2019中考试题研究-中考数学满分特训方案
名师面对面中考满分特训方案

名师面对面中考满分特训方案小朋友们呀,今天我想跟你们说个事儿。
虽然咱们现在还是小学生,离中考还远着呢,但是我想给你们讲一讲关于中考满分特训方案的事,就当是提前了解一下大哥哥大姐姐们要面对的挑战。
我有个邻居姐姐,她可厉害了。
她在中考的时候考得超级棒,几乎接近满分呢。
后来我就问她,你是怎么做到的呀?她就跟我说起了她的特训方案。
姐姐说呀,要想在中考取得好成绩,最最基础的就是上课要好好听讲。
就像我们在学校里一样,老师在上面讲知识的时候,那可都是宝贝。
姐姐说她的老师就像一个知识宝库的管理员,每一个知识点都讲得特别清楚。
她就瞪大了眼睛,竖起小耳朵,把老师说的每一句话都听进去。
比如说数学老师讲三角形的内角和是180度的时候,姐姐就想象着自己拿着一个三角形的小卡片,把三个角剪下来拼在一起,正好是一个平角,这样就记得特别牢。
还有啊,课后的复习也特别重要。
姐姐每天放学回家,第一件事就是把当天学的东西再看一遍。
她把课本当成自己的好朋友,一页一页地翻着,回忆老师讲的内容。
如果有不懂的地方,就做个小记号。
就像她在语文课文里,有些生字的读音或者词语的意思不太明白,她就会在那个字或者词下面画个小横线。
然后再去问爸爸妈妈或者查字典。
除了这些,姐姐还会做很多练习题呢。
她有好多练习册,那些练习册就像一个个小怪兽,她要把这些小怪兽都打败。
每做一道题,就像是在和小怪兽战斗。
要是做对了,就像打败了小怪兽一样开心。
要是做错了,她也不灰心,她会仔细看看答案,搞清楚自己错在哪里。
比如说在做英语题的时候,有一次她把“a”和“an”的用法搞混了,她就把所有关于这个知识点的题目都找出来,重新做了一遍,直到完全掌握。
而且啊,姐姐还会给自己制定计划。
她把一天的时间安排得满满的。
什么时候学习,什么时候休息,都井井有条。
就像我们每天要安排好什么时候写作业,什么时候玩一样。
她休息的时候也不会一直看电视或者玩手机,她会出去跑跑步,呼吸新鲜空气,这样脑子也会变得更清醒。
浙江省2019年中考数学专题复习专题四 方案设计型问题训练(含答案)

专题四方案设计型问题类型一通过计算比较进行方案设计(2017·山东烟台中考)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:试问去哪个商场购买足球更优惠?【分析】(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,根据2015年及2017年该品牌足球的单价,即可得出关于x的一元二次方程,解之取其小于1的值即可得出结论;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.【自主解答】1.(2018·四川绵阳中考)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?类型二利用方程进行方案设计(2018·黑龙江齐齐哈尔中考)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种【分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【自主解答】2.(2018·黑龙江龙东地区中考)为奖励消防演练活动中表现优异的同学,某校决定用1 200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A.4种B.3种C.2种D.1种类型三利用不等式进行方案设计(2018·湖南娄底中考)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A,B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【分析】(1)设购买A种设备x台,则购买B种设备(10-x)台,根据购回的设备日处理能力不低于140吨列出不等式,求出解集,再根据x为正整数求解即可;(2)分别求出各方案实际购买费用,比较即可求解.【自主解答】此类题型利用方程、不等式的相关知识,建立相应的数学模型,找到方程(组)的解和不等式(组)的解集,确定未知数的具体数值.未知数有几个值,即有几种方案.有时结合函数应用,进行方案最优化设计.3.(2018·山东济宁中考)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A15 9 57 000B10 16 68 000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?类型四利用函数进行方案设计(2018·天津中考)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用(元) 150 175 _________ …________方式二的总费用(元) 90 135 _________ …________(2)(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.【分析】(1)根据题意可以将表格中空缺的部分补充完整;(2)根据题意可以求得当费用为270元时,两种方式下的游泳次数;(3)根据题意可以计算出x在什么范围内,哪种付费更合算.【自主解答】函数方案设计是指由题目提供的背景材料或图表信息,先确定函数表达式,再利用函数图象的性质获得解决问题的具体方法.解决此类问题的难点主要是正确确定函数表达式,关键还要熟悉函数的性质及如何通过不等式确定函数自变量的取值范围.4.(2017·天津中考)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 ________ 2 _______ …乙复印店收费(元) 0.6 ________ 2.4 _______ …(2)1212(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.类型五有关图形的方案设计型问题在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板画出示意图简述设计方案作⊙O两条互相垂直的直径AB,CD,将⊙O 的面积分成相等的四份指出对称性既是轴对称图形,又是中心对称图形【自主解答】图形方案设计题,它摆脱了传统的简单作图,把对作图的技能的考查放在一个实际生活的大背景下,从而考查了学生的综合创新能力,给同学们的创造性思维提供了广阔的空间与平台.此类题常利用某些规则的图形,如等腰三角形、菱形、矩形、圆等,利用图形的性质,或利用轴对称和中心对称等,拼出符合某些条件的图形.5.(2018·山东德州中考)再读教材:宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平;第三步,折出内侧矩形的对角线AB,并把AB折到图3中所示的AD处;第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图4中就会出现黄金矩形.问题解决:(1)图3中AB=(保留根号);(2)如图3,判断四边形BADQ的形状,并说明理由;(3)请写出图4中所有的黄金矩形,并选择其中一个说明理由.实际操作:(4)结合图4,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.参考答案类型一【例1】 (1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x ,根据题意得200×(1-x )2=162, 解得x =0.1=10%或x =1.9(舍去).答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%. (2)100×1011=1 00011≈91(个),在A 商城需要的费用为162×91=14 742(元), 在B 商城需要的费用为162×100×910=14 580(元).14 742>14 580.答:去B 商场购买足球更优惠. 变式训练1.解:(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨.根据题意可得⎩⎪⎨⎪⎧3x +4y =18,2x +6y =17,解得⎩⎪⎨⎪⎧x =4,y =1.5.答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨. (2)设货运公司拟安排大货车m 辆,则安排小货车(10-m )辆. 根据题意可得4m +1.5(10-m )≥33, 解得m ≥7.2,令m =8,大货车运费高于小货车,故用大货车少费用就小. 则安排方案为大货车8辆,小货车1辆. 类型二【例2】 设安排女生x 人,安排男生y 人. 依题意得4x +5y =56,则x =56-5y 4.当y =4时,x =9. 当y =8时,x =4. 当y =0时,x =14.即安排女生9人,安排男生4人; 安排女生4人,安排男生8人; 安排女生14人,安排男生0人. 共有3种方案.故选C. 变式训练 2.B 类型三【例3】 (1)设购买A 种设备x 台,则购买B 种设备(10-x )台. 根据题意得12x +15(10-x )≥140, 解得x ≤313.∵x 为非负整数, ∴x =0,1,2,3, ∴该景区有四种设计方案:方案一:购买A 种设备0台,B 种设备10台; 方案二:购买A 种设备1台,B 种设备9台; 方案三:购买A 种设备2台,B 种设备8台; 方案四:购买A 种设备3台,B 种设备7台. (2)各方案购买费用分别为:方案一:3×0+4.4×10=44>40,实际付款:44×0.9=39.6(万元); 方案二:3×1+4.4×9=42.6>40,实际付款:42.6×0.9=38.34(万元); 方案三:3×2+4.4×8=41.2>40,实际付款:41.2×0.9=37.08(万元); 方案四:3×3+4.4×7=39.8<40,实际付款:39.8万元. ∵37.08<38.34<39.6<39.8,∴采用(1)设计的第三种方案,使购买费用最少. 变式训练3.解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元.根据题意得⎩⎪⎨⎪⎧15x +9y =57 000,10x +16y =68 000,解得⎩⎪⎨⎪⎧x =2 000,y =3 000.答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元. (2)设分配m 人清理养鱼网箱,则分配(40-m )人清理捕鱼网箱. 根据题意得⎩⎪⎨⎪⎧2 000m +3 000(40-m )≤102 000,m <40-m , 解得18≤m <20.∵m 为整数,∴m =18或m =19, 则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱; 方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 类型四【例4】 (1)当x =20时,方式一的总费用为100+20×5=200,方式二的费用为20×9=180.当游泳次数为x 时,方式一费用为100+5x ,方式二的费用为9x . 故答案为200,100+5x ,180,9x . (2)方式一,令100+5x =270,解得x =34. 方式二,令9x =270, 解得x =30.∵34>30,∴选择方式一付费方式,他游泳的次数比较多. (3)令100+5x <9x 得x >25, 令100+5x =9x 得x =25, 令100+5x >9x 得x <25,∴当20<x <25时,小明选择方式二的付费方式, 当x =25时,小明选择两种付费方式一样, 但x >25时,小明选择方式一的付费方式. 变式训练4.解:(1)当x =10时,甲复印店收费为0.1×10=1; 乙复印店收费为0.12×10=1.2;当x =30时,甲复印店收费为0.1×30=3, 乙复印店收费为0.12×20+0.09×10=3.3. 故答案为1,3;1.2,3.3. (2)y 1=0.1x (x ≥0);y 2=⎩⎪⎨⎪⎧0.12x (0≤x≤20),0.09x +0.6(x >20).(3)顾客在乙复印店复印花费少. 当x >70时,y 1=0.1x ,y 2=0.09x +0.6, 设y =y 1-y 2,∴y 1-y 2=0.1x -(0.09x +0.6)=0.01x -0.6. 记y =0.01x -0.6,由0.01>0,则y 随x 的增大而增大, 当x =70时,y =0.1, ∴x >70时,y >0.1, ∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少. 类型五 【例5】选用的工具带刻度的三角板 带刻度的三角尺、量角器、圆规 带刻度的三角尺、圆规画出示意图简述设 计方案 作⊙O 两条互相垂直的直径AB ,CD ,将⊙O 的面积分成相等的四份①以点O 为圆心,以3个单位长度为半径作圆.②在大⊙O 上依次取三等分点A ,B ,C.③连结OA ,OB ,O C.则小圆O 与三等份圆环把⊙O 的面积四等分 ①作⊙O 的一条直径A B.②分别以OA ,OB 的中点为圆心,以3个单位长度为半径作⊙O 1,⊙O 2.则⊙O 1,⊙O 2和⊙O 中剩余的两部分把⊙O 的面积四等分 指出对称性既是轴对称图形又是中心对称图形 轴对称图形 既是轴对称图形又是中心对称图形5.解:(1) 5 (2)四边形BADQ 是菱形.理由如下:∵四边形ACBF 是矩形,∴BQ ∥AD ,∴∠BQA =∠QA D.由折叠得∠BAQ =∠QAD ,AB =AD ,∴∠BQA =∠BAQ ,∴BQ =AB ,∴BQ =A D.∵BQ ∥AD ,∴四边形BADQ 是平行四边形.∵AB =AD ,∴四边形BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE ,矩形MNDE .以黄金矩形BCDE 为例.理由如下:∵AD =5,AN =AC =1,∴CD =AD -AC =5-1.又∵BC =2,∴CD BC =5-12, 故矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形GCDH 为正方形,此时四边形BGHE 为所要作的黄金矩形.长GH=5-1,宽HE=3- 5.。
2019年中考-初中数学考试提分秘笈

--------------------------------- 优选公函范文 --------------------------2019 年中考 :初中数学考试提分秘籍各位读友大家好,此文档由网络采集而来,欢迎您下载,感谢整理了对于初中数学考试提分秘籍,希望对同学们有所帮助,仅供参照。
1.仔细的挖掘观点和公式好多同学对观点和公式不够重视,这种问题反应在三个方面:一是,对观点的理解不过逗留在文字表面,对观点的特别状况重视不够。
比如,在代数式的观点中,好多同学忽视了“单个字母或数字也是代数式”。
二是,对观点和公式一味的照本宣科,缺少与实质题目的联系。
这样就不可以很好地将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
假如你不可以将公式烂熟于心,又怎能够在题---------------- 优选公函范文 ----------------中娴熟应用呢?我们的建议是:更仔细一点,更深入一点,更娴熟一点。
2.总结相像种类的题目这个工作,不不过是老师的事,我们的同学要学会自己做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常有的解题方法,还有哪些种类题不会做时,你才真实的掌握了这门学科的诀窍,才能真实的做到“任它变化多端,我自岿然不动”。
这个问题假如解决不好,在进入初二、初三此后,同学们会发现,有一部分同学每日做题,可成绩不升反降。
其原由就是,他们每日都在做重复的工作,好多相像的题目频频做,需要解决的问题却不可以专心攻陷。
长此以往,不会的题目仍是不会,会做的题目也因为缺少对数学的整体掌握,弄得一团糟。
我们的建议是:“总结概括”是将题目越做越少的最好方法。
23.采集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。
但这恰好又是最需要解决的问题。
同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实质的题目中操练。
此外一个就是,找出自己的不足,而后填补它。
2019年中考数学满分冲刺讲义第1讲依据特征作图_填空压轴

1 第1讲、依据特征作图——填空压轴(讲义) 1. 在矩形ABCD中,AB=4,BC=3,点P在线段AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的
A′处,则AP的长为_____________.
DCBA DCBA
2. 已知点A(0,4),B(7,0),C(7,4),连接AC,BC得到矩形AOBC,点D在边AC上,将边OA沿OD折
叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则点A′的坐标为____________.
yxOCBA y
xOCB
A
3. 如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE折叠,点D落在矩形ABCD内一
点D′处,若△BCD′为等腰三角形,则DE的长为______________.
DCBA DC
BA 4. 在矩形ABCD中,AB=6,AD=23,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线
EF折叠,点A的对应点为A′,当E,A′,C三点在一条直线上时,DF的长为
________________.
yxOCB
A
DCBA 2
EDFC
BA
5. 如图是矩形纸片ABCD,AB=16 cm,BC=40 cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落
在边AD上,则折痕长度为_________cm.
MD
CBA
6. 如图,在矩形ABCD中,22AB,AD=4,点E是BC边上的一个动点,连接AE,过点D作DF⊥AE
于点F,连接CF.当△CDF是等腰三角形时,BE的长为_____________.
D
CB
AFE
D
CB
A DCBA
EDC
BA
MDCBA 3
7. 如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找
到一点Q,使 ∠BQP=90°,则x的取值范围是_____________.
QPCB
A
CBA
8. 如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使P,M,N构成等
浙江省2019届中考数学复习题方法技巧专题训练(10套,Word版,含答案)

方法技巧专题(一) 数形结合思想训练【方法解读】数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方案(以形助数),或利用数量关系研究几何图形的性质解决几何问题(以数助形)的一种数学思想。
1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是()A.演绎B.数形结合C.抽象D.公理化2.若实数a,b,c在数轴上对应的点如图F1-1,则下列式子正确的是()图F1-1A.ac>bcB.|a-b|=a-bC.-a<-b<-cD.-a-c>-b-c3.[2017·怀化] 一次函数y=-2x+m的图象经过点P(-2,3),且与x轴、y轴分别交于点A,B,则△AOB的面积是()A.B.C.4D.84.[2018·仙桃] 甲、乙两车从A地出发,匀速驶向B地.甲车以80 km/h的速度行驶1 h后,乙车才沿相同路线行驶.乙车先到达B地并停留1 h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图F1-2所示.下列说法:①乙车的速度是120 km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()图F1-2A.4个B.3个C.2个D.1个5.已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或-5B.-1或5C.1或-3D.1或36.[2018·白银] 如图F1-3是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是直线x=1,对于下列说法:①ab<0,②2a+b=0,③3a+c>0,④a+b≥m(am+b)(m为常数),⑤当-1<x<3时,y>0,其中正确的是()图F1-3A.①②④B.①②⑤C.②③④D.③④⑤7.如图F1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a,b的恒等式:.图F1-48.[2018·白银] 如图F1-5,一次函数y=-x-2与y=2x+m的图象交于点P(n,-4),则关于x的不等式组的解集为.图F1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F1-6.图F1-6由图易得:+++…+= .10.当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为.11.已知实数a,b满足a2+1=,b2+1=,则2018|a-b|= .12.已知函数y=使y=k成立的x的值恰好只有3个时,k的值为.13.(1)观察下列图形与等式的关系,并填空:图F1-7(2)观察图F1-8,根据(1)中结论,计算图中黑球的个数,并用含有n的代数式填空:图F1-81+3+5+…+(2n-1)+()+(2n-1)+…+5+3+1= .14.[2018·北京] 在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.参考答案1.B2.D3.B4.B[解析] 甲、乙两车最开始相距80 km,0到2 h是乙在追甲,并在2 h时追上,设乙的速度为x km/h,可得方程2x-2×80=80,解得x=120,故①正确;在2 h时甲、乙距离为0,在6 h时乙到达B地,此时甲、乙距离=(6-2)×(120-80)=160(km),故②正确;H点是乙在B地停留1 h后开始原路返回,6 h时甲、乙距离是160 km,1 h中只有甲在走,所以1 h后甲、乙距离80 km,所以点H的坐标是(7,80),故③正确;最后一段是乙原路返回,直到在n h时与甲相遇,初始距离80 km,所以相遇时间=80÷(120+80)=0.4,所以n=7.4,故④错误.综上所述,①②③正确,④错误,正确的有3个,故选B.5.B[解析] 由二次函数的顶点式y=(x-h)2+1,可知当x=h时,y取得最小值1.(1)如图①,当x=3,y取得最小值时,解得h=5(h=1舍去);(2)如图②,当x=1,y取得最小值时,解得h=-1(h=3舍去).故选B.6.A[解析] ∵抛物线的开口向下,∴a<0.∵抛物线的对称轴为直线x=1,即x=-=1,∴b=-2a>0,∴ab<0,2a+b=0,∴①②正确.∵当x=-1时,y=a-b+c=3a+c,由对称轴为直线x=1和抛物线过x轴上的A点,A点在点(2,0)和(3,0)之间,知抛物线与x轴的另一个交点在点(-1,0)和(0,0)之间,所以当x=-1时,y=3a+c<0,∴③错误.当x=1时,y=a+b+c,此点为抛物线的顶点,即抛物线的最高点,也是二次函数的最大值.当x=m 时,y=am2+bm+c=m(am+b)+c,∴此时有a+b+c≥m(am+b)+c,即a+b≥m(am+b),∴④正确.∵抛物线过x轴上的A点,A点在点(2,0)和(3,0)之间,则抛物线与x轴的另一个交点在点(-1,0)和(0,0)之间,由图知,当2<x<3时,有一部分图象位于x轴下方,说明此时y<0,根据抛物线的对称性可知,当-1<x<0时,也有一部分图象位于x轴下方,说明此时y<0,∴⑤错误.故选A.7.(a-b)2=(a+b)2-4ab8.-2<x<2[解析] ∵y=-x-2的图象过点P(n,-4),∴-n-2=-4,解得n=2.∴P点坐标是(2,-4).观察图象知:2x+m<-x-2的解集为x<2.解不等式-x-2<0可得x>-2.∴不等式组的解集是-2<x<2.9.1-10.311.112.1或2[解析] 画出函数解析式的图象,要使y=k成立的x的值恰好只有3个,即函数图象与y=k这条直线有3个交点.函数y=的图象如图.根据图象知道当y=1或2时,对应成立的x值恰好有3个,∴k=1或2.故答案为1或2. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…,第(n-1)个图形:1+3+5+…+(2n-1)=n2.故答案为:42n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第(n+1)行,(n+2)行到(2n+1)行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=[1+3+5+…+(2n-1)]+(2n+1)+[(2n-1)+…+5+3+1]=n2+2n+1+n2=2n2+2n+1.故答案为:2n+12n2+2n+1.14.解:(1)∵直线y=4x+4与x轴、y轴分别交于点A,B,∴A(-1,0),B(0,4).∵将点B向右平移5个单位长度,得到点C,∴C(0+5,4),即C(5,4).(2)∵抛物线y=ax2+bx-3a经过点A,∴a-b-3a=0.∴b=-2a.∴抛物线的对称轴为直线x=-=-=1,即对称轴为直线x=1.(3)易知抛物线过点(-1,0),(3,0).①若a>0,如图,易知抛物线过点(5,12a),若抛物线与线段BC恰有一个公共点,满足12a≥4即可,可知a的取值范围是a≥.②若a<0,如图,易知抛物线与y轴交于点(0,-3a),要使该抛物线与线段BC只有一个公共点,就必须-3a>4,此时a<-.③若抛物线的顶点在线段BC上,此时顶点坐标为(1,4),从而解析式为y=a(x-1)2+4,将A(-1,0)代入,解得a=-1,如图:综上,a的取值范围是a≥或a<-或a=-1.方法技巧专题(二) 分类讨论思想训练【方法解读】当数学问题中的某一条件模糊而不确定时,需要对这一条件进行分类讨论,然后逐一解决.常见的分类讨论有概念的分类、解题方法的分类和图形位置关系的分类等.1.点A,B,C在☉O上,∠AOB=100°,点C不与A,B重合,则∠ACB的度数为 ()A.50°B.80°或50°C.130°D.50°或130°2.[2018·山西权威预测] 已知一等腰三角形的两边长x,y满足方程则此等腰三角形的周长为()A.5B.4C.3D.5或43.[2018·枣庄] 如图F2-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P 有()图F2-1A.2个B.3个C.4个D.5个4.[2018·鄂州] 如图F2-2,已知矩形ABCD中,AB=4 cm,BC=8 cm,动点P在边BC上从点B向点C运动,速度为1 cm/s,同时动点Q从点C出发,沿折线C→D→A运动,速度为2 cm/s.当一个点到达终点时,另一个点随之停止运动.设点P运动时间为t(s),△BPQ的面积为S(cm2),则描述S(cm2)与时间t(s)的函数关系的图象大致是()图F2-2图F2-35.[2018·聊城] 如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.6.[2018·安徽] 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.7.如图F2-4,已知点A(1,2)是反比例函数y=图象上的一点,连结AO并延长交双曲线的另一分支于点B,点P是x轴上一动点,若△PAB是等腰三角形,则点P的坐标是.图F2-48.[2017·齐齐哈尔] 如图F2-5,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.图F2-59.[2017·义乌] 如图F2-6,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有3个,则x的值是.1.D2.A[解析] 解方程组得当2作为腰长时,等腰三角形的周长为5;当1作为腰长时,因为1+1=2,不满足三角形的三边关系.故等腰三角形的周长为5.3.B[解析] 如下图,设每个小矩形的长与宽分别为x,y,则有2x=x+2y,从而x=2y.因为线段AB是长与宽为2∶1的矩形对角线,所以根据网格作垂线可知,过点B与AB垂直且相等的线段有BP1和BP2,过点A与AB垂直且相等的线段有AP3,且P1,P2,P3都在顶点上,因此满足题意的点P共有3个.故选B.4.A[解析] 由题意可知,0≤t≤4,当0≤t<2时,如下图,S=BP·CQ=t·2t=t2;当t=2时,如下图,点Q与点D重合,则BP=2,CQ=4,故S=BP·CQ=×2×4=4;当2<t≤6时,如下图,点Q在AD上运动,S=BP·CD=t·4=2t.故选A.5.180°或360°或540°[解析] 如图,一个正方形被截掉一个角后,可能得到如下的多边形:∴这个多边形的内角和是180°或360°或540°.6.3或[解析] 由题意知,点P在线段BD上.(1)如图,若PD=PA,则点P在AD的垂直平分线上,故点P为BD的中点,PE⊥BC,故PE∥CD,故PE=DC=3.(2)如图,若DA=DP,则DP=8,在Rt△BCD中,BD==10,∴BP=BD-DP=2.∵△PBE∽△DBC,∴==,∴PE=CD=.综上所述,PE的长为3或.7.(-5,0)或(-3,0)或(3,0)或(5,0)8.10或4或2[解析] 在△ABC中,∵AB=AC=10,BC=12,底边BC上的高是AD,∴∠ADB=∠ADC=90°,BD=CD=BC=×12=6,∴AD==8.∴用这两个三角形拼成平行四边形,可以分三种情况:(1)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10.(2)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=4.(3)按照如图的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=2.综上所述,这个平行四边形较长的对角线的长是10或4或2.9.x=0或x=4-4或4<x<4[解析] 根据OM=x,ON=x+4,可知MN=4.作MN的垂直平分线,该线与射线OB始终有一个公共点,分别以点M,N为圆心,4为半径画圆,观察两圆与射线OB 的交点情况:(1)当☉N与射线OB没有公共点,☉M与射线OB有两个公共点时,满足题意,如图①,此时4<x<4.(2)当☉N与射线OB相切,只有一个公共点时,☉M与射线OB也只有一个公共点时,也满足题意,如图②,此时x=4-4;(3)当☉N与射线OB有两个公共点时,此时☉M与射线OB只有一个公共点,因此当☉N与射线OB有两个公共点时,必须出现不能与点M,N构成三角形的一个点,也能满足题意,如图③,此时x=0.方法技巧专题(三) 整体思想训练【方法解读】整体思想是研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.1.[2018·乐山] 已知实数a,b满足a+b=2,ab=,则a-b=()A.1B.-C.±1D.±2.[2018·泸州] 如图F3-1,▱ABCD的对角线AC,BD相交于点O,E是AB的中点,且AE+EO=4,则▱ABCD的周长为()图F3-1A.20B.16C.12D.83.[2018·济宁] 如图F3-2,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是()图F3-2A.50°B.55°C.60°D.65°4.[2018·襄阳] 如图F3-3,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3 cm,△ABD的周长为13 cm,则△ABC的周长为()图F3-3A.16 cmB.19 cmC.22 cmD.25 cm5.[2018·岳阳] 已知a2+2a=1,则3(a2+2a)+2的值为.6.[2018·扬州] 若m是方程2x2-3x-1=0的一个根,则6m2-9m+2015的值为.7.[2018·成都] x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.8.[2018·江西] 一元二次方程x2-4x+2=0的两根为x1,x2,则-4x1+2x1x2的值为.9.[2018·黄冈] 若a-=,则a2+的值为.10.计算(1----)(++++)-(1-----)(+++)的结果是.11.先化简,再求值:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的根.12.已知(a+b)2=7,(a-b)2=3,求下列各式的值:(1)a2+b2和ab;(2)a4+b4;(3)+.参考答案1.C[解析] ∵a+b=2,∴(a+b)2=4,即a2+2ab+b2=4,又∵ab=,∴(a-b)2=(a+b)2-4ab=4-4×=1,∴a-b=±1.故选C.注:此题把“a+b”,“ab”分别当作整体.2.B[解析] 因为▱ABCD的对角线AC,BD相交于点O,所以O为AC的中点.又因为E是AB的中点,所以AE=AB,EO是△ABC的中位线,所以EO=BC.因为AE+EO=4,所以AB+BC=2(AE+EO)=8.在▱ABCD中,AD=BC,AB=CD,所以周长为2(AB+BC)=2×8=16.故选B.注:此题把“AB+BC”当作整体.3.C[解析] 根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选C.注:此题把“∠BCD+∠CDE”当作整体.4.B[解析] 由尺规作图可知,MN是线段AC的垂直平分线,∴AD=CD,AC=2AE=6(cm),∴AB+BC=AB+BD+DC=AB+BD+AD=C△ABD=13 cm,∴C△ABC=AB+BC+AC=13+6=19(cm).故选B.注:此题把“AB+BC”当作整体.5.5[解析] ∵a2+2a=1,∴3(a2+2a)+2=3+2=5.注:此题把“a2+2a”当作整体.6.2018[解析] 由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.注:此题把“2m2-3m”当作整体.7.0.36[解析] ∵x+y=0.2①,x+3y=1②,①+②,得2x+4y=1.2,∴x+2y=0.6,∴x2+4xy+4y2=(x+2y)2=0.36.注:此题把“x+y”“x+3y”“x+2y”分别当作整体.8.2[解析] ∵x2-4x+2=0的两根为x1,x2,∴x1x2=2,-4x1+2=0,即-4x1=-2,∴-4x1+2x1x2=-2+2×2=2.9.8[解析] ∵a-=,∴原式=a2+-2·a·+2·a·=(a-)2+2=()2+2=8.注:此题把“a-”当作整体.10.[解析] 设+++=a,则原式=(1-a)·(a+)-(1-a-)=+a-a2-a+a2=.注:此题中的整体是“+++”.11.解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m是方程x2+x-2=0的根,∴m2+m-2=0,∴m2+m=2,∴原式=2×(2-1)=2.注:此题把“m2+m”当作整体.12.解:(1)依题意得a2+2ab+b2=7①,a2-2ab+b2=3②.①+②,得2(a2+b2)=10,即a2+b2=5.①-②,得4ab=4,即ab=1.(2)a4+b4=(a2+b2)2-2(ab)2=52-2×12=25-2=23.(3)原式=+===.注:此题把“ab”“a2+b2”分别当作整体.方法技巧专题(四) 构造法训练【方法解读】构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性.常见的构造形式有:(1)构造方程;(2)构造函数;(3)构造图形.1.[2018·自贡] 如图F4-1,若△ABC内接于半径为R的☉O,且∠A=60°,连结OB,OC,则边BC 的长为()图F4-1A.RB.RC.RD.R2.[2018·遵义] 如图F4-2,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数的解析式为()图F4-2A.y=-B.y=-C.y=-D.y=3.设关于x的一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足()A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>24.如图F4-3,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.图F4-35.[2018·扬州] 如图F4-4,已知☉O的半径为2,△ABC内接于☉O,∠ACB=135°,则AB= .图F4-46.[2018·滨州] 若关于x,y的二元一次方程组的解是则关于a,b的二元一次方程组的解是.7.[2018·扬州] 问题呈现如图F4-5①,在边长为1的正方形网格中,连结格点D,N和E,C,DN和EC相交于点P,求tan ∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连结格点M,N,可得MN∥EC,则∠DNM=∠CPN,连结DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图①中tan∠CPN的值为;(2)如图②,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值.思维拓展(3)如图③,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到点N,使BN=2BC,连结AN交CM 的延长线于点P,用上述方法构造网格求∠CPN的度数.图F4-5参考答案1.D[解析] 如图,延长CO交☉O于点D,连结BD,∵∠A=60°,∴∠D=∠A=60°.∵CD是☉O的直径,∴∠CBD=90°.在Rt△BCD中,sin D===sin 60°=,∴BC=R.故选D.注:此题构造了直角三角形.2.C[解析] 如图,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.由三垂直模型,易得△BNO∽△OMA,相似比等于,在Rt△AOB中,∠OAB=30°,所以=tan 30°=,所以=.因为点A在双曲线y=上,所以S△OMA=3,所以S△BNO=1,所以k=-2.即经过点B的反比例函数的解析式为y=-.故选C.注:此题构造了相似三角形.3.D[解析] 一元二次方程(x-1)(x-2)=m(m>0)的两根实质上是抛物线y=(x-1)(x-2)与直线y=m两个交点的横坐标.如图,显然α<1且β>2.故选D.注:此题构造了二次函数.4.15[解析] 分别将线段AB,CD,EF向两端延长,延长线构成一个等边三角形,边长为8,则EF=2,AF=4,故所求周长=1+3+3+2+2+4=15.注:此题构造了等边三角形.5.2[解析] 如图,在优弧AB上取一点D,连结AD,BD,OA,OB,∵☉O的半径为2,△ABC内接于☉O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°.∵OA=OB=2,∴AB=2.故答案为2.注:此题构造了直角三角形.6.[解析] 根据题意,对比两个方程组得出方程组所以注:此题构造了一个二元一次方程组.7.[解析] (1)根据方法归纳,运用勾股定理分别求出MN和DM的值,即可求出tan∠CPN的值;(2)仿(1)的思路作图,即可求解;(3)利用网格,构造等腰直角三角形解决问题即可.解:(1)由勾股定理得:DM=2,MN=,DN=.∵(2)2+()2=()2,∴DM2+MN2=DN2,∴△DMN是直角三角形.∵MN∥EC,∴∠CPN=∠DNM.∵tan∠DNM===2,∴tan∠CPN=2.(2)如图,取格点D,连结CD,DM.∵CD∥AN,∴∠CPN=∠DCM.易得△DCM是等腰直角三角形,∴∠DCM=45°,∴cos∠CPN=cos∠DCM=cos 45°=.(3)构造如图网格,取格点Q,连结AQ,QN.易得PC∥QN,∴∠CPN=∠ANQ.∵AQ=QN,∠AQN=90°,∴∠ANQ=∠QAN=45°,∴∠CPN=45°.方法技巧专题(五) 转化思想训练【方法解读】转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.1.[2018·铜仁] 计算+++++…+的值为()A.B.C.D.2.[2018·嘉兴] 欧几里得的《原本》记载形如x2+ax=b2的方程的图解法:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,则该方程的一个正根是()图F5-1A.AC的长B.AD的长C.BC的长D.CD的长3.[2018·东营] 如图F5-2,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()图F5-2A.3B.3C.D.34.[2018·白银] 如图F5-3是一个运算程序的示意图,若开始输入的x的值为625,则第2018次输出的结果为.5.[2018·广东] 如图F5-4,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连结BD,则阴影部分的面积为.(结果保留π)图F5-46.[2018·淄博] 如图F5-5,P为等边三角形ABC内的一点,且点P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为.图F5-57.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG.(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE'F'G',如图②.①在旋转过程中,当∠OAG'是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF'长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-61.B[解析] ∵==1-,==-,==-,==-,==-,…,==-,∴+++++…+=1-+-+-+-+-+…+-=1-=.故选B.2.B[解析] 利用配方法解方程x2+ax=b2,得到x+2=b2+,解得x=-或x=--(舍去).根据勾股定理得AB=,由题意知BD=.根据图形知道AD=AB-BD,即AD的长是方程的一个正根.故选B.3.C[解析] 将圆柱沿AB侧面展开,得到矩形,如图,则有AB=3,BC=.在Rt△ABC中,由勾股定理,得AC===.故选C.4.1[解析] 当x=625时,代入x得x=×625=125,输出125;当x=125时,代入x得x=×125=25,输出25;当x=25时,代入x得x=×25=5,输出5;当x=5时,代入x得x=×5=1,输出1;当x=1时,代入x+4得x+4=5,输出5;当x=5时,代入x得x=×5=1,输出1;…观察发现从第4次以后奇数次就输出5,偶数次就输出1.因此,第2018次输出的应是1.5.π[解析] 连结OE,易证四边形ABEO为正方形,则扇形OED的圆心角为90°,半径为2,因此可求扇形OED的面积,阴影面积看成正方形ABEO的面积+扇形OED的面积-△ABD的面积,正方形ABEO、扇形OED和△ABD的面积均可求,即可求得阴影部分的面积.6.9+[解析] 如图,将△APB绕点A逆时针旋转60°得到△AHC,连结PH,作AI⊥CH交CH的延长线于点I,易知△APH为等边三角形,HA=HP=PA=3,HC=PB=4.PC=5,∴PC2=PH2+CH2,∴∠PHC=90°,∴∠AHI=30°,∴AI=,HI=,∴CI=+4,∴AC2=2++42=25+12,∴S△ABC=AC2=(25+12)=9+.7.解:(1)证明:如图,延长ED交AG于点H.∵点O为正方形ABCD对角线的交点,∴OA=OD,∠AOG=∠DOE=90°.∵四边形OEFG为正方形,∴OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO.∵∠AGO+∠GAO=90°,∴∠DEO+∠GAO=90°.∴∠AHE=90°,即DE⊥AG.(2)①在旋转过程中,∠OAG'成为直角有以下两种情况:(i)α由0°增大到90°的过程中,当∠OAG'为直角时,∵OA=OD=OG=OG',∴在Rt△OAG'中,sin∠AG'O==,∴∠AG'O=30°.∵OA⊥OD,OA⊥AG',∴OD∥AG'.∴∠DOG'=∠AG'O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG'为直角时,同理可求得∠BOG'=30°,所以α=180°-30°=150°.综上,当∠OAG'为直角时,α=30°或150°.②AF'长的最大值是2+,此时α=315°.理由:当AF'的长最大时,点F'在直线AC上,如图所示.∵AB=BC=CD=AD=1,∴AC=BD=,AO=OD=.∴OE'=E'F'=2OD=.∴OF'==2.∴AF'=AO+OF'=+2.∵∠DOG'=45°,∴旋转角α=360°-45°=315°.方法技巧专题(六) 中点联想训练【方法解读】1.与中点有关的定理:(1)直角三角形斜边上的中线等于斜边的一半.(2)等腰三角形“三线合一”的性质.(3)三角形的中位线定理.(4)垂径定理及其推论.2.与中点有关的辅助线:(1)构造三角形的中位线,如连结三角形两边的中点;取一边的中点,然后与另一边的中点相连结;过三角形一边的中点作另一边的平行线等等.(2)延长角平分线的垂线,构造等腰三角形,利用等腰三角形的“三线合一”.(3)把三角形的中线延长一倍,构造平行四边形.1.[2018·南充] 如图F6-1,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD 的中点,若BC=2,则EF的长度为()图F6-1A.B.1 C.D.2.[2017·株洲] 如图F6-2,点E,F,G,H分别为四边形ABCD四条边AB,BC,CD,DA的中点,则下列关于四边形EFGH的说法正确的是()图F6-2A.一定不是平行四边形B.一定不会是中心对称图形C.可能是轴对称图形D.当AC=BD时,它为矩形3.[2018·荆门] 如图F6-3,等腰直角三角形ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()图F6-3A.πB.πC.1D.24.如图F6-4,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()图F6-4A.2.5B.C.D.25.[2018·眉山] 如图F6-5,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF.其中正确的结论有()图F6-5A.1个B.2个C.3个D.4个6.[2018·苏州] 如图F6-6,在△ABC中,延长BC至点D,使得CD=BC.过AC的中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连结DF,若AB=8,则DF的长为.图F6-67.[2018·天津] 如图F6-7,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,EF ⊥AC于点F,G为EF的中点,连结DG,则DG的长为.图F6-78.[2018·哈尔滨] 如图F6-8,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连结EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.图F6-89.[2018·德阳] 如图F6-9,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC,BC边的距离分别为d1,d2,则+的最小值是3.其中正确的结论是(填写正确结论的序号).图F6-910.[2017·徐州] 如图F6-10,在平行四边形ABCD中,点O是边BC的中点,连结DO并延长,交AB的延长线于点E.连结BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD= °时,四边形BECD是矩形.图F6-1011.[2017·成都] 如图F6-11,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连结DE交线段OA于点F.(1)求证:DH是☉O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求☉O的半径.图F6-1112.[2018·淄博] (1)操作发现:如图F6-12①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连结GM,GN,小明发现:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考,把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现上述的结论还成立吗?请说明理由.(3)深入探究:如图③,小明在(2)的基础上,又作了进一步的探究,向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.图F6-12参考答案1.B[解析] 在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AB=4,CD=AB,∴CD=×4=2.∵E,F分别为AC,AD的中点,∴EF=CD=×2=1.故选B.2.C3.C[解析] 如图,连结OM,CM,OC.∵OQ⊥OP,且M是PQ的中点,∴OM=PQ.∵△ABC是等腰直角三角形,∴∠ACB=90°,∴CM=PQ,∴OM=CM,∴△OCM是等腰三角形,∴M在OC的垂直平分线上.∵当点P在A点时,点M为AC的中点,当点P在C点时,点M为BC的中点,∴点M所经过的路线长为AB=1.故选C.4.B5.D[解析] 如图①,连结AF并延长与BC的延长线相交于点M,易证△ADF≌△MCF,∴AF=MF,AD=MC.又∵AD=BC,DC=AB=2AD,∴AB=BM,∴∠ABC=2∠ABF,故①正确.如图②,延长EF,BC相交于点G.易得△DEF≌△CGF,∴FE=FG.∵BE⊥AD,AD∥BC,∴∠EBG=90°.根据直角三角形斜边上的中线等于斜边的一半,得EF=BF,故②正确.如图②,由于BF是△BEG的中线,∴S△BEG=2S△BEF,而S△BEG=S四边形DEBC,∴S四边形DEBC=2S△EFB,故③正确.如图②,设∠DEF=x,∵AD∥BC,∴∠DEF=∠G=x,又∵FG=FB,∴∠G=∠FBG=x,∴∠EFB=2x.∵CD=2AD,F为CD的中点,BC=AD,∴CF=CB,∴∠CFB=∠CBF=x,∴∠CFE=∠CFB+∠BFE=x+2x=3x=3∠DEF,故④正确.故选D.6.4[解析] 解此题时可取AB的中点,然后再利用三角形的中位线和平行四边形的判定和性质.取AB的中点M,连结ME,则ME∥BC,ME=BC.∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,CD=BC,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=AB=×8=4.7.[解析] 如图,连结DE.∵D,E分别为AB,BC的中点,∴DE∥AC,DE=AC=2,EC=2.∵EF⊥AC,∴DE⊥EF,∴△DEG为直角三角形.在Rt△EFC中,EC=2,∠C=60°,∴EF=.∵G为EF的中点,∴EG=.在Rt△DEG中,DE=2,EG=,由勾股定理,得DG==.故答案为.8.4[解析] 如图,连结BE,由E,F分别为OA,OD的中点可知EF=AD,EF∥AD,易证△BEC 是等腰直角三角形,EM三线合一,可证得△EFN≌△MBN,可得到BN=FN=,tan∠NBM=,就能求出BM=2,所以BC=4.9.①③④[解析] 由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,∴CB=2CE,故①正确;∵∠B=30°,∴tan B=,故②错误;在正△ACD中,CE是△ACD的中线,∴∠ECD=∠ACD=30°,∴∠ECD=∠DCB,故③正确;如题图,PM=d1,PN=d2.在Rt△MPN中,+=MN2.∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使+最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,+最小.在Rt△ACE中,∵AC=2,∠ACE=30°,∴CE=AC·cos30°=,则CE2=3,∴+的最小值为3,故④正确.故正确的有①③④.10.解:(1)证明:∵平行四边形ABCD,∴AE∥DC,∴∠EBO=∠DCO,∠BEO=∠CDO.∵点O是边BC的中点,∴BO=CO,∴△EBO≌△DCO(AAS),∴EO=DO,∴四边形BECD是平行四边形.(2)100°提示:若四边形BECD为矩形,则BC=DE,BD⊥AE,又AD=BC,∴AD=DE.∵∠A=50°,根据等腰三角形的性质,可知∠ADB=∠EDB=40°,∴∠BOD=180°-∠ADE=100°.11.解:(1)证明:连结OD,如图.∵OB=OD,∴∠OBD=∠ODB.又∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DH⊥AC,∴DH⊥OD,∴DH是☉O的切线.(2)∵∠E=∠B,∠B=∠C,∴∠E=∠C,∴△EDC是等腰三角形.又∵DH⊥AC,点A是EH中点,∴设AE=x,则EC=4x,AC=3x.连结AD,∵AB为☉O的直径,∴∠ADB=90°,即AD⊥BD.又∵△ABC是等腰三角形,∴D是BC的中点, ∴OD是△ABC的中位线,∴OD∥AC,OD=AC=x,∴∠E=∠ODF.在△AEF和△ODF中,∴△AEF∽△ODF,∴=,∵==,∴=.(3)设☉O的半径为r,即OD=OB=r.∵EF=EA,∴∠EFA=∠EAF.又∵OD∥EC,∴∠FOD=∠EAF,∴∠FOD=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1.∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD=1+r,∴AF=AB-BF=2OB-BF=2r-(1+r)=r-1.在△BFD与△EFA中,∴△BFD∽△EFA,∴=,∴=,解得r1=,r2=(舍去).∴☉O的半径为.12.[解析] (1)通过观察可得两条线段的关系是垂直且相等;(2)连结BE,CD,可得△ACD≌△AEB,从而得DC⊥BE,DC=BE,利用中位线得GM∥CD且等于CD的一半,GN∥BE且等于BE的一半,从而得到MG和GN的关系;(3)连结BE,CD,仿照(2)依然可得相同的结论.解:(1)操作发现:线段GM与GN的数量关系为GM=GN;位置关系为GM⊥GN.(2)类比思考:上述结论仍然成立.理由如下:如图①,连结CD,BE相交于点O,BE交AC于点F.①∵点M,G分别是BD,BC的中点,∴MG∥CD,MG=CD.同理可得NG∥BE,NG=BE.∵∠DAB=∠EAC,∴∠DAC=∠BAE.又∵AD=AB,AC=AE,∴△ADC≌△ABE,∴∠AEB=∠ACD,DC=BE,∴GM=GN.∵∠AEB+∠AFE=90°,∴∠OFC+∠ACD=90°,∴∠FOC=90°,易得∠MGN=90°,∴GM⊥GN.(3)深入探究:△GMN是等腰直角三角形.证明如下:如图②,连结BE,CD,CE与GM相交于点H.②∵点M,G分别是BD,BC的中点,∴MG∥CD,MG=CD.同理NG∥BE,NG=BE.∵∠DAB=∠EAC,∴∠DAC=∠BAE.又∵AD=AB,AC=AE,∴△ADC≌△ABE,∴∠AEB=∠ACD,DC=BE,∴GM=GN.∵GM∥CD,∴∠MHC+∠HCD=180°,∴∠MHC+(45°+∠ACD)=180°,∴∠MHC+45°+∠AEB=180°,∴∠MHC+45°+(45°+∠CEB)=180°,∴∠MHC+∠CEB=90°,∴∠GNH+∠GHN=90°,∴∠NGM=90°,即GM⊥GN,∴△GNM是等腰直角三角形.方法技巧专题(七) 角平分线训练【方法解读】1.与角平分线有关的判定和性质:(1)角平分线的判定和性质.(2)角平分线的夹角:①三角形两内角的平分线的夹角等于90°与第三角一半的和;②三角形两外角的平分线的夹角等于90°与第三角一半的差;③三角形一内角与另一外角的平分线的夹角等于第三角的一半.(3)三角形的内心及其性质.(4)圆中弧、圆心角、圆周角之间的关系.2.与角平分线有关的图形或辅助线:(1)角平分线“加”平行线构成等腰三角形.(2)角平分线“加”垂线构成等腰三角形.(3)过角平分线上的点作边的垂线.1.[2018·黑龙江] 如图F7-1,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB的度数是()图F7-1A.30°B.35°C.45°D.60°2.[2018·陕西] 如图F7-2,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()图F7-2A.B.2C.D.33.[2018·达州] 如图F7-3,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M.若BC=7,则MN的长为()。
2019年中考数学满分冲刺讲义第9讲依据特征构造_补全模型

第9讲、依据特征构造——补全模型(讲义)1. 如图,在△ABC 中,AB =AC=BAC =120°,点D ,E 都在BC 上,∠DAE =60°,若BD =2CE ,则DE 的长为_____.AD CB EAD CB E2. 如图,在矩形ABCD 中,将∠ABC 绕点A 按逆时针方向旋转一定角度后,BC 的对应边B ′C ′交CD 边于点G .连接BB ′,CC ′,若AD =7,CG =4,AB ′=B ′G ,则CC BB''的值是________. C'B'GD CBAC'B'GD CBA3. 如图,在△ABC 中,∠ABC =90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DFEF=BC 边的长为____________.FDE BAFDECBA4. 如图,已知△ABC 是等边三角形,直线l 过点C ,分别过A ,B 两点作AD ⊥l 于点D ,作BE ⊥l于点E .若AD =4,BE =7,则△ABC 的面积为____________.lE DC BA5. 如图,△ABC 和△CDE 均为等边三角形,连接BD ,AE . (1)如图1,证明:BD =AE .(2)如图2,如果D 在AC 边上,BD 交AE 于点F ,连接CF ,过E 作EH ⊥CF 于点H ,若FB -FA =6,CF =4DF ,求CH 的长.EDCBADH FEABC图1 图2lEDC BA6.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A,B两点,交y轴于点C,直线y=x-3经过B,C两点.(1)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M 作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(2)在(1)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.7. 如图,在平面直角坐标系中,直线122y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线212y x bx c =-++经过A ,C 两点,与x 轴的另一交点为点B .(1)求抛物线的函数表达式.(2)点D 为直线AC 上方抛物线上一动点.①连接BC ,CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求12S S 的最大值.②过点D 作DF ⊥AC ,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的坐标;若不存在,请说明理由.【参考答案】 1.3 2.3.14.5. (1)证明略; (2)CH 的长为154. 6. (1)d =; (2)线段MN的长为5. 7. (1)抛物线的函数表达式为213222y x x =--+; (2)①12S S 的最大值为45; ②存在,点D 的坐标为(-2,3),(2911-,300121).。
山西专用2019中考数学复习圆满分集训习题
第六单元满分集训时间:90分钟分值:100分一、选择题(每小题3分,共24分)1.(2018·湖南张家界)如图,AB是☉O的直径,弦CD⊥AB于点E,OC=5 cm,CD=8 cm,则AE=( )A.8 cmB.5 cmC.3 cmD.2 cm2.如图,☉O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为( )A.30°B.40°C.50°D.80°3.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ABD=()A.30°B.45°C.60°D.90°4.如图,PA,PB是☉O的切线,切点是A,B,已知∠P=60°,OA=3,那么∠AOB所对弧的长度为( )A.6πB.8πC.4πD.2π5.如图,正方形的边长都相等,其中阴影部分面积相等的有( )A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(3)(4)6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A.①B.②C.③D.④7.如图,“凸轮”的外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段等弧组成的.已知正三角形的边长为a,则“凸轮”的周长为( )A.πaB.2πaC.πaD.πa8.如图,B、C是圆A上两点,AB的垂直平分线与圆A交于E、F两点,与线段AC交于D点,若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°二、填空题(每小题3分,共21分)9.若三角形的三边长分别为3,4,5,则其外接圆的直径等于.10.(2018·吉林)如图,A,B,C,D是☉O上的四个点,=,若∠AOB=58°,则∠BDC=°.11.如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心,AC的长为半径画弧,交AB边于点D,则弧CD的长等于.(结果保留π)12.已知☉O的圆心到直线l的距离为d,☉O的半径为r,若d、r是关于x的方程x2-4x+m=0的两根,当直线l与☉O相切时,m的值为.13.如图,将半径为 2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为.14.小明自制了一个跷跷板,它的左、右臂OA、OB的长分别为1米、2米,如图所示,当点B 经过的路径长为1米时,点A经过的路径长为米.15.如图,在直角坐标系中,☉A的圆心A的坐标为(-1,0),半径为1,点P为直线y=-x+3上的动点,过点P作☉A的切线,切点为Q,则切线PQ长的最小值是.三、解答题(共55分)16.(2018·浙江湖州)(13分)如图,已知AB是☉O的直径,C,D是☉O上的点,OC∥BD,交AD 于点E,连接BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.17.(2018·江西)(14分)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径作圆,与BC相切于点C,过点A作AD⊥BO交BO的延长线于点D,且∠AOD=∠BAD.(1)求证:AB为☉O的切线;(2)若BC=6,tan∠ABC=,求AD的长.18.(2018·湖南怀化)(14分)已知:如图,AB是☉O的直径,AB=4,点F,C是☉O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留π);(2)求证:CD是☉O的切线.19.(2018·山东德州)(14分)如图,AB是☉O的直径,直线CD与☉O相切于点C,且与AB的延长线交于点E,点C是的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,☉O的半径为3,一只蚂蚁从点B出发,沿着BE-EC-爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数).答案精解精析一、选择题1.A2.B3.B4.D5.C6.B7.A8.A二、填空题9.510.2911.12.413.2 cm14.15.2三、解答题16.解析(1)证明:∵AB是☉O直径,∴∠ADB=90°.∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED.(2)由(1)得OC⊥AD,∵=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴的长==2π.17.解析(1)证明:过点O作OE⊥AB于点E,即∠OEB=90°.∵BC切☉O于点C,∴∠OCB=∠OEB=90°.∵AD⊥BD,∴∠ADB=90°.∵∠AOD=∠BOC,∴∠CBD=∠OAD.∵∠OCB=∠D=90°,∠AOD=∠BAD,∴∠OAD=∠ABD,∴∠ABD=∠CBO,∴OE=OC,∴AB为☉O的切线.(2)∵BC=6,tan∠ABC=,∠ACB=90°,∴AC=BC·tan∠ABC=8,∴AB==10.∵AB与BC均为☉O的切线,∴BE=BC=6,∴AE=AB-BE=10-6=4.设OC=OE=x,则在Rt△AEO中,有(8-x)2=42+x2,解得x=3,∴OB===3.∵S△BOA=AB·OE=BO·AD,∴AB·OE=BO·AD,∴10×3=3AD,∴AD=2.18.解析(1)∵AB=4,∴OB=2,∵∠COB=60°,∴S扇形OBC==π. (2)证明:∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴DC⊥OC,∵点C在圆上,∴CD是☉O的切线.19.解析(1)证明:连接OC,∵直线CD是☉O的切线,∴OC⊥CD,∴∠OCE=90°.∵点C是的中点,∴∠CAD=∠CAB,∵OA=OC,∴∠CAB=∠ACO,∴∠CAD=∠ACO,∴AD∥CO,∴∠ADC=∠OCE=90°,∴AD⊥CD.(2)∵∠CAD=30°,∴∠CAB=∠ACO=30°,∴∠COE=∠CAB+∠ACO=60°,∵直线CD是☉O的切线,∴OC⊥CD,∴∠OCE=90°,∴∠E=180°-90°-60°=30°,∵OC=3,∴OE=2OC=6,∴BE=OE-OB=3,在Rt△OCE中,由勾股定理得:CE===3,的长==π,∴蚁蚂爬过的路程=3+3+π≈11.3.。
(完整word版)2019年中考-初中数学考试提分秘笈
2019年中考:初中数学考试提分秘笈各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢中考网整理了关于初中数学考试提分秘笈,希望对同学们有所帮助,仅供参考。
1.细心的发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好地将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点,更深入一点,更熟练一点。
2.总结相似类型的题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。
其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。
久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄得一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
3.收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。
但这恰恰又是最需要解决的问题。
同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。
另外一个就是,找出自己的不足,然后弥补它。
这个不足,也包括两个方面,容易犯的错误和完全不会的内容。
但现实情况是,同学们只追求做题的数量,草草地应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现:过去你认为自己有很多的小毛病,现在发现原来就是同一个问题在反复出现;过去你认为自己有很多问题都不懂,现在发现其实就是这几个关键点没有解决。
2019中考数学高分五种最优解答策略
对于“一般情况”。通常有图形“变换”。因此最好的破解方法是化为实物.
再由“实物图”画出几何图形,依次“分类”画图。核心和关键就是画出图形。
化归有两层意义:一是将图形化归为规则图形求解;二是关系化归到“QXSGM”
感谢在座各位的聆听
THANK YOU WACTHING
黄金雄名师工作室
压轴题的解题策略
•划 记
•画 图
•化 物
数学风暴 因你而变
•化 归
1、特殊的直角三角形;2、勾股定理;3、解直角三角形;4、三角形的内角 和定理;5、相似三角形; 7、三角形、不规则图形的面积计算; 6、图形 平移;8、二次函数及其自变量取值范围;9、分类讨论思想;10、函数与 方程思想;11、数形结合思想;
到思路,因此需要扎实的底功和灵活 的思维以及较强的信息处理能力,以 此来换得分数, 二、在思维出现障碍时,应很快二次审题 调整思考角度,一旦获得思路,就挣 取换得全分。
第四讲 题例一
第四讲 题例二
第五讲
蒙分题
第五讲 题例(2015广东第16题)
五.蒙分 题 特点
①考点选择常考知识点
01
②具有一定的 开放性
1、等腰三角形;2、直角三角形;3、四边形与特殊平行四边形(菱形);4、 三角形、不规则图形的面积计算; 5、图形平移;6、二次函数及其最值的 计算;7、分类讨论思想;8、函数与方程思想;9、数形结合思想;
压轴题的第(1)、(2)问,往往是“特殊情况”。因此往往很 简单。划记后由公式、法则直接解决。其目的:一是覆盖知识点, 二是提示思路。
2 分数,能摸全分最好! 另外对无坐标非动型, 可用“攻点破面,顺藤摸 瓜”的策略;
对于有坐标非动型,采 用“数形结合,层层剥离” 的策略;