
(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断厶OMN的形状,并证明你的结论.
M S
11、如图,在等腰直角三角形ABC中,/ ABC=90 , D 为AC边上中点,过D点作DE丄DF,交AB于E,交BC‘。