现代高层建筑结构设计论文

合集下载

高层建筑结构设计论文

高层建筑结构设计论文

对高层建筑结构设计探讨摘要:随着我国经济的快速发展,全国大中城市高层建筑迅速增多,高层建筑结构设计已成为建筑结构设计人员的重要工作内容。

高层建筑层数和高度都逐渐增加,结构形式更是多样化、复杂化。

为了使设计者对高层建筑的设计有较好地了解,我们就以杭州某工程为例,介绍高层建筑的结构设计方案,本文对该方案的计算模型、转换层的设计和构造及内力分析做了简要介绍。

关键词:高层建筑转换层总结1 概述近年来,现代建筑越来越向多功能、综合用途发展,在同一竖直线上,顶部楼层与下部楼层用途不同,不同的楼层需要大小不同的空间尺寸,采用不同的结构形式。

从建筑功能上讲,上部需要小开间的轴线布置,需要较多的墙体以满足旅馆和住宅的要求,下部共用部分则希望有尽可能大的自由灵活空间,柱网要求大,墙体要尽量少,由于高层结构下部楼层受力很大,上部结构受力相对较小,正常布置应该下部刚度大(墙多,柱网密),到上部刚度较小(墙少,柱网稀疏),但为了满足建筑功能的要求,我们必须以跟常规相反的方式进行布置,即上部布置小空间,下部布置大空间,上部布置刚度大的剪力墙,下部布置刚度较小的框架柱,为了实现这一布置就必须在结构转换的楼层设置转换层。

2 工程概况就以杭州某工程为例。

本工程位于杭州某地区,该工程是集商场、办公、住宅为一体的综合性高层建筑,地下2层为停车库及设备房,地上29层,分a,b两栋塔楼,塔楼均为住宅,主楼主体90.500m。

由于该建筑功能的要求,本工程结构采用底部大空间转换剪力墙结构,转换层在第5层顶面,属高位转换结构,该地区地震设防烈度为6度,设计地震分组为第一组,设计基本地震加速度值为0.05g,拟建场地为ⅲ类场地土。

结构抗震等级:转换层下剪力墙二级,框支柱二级,基础采用桩筏。

为了满足建筑功能,结构必须处理好以下几个问题:①转换层转换结构方式的选择;②转换层楼层结构计算层高的确定;③二级转换梁的处理。

3 概念设计与结构布置3.1 结构计算单元的确定。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文随着科学技术的不断发展,功能俱全的高层建筑越来越多。

高层建筑结构设计也越来越成为建筑结构工程师的重要工作内容。

下面是店铺为大家整理的高层建筑结构设计论文,供大家参考。

高层建筑结构设计论文范文一:探究高层建筑结构边节点抗震性能1试验概况1.1试验构件设计和制作边节点试验构件取用承重框架梁柱反弯点之间的一个平面组合体,即“T字形”试件。

为有效保证试件的浇筑质量和垂直度,并与工程实际相符,全部试件均采用钢模板、立模浇筑。

边节点构件柱子的截面尺寸为200mm×200mm,梁的截面尺寸为150mm×250mm,纵向受力钢筋采用HRB400级,箍筋采用HPB235级。

柱子的配筋率为1.13%,梁的配筋率为0.9%,所有构件配筋率和钢筋的强度相同。

为防止柱头破坏,柱上、下两端箍筋加密;节点核心区按照抗震要求对箍筋进行了加密处理。

本次试验共包括7根试件,详细的试验构件概况如表1所示,构件的尺寸和配筋图示,节点核心区采用柱混凝土的构件,施工缝留设在梁下部;节点核心区采用梁混凝土的构件,分别在梁上和梁下留设两道施工缝,施工缝处浇筑时间间隔为2天(48小时)。

1.2试验方法和加载装置采用低周反复试验方法进行研究,加载制度为力—位移混合控制加载,在开始加载到构件屈服前采用力控制;构件屈服后,改用屈服位移的整数倍为级差作为回载控制点,每一位移下循环3次。

在实际框架结构中,当作用水平荷载时,上柱反弯点可视为水平可移动铰,相应的下柱反弯点可视为固定铰;而节点两侧梁的反弯点可视为水平可移动铰。

这样可以有两种加载方案:一种是在柱端施加水平荷载或位移,这时梁能够左右移动而上下受到约束,产生剪力和弯矩。

这种边界条件比较符合实际结构中的受力状态;另一种是将柱保持垂直状态,在梁的自由端施加反复荷载或位移,此时边界条件变为上下柱反弯点为不动铰,梁反弯点为自由端。

本次试验采用的是柱端加载的方式,即采用在柱顶施加轴向力和水平力的方式进行试本次试验在东北电力大学结构试验室进行,采用美国MTS公司生产的MTS液压式伺服加载系统进行试验,采用MTS动态数据采集系统进行数据采集。

高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇

高层建筑结构设计要点研究论文六篇关于《高层建筑结构设计要点研究论文六篇》,是我们特意为大家整理的,希望对大家有所帮助。

第一篇摘要:随着我国人口急剧上升,土地资源稀缺问题愈加明显,为了提升土地利用率,开发商开始将目光投向高层建筑。

近年来,复杂高层与超高层建筑得到广泛应用,它即满足了城市发展的需要,也实现了有限土地资源的有效利用。

因此,本文主要对复杂高层与超高层建筑结构设计要点进行探讨,用以提高高层建筑的合理性与科学性。

关键词:复杂高层;超高层;建筑结构;设计要点1引言随着复杂高层与超高层建筑的不断增加,政府对高层建筑的质量提出更高要求,尤其是建筑结构的持久性、可靠性已经成为社会关注的焦点。

因此,在进行复杂高层与超高层建筑结构设计时,要结合建筑物的形态特征、功能需要等进行,为提高复杂高层与超高层建筑的安全性能做铺垫。

2复杂高层与超高层建筑结构设计的主要控制因素2.1重力荷载与其他类型的建筑相比,复杂高层与超高层建筑具有特殊性,不仅建筑高度不可比拟,还需要面临重力荷载的挑战。

特别是随着建筑高度不断攀升,地面受力与重力荷载会逐渐上升,在力的作用下墙上的轴压力与竖向构件柱的压力也不断增加,从而加大超高层建筑的困难性。

其次,复杂高层与超高层建筑的水平位移也是建筑结构设计的矛盾点,主要体现在两个方面:①楼层越高风效应就越大,在风的作用下其合力作用点的位置就越高,由此自然风效应对超高层建筑产生的作用效应就更大。

②在建筑结构设计中,建筑的结构自重是企业必须考虑的问题,因为它关乎建筑物的稳定性。

而结构自重与重心位置相关,随着建筑楼层不断升高其重心位置随之升高,从而结构自重不断加大,成为强力作用下的薄弱环节,比如地震等。

2.2风振加速度风力大小与建设楼层的高低相关,通常楼层越高其风力效果越强,因此在超高层建筑中的风力作用特别显著。

但是,人们对风作用的舒适度有一定的感知,若风振作用过强则会令人产生不适感,从而降低居住品质。

高层建筑结构论文

高层建筑结构论文

高层建筑结构论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更承载着人们对于高效利用空间和提升生活品质的期望。

然而,高层建筑的结构设计与施工面临着诸多挑战,需要综合考虑多种因素,以确保其安全性、稳定性和功能性。

高层建筑的定义在不同的国家和地区可能会有所差异,但通常是指高度超过一定数值(如 24 米或 7 层)的建筑物。

高层建筑之所以与普通建筑在结构设计上有显著区别,主要是因为其高度带来的一系列特殊问题。

首先,风荷载是高层建筑结构设计中必须重点考虑的因素。

随着高度的增加,风速也会显著增大,风对建筑物的作用效应也更为复杂。

强风可能导致建筑物产生较大的水平位移和振动,影响居住者的舒适度甚至结构的安全性。

为了减小风荷载的影响,高层建筑的外形通常会设计成流线型,以减少风的阻力。

同时,在结构设计中会采用加强的抗侧力体系,如框架核心筒结构、筒中筒结构等,来抵抗水平风力。

其次,地震作用对高层建筑的影响也不可忽视。

地震是一种突发的、破坏力巨大的自然灾害,高层建筑在地震中的表现直接关系到人们的生命财产安全。

在地震区建造高层建筑,需要根据当地的地震烈度进行抗震设计。

这包括选择合适的结构体系、确定结构的抗震等级、加强关键部位的构造措施等。

例如,采用延性较好的材料和构件,设置多道抗震防线,以增加结构在地震中的耗能能力和抗倒塌能力。

高层建筑的自重也是一个重要问题。

由于高度大,建筑的自重会产生巨大的竖向荷载。

为了承受这些荷载,需要选用高强度的材料,如高性能混凝土和高强度钢材。

同时,合理的结构布置可以有效地传递和分配竖向荷载,确保结构的稳定性。

在高层建筑结构的设计中,基础设计至关重要。

高层建筑的基础需要承受巨大的上部荷载,并将其均匀地传递到地基中。

常见的基础形式包括桩基础、筏板基础等。

在选择基础形式时,需要充分考虑地质条件、地下水位、建筑物的荷载分布等因素。

对于地质条件复杂的地区,还需要进行详细的地质勘察和地基处理,以确保基础的稳定性和可靠性。

高层建筑结构研究论文

高层建筑结构研究论文

高层建筑结构研究论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。

然而,高层建筑的结构设计和安全性面临着诸多挑战,因此对高层建筑结构的研究具有重要的现实意义。

一、高层建筑结构的特点高层建筑与低层建筑在结构上有明显的区别。

首先,高层建筑的高度较大,导致其竖向荷载显著增加。

这就要求结构体系具备足够的强度和刚度来承受这些荷载。

其次,风荷载和地震作用对高层建筑的影响更为突出。

在强风或地震作用下,高层建筑容易产生较大的水平位移和振动,从而影响结构的安全性和使用功能。

此外,高层建筑的结构自重较大,对基础的要求也更高,需要确保基础能够提供足够的承载力和稳定性。

二、高层建筑结构体系常见的高层建筑结构体系主要包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。

框架结构由梁和柱组成,具有布置灵活、空间大等优点,但抗侧刚度较小,适用于层数较少的高层建筑。

剪力墙结构则通过钢筋混凝土墙体来抵抗水平荷载,其抗侧刚度大,但空间布置不够灵活。

框架剪力墙结构结合了框架结构和剪力墙结构的优点,既能提供较大的空间,又具有较好的抗侧性能,是目前应用较为广泛的结构体系之一。

筒体结构包括框筒、筒中筒和束筒等形式,具有良好的整体性和抗侧能力,适用于超高层建筑。

三、高层建筑结构的分析方法在对高层建筑结构进行设计和分析时,需要采用合适的方法。

目前常用的分析方法包括静力分析、动力分析和非线性分析等。

静力分析是基于结构在恒载、活载和风载等静力作用下的响应进行计算,是结构设计的基础。

动力分析则考虑了结构在地震作用等动力荷载下的振动特性,包括振型分解反应谱法和时程分析法。

振型分解反应谱法是一种简化的动力分析方法,通过计算结构的振型和振型参与系数,并结合反应谱来确定结构的地震响应。

时程分析法则直接输入地震波,对结构在整个地震过程中的响应进行模拟,能更准确地反映结构的动力特性,但计算量较大。

建筑高工论文模板(10篇)

建筑高工论文模板(10篇)

建筑高工论文模板(10篇)在建筑的中心部分,有意识地利用那些功能较为固定的服务用房的围护结构,形成中央核心筒,而筒体处于几何位置中心,还可以使建筑的质量重心、刚度中心和型体核心三心重合,更加有利于结构受力和抗震。

1.2核的分散与分离随着时代的发展、技术的进步,人们对建筑需求的变化和设计侧重点的不同,以中央核心筒为主流的高层建筑“内核”空间构成模式开始受到了挑战。

对于结构专业来说,加强建筑周边的刚度也会有效地抵抗地震对高层建筑的破坏,所以如果将垂直交通和设备用房等分散地布置在周边,则无疑也会对结构抗震有利。

同时,这种分散的多个外核的空间构成模式,也正好适用于新兴的巨型框架结构,使这种结构体系中的巨型支撑柱具有了使用功能。

而从建筑设计的角度来看,核的移动、垂直交通、服务性房间和管道井分散到建筑的周边,对于高层建筑的空间构成模式和立面造型上的变化也是极具革命性的。

它不但适应了其它专业的需求,而且还有利于避难疏散,创造更大的使用空间和使高层建筑的底部获得解放。

这种空间构成模式所具有的灵活性和先进性,很快便被推崇技术表现的欧洲建筑师们所发现,并创造性地应用在他们的作品之中。

1.3中庭空间的出现受高层旅馆的影响,一些办公大楼为了追求气派和空间变化,便在入口处附设一个中庭,实际上,核心筒的分散和分离,中庭空间的介入,已使高层建筑的空间构成模式彻底发生了变化。

新一代的高层建筑空间组织更为灵活多样,由于空间设计的侧重点已由追求经济效率向营造宽松舒适的生活环境转变,所以许多新建的高层建筑都以“景观空间”的概念,将共享空间与功能空间相结合,把核分散向四周,垂直交通采用玻璃电梯,直接采光,给人们以开敞明亮、将动线视觉化的空间感受。

空间构成模式也由封闭的“积层式”,变为上下贯通的“动态流动空间”。

1.4底部空间的变化早期的高层建筑多直接面对街道,从街道进入门厅,再由门厅进入电梯厅,垂座电梯至各楼层,这是高层建筑中最为普遍的空间流线组织方式。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。

高层建筑不仅是城市现代化的象征,更是解决城市人口密集、土地资源紧张等问题的有效途径。

然而,高层建筑的结构设计是一项极其复杂且具有挑战性的任务,需要综合考虑众多因素,以确保建筑的安全性、稳定性和功能性。

高层建筑结构设计面临着诸多特殊的挑战。

首先,垂直荷载显著增加。

由于楼层数量多,建筑物自身的重量以及人员、设备等产生的荷载都较大,这对结构的竖向承载能力提出了更高的要求。

其次,水平荷载成为控制结构设计的关键因素。

风荷载和地震作用在高层建筑中产生的效应更为显著,可能导致结构的侧向位移和内力大幅增加,甚至影响结构的整体稳定性。

再者,结构的稳定性和抗倾覆能力至关重要。

高层建筑重心较高,容易在外界作用下发生倾覆,因此在设计中必须充分考虑结构的稳定性。

在高层建筑结构设计中,结构体系的选择是至关重要的。

常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。

框架结构具有布置灵活、空间大等优点,但抗侧刚度相对较小,适用于层数较低的建筑。

剪力墙结构则具有良好的抗侧刚度,能有效抵抗水平荷载,但空间布置不够灵活。

框架剪力墙结构结合了框架结构和剪力墙结构的优点,既能提供较大的空间,又具有较好的抗侧性能,适用于大多数高层建筑。

筒体结构包括框筒、筒中筒等形式,具有很强的抗侧和抗扭能力,常用于超高层建筑。

风荷载是高层建筑结构设计中不可忽视的因素。

风对高层建筑的作用不仅会产生水平力,还可能引起漩涡脱落、横风向振动等复杂现象。

在设计中,需要通过风洞试验或数值模拟来准确确定风荷载的大小和分布。

同时,合理的建筑外形设计可以有效减小风荷载的影响。

例如,采用流线型的外形可以降低风阻,减少风荷载对结构的作用。

地震作用对高层建筑的安全性构成严重威胁。

在地震区,高层建筑必须具备良好的抗震性能。

结构的抗震设计包括概念设计和计算设计两个方面。

概念设计强调从整体上把握结构的布置和选型,遵循“强柱弱梁、强剪弱弯、强节点弱构件”等原则,保证结构具有合理的传力路径和良好的变形能力。

高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文【摘要】高层建筑是一种更为复杂的建筑模式,然而建筑的结构设计效果并不理想,高层建筑安全问题发生的频率相对较高,由此在高层建筑结构设计过程中,建筑结构设计人员更应该根据建筑结构的特点,认真考察建筑具体实际,从而设计出合理的设计方案,保证建筑的安全性和稳定性,发挥建筑的效益,从而满足建筑使用群体的要求,同时为建筑业的更快更好发展做出贡献,使得建筑业可以有更长足的发展空间。

一、高层建筑结构的特点1.水平载荷成为决定因素高层建筑的设计和建造过程区别于低层建筑,不仅要考虑竖向载荷,更重要是考虑水平载荷的影响。

高层建筑楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2、抗震设计要求更高相对于低楼层而言,高楼层具有独特的特性,高楼层拥有更好的柔性,由此在地震作用下的变形更大一些。

所以高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

3、轴向变形不容忽视在有外力作用的情况下,建筑结构会发生一定的位移,包括弯曲、轴向变形和剪切变形。

对于低层建筑的结构,一般的结构构件轴向和剪切变形的影响相对小,由此不会涉及到轴向变形和剪切变形问题的考虑。

但是高层建筑的轴力相对较大,由此产生的轴向变形就会比较显著,由此在建筑结构设计中就要把轴向变形考虑进去。

二、高层建筑结构体系1、框架结构体系整个结构的纵向和横向全部由框架构件组成的结构成为框架结构。

框架既负担重力荷载又负担水平荷载。

框架结构的优点是建筑平面布置灵活,可提供较大的内部空间。

但由于结构属于柔性结构体系,在水平荷载作用下,强度低,刚度小,水平位移大,在高烈度地震区不宜采用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈现代高层建筑的结构设计
摘要:本文论述了现代高层建筑的结构设计要点,并指出了在现代高层建筑结构设计中需注意的问题及需控制的主要指标,为设计的同行进行高层建筑结构设计提供参考。

关键词:高层建筑结构概念设计设计指标
随着经济和科学技术的快速发展,城市人口逐渐增多,可利用的土地资源越来越少,势必会使建筑往高空延伸,高层建筑逐渐成为衡量一个城市发展的软指标,因此,高层建筑的结构设计也逐渐成为人们关注的焦点。

结构工程师在高层设计中如何把握设计要点,直接影响到整体结构的安全性、经济性及合理性。

1 概念设计
概念设计一般指对难以作出精确理性分析或规范中难以规定的问题,不经数值计算,而是依据简化力学模型、分析结构破坏机理以及日常工程实际所积累的经验,从整体角度来确定结构的总体布置和对抗震细部的宏观控制。

其主要内容如下:
1.1 结构规则性
结构的平面布置宜简单、规则、对称,使得建筑物质量分布均匀和结构刚度协调,平面规则的结构受力明确、传力简洁,具有良好的整体性。

实际上,由于建筑外形及使用上的要求,要做到平面规则是比较困难的。

对此,结构设计人员对整个结构模型要有宏观的把握,进行结构布置时使刚心与质心尽量重合,减小因偏心而引起的扭转。

结构竖向布置应使体型规则、均匀,结构的刚度及承载力和传力途径没有太大的变化,避免有较大的外挑或内收,避免侧向刚度和承载力的突变面形成薄弱层。

1.2 结构延性
结构延性是指结构吸收地震能量后的变形能力。

结构延性设计是高层结构概念设计的一项重要内容。

结构主要靠延性来抵抗地震作用产生的非弹性变形。

延性后的结构吸收地震能量后,出现塑性铰,从而引起结构的内力重分布,以继续抵抗地震的作用。

这就要求结构满足“强柱弱梁,强剪弱弯,强节点弱构件”的设计原则。

控制竖向构件的轴压比对结构的延性至关重要,轴压比的大小反映出结构延性的好坏。

轴压比越小,结构的延性越好,但会增加建筑成本。

把轴压比控制在一个合理的范隔内,既能保证结构的延性,也能节约成本。

2 结构选型
高层结构常见的结构体系有框架结构、剪力墙结构、框架-剪力墙结构和筒体结构等。

2.1 框架结构
框架结构是梁和柱通过节点构成的承载结构。

框架结构由于其平面布置的灵活性,使得建筑获得较大的使用空间,能满足较多的功能要求。

但是框架结构的抗侧刚度较小,在风荷载或水平地震荷载作用下,结构的整体位移和层间位移都较大。

随着建筑高度的增加,框架结构的经济性和安全性均存在不合理的问题,因此在使用
层数上受到了限制。

2.2 剪力墙结构
在剪力墙结构中,剪力墙承受全部的垂直荷载和水平力。

剪力墙结构相对于框架结构而言,具有良好的侧向刚度和规整的平面布置,空间整体性好,水平位移和层间位移小,有一定延性,传力直接、均匀,对抵抗水平荷载作用十分有利。

但剪力墙体系的平面布置灵活性差,使用上受到很大的限制,适用范围小。

2.3 框架-剪力墙结构
当框架结构的强度和抗侧刚度满足不了要求时,往往需要在适当的位置布置一些剪力墙,通过剪力墙和框架柱共同抵抗水平荷载的作用,这种结构称为框架-剪力墙结构。

这种结构既具有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的延性。

2.4 筒体结构
筒体结构主要包括单筒体-框架、筒中筒、多束筒等形式,能满足更多层数的要求,常见用于超高层结构中。

筒体结构具有很大的刚度和强度,受力合理,在平面布置及满足功能使用上有明显的优势。

随着建筑往更多层数方向发展,这种结构形式的应用会越来越广泛。

3 埋深及嵌固端
高层建筑基础要求具有一定的埋置深度.其目的是为了保证结构的整体稳定性,减弱震害。

确定基础埋深时,应综合考虑建筑物的高度、体型、地基土以及设防烈度等因素。

基础埋深一般从室外
地坪算至基础底面或承台底面。

《高层建筑混凝土结构技术规程(jgj 3—2002)》(以下简称《高规 )规定基础埋深需满足以下2条规定:(1)天然地基或复合地基可取房屋高度的1/15;(2)桩基础可取房屋高度的l/l8。

正确选定结构嵌固端是结构计算模式中的一个重要假定,它关系到结构某些构件内力分配的正确性、影响结构产生位移的真实性以及结构局部的经济性:当高层建筑设有地下室时,若地下室全埋于土中,地基土对地下室有明显的约束作用,则可将地下室顶板作为上部结构的嵌同端;若地下室半埋于土中或是开敞式地下室,则需计算地下室结构的侧向刚度是否大于或等于相邻上部结构楼层
侧向刚度的2倍。

当满足此条件时,则可将地下室顶板作为嵌固端。

当高层建筑不设有地下室时,可将基础面作为上部结构的嵌固端,还须在纵横2个方向设基础粱加以连接。

4 主要设计指标
在结构整体性能设计中,应对以下主要设计指标加以控制。

4.1 位移比
位移比是判断结构平面是否规则的重要依据。

《高规》规定:在考虑偶然偏心影响地震作用下,a级高度高层建筑的位移比不宜大于1.2,不应大于1.5;b级高度高层建筑、混合结构、复杂高层结构的位移比不宜大于1.2,不应大于1.4。

4.2 周期比
周期比为以结构扭转为主的第一自振周期t1与以平动为主的第
一自振周期t1 之比。

限制周期比是为了控制结构的抗扭刚度不能太弱。

可通过调整抗侧力结构的布置,减弱内筒的刚度,增加结构周圈构件的刚度等措施来增加结构的抗扭刚度。

《高规》规定:a级高度高层建筑的周期比不应大于0.9;b级高度高层建筑、混合结构、复杂高层结构的位移比不应大于0.85。

4.3 刚度比
刚度比指结构竖向不同楼层的侧向刚度的比值,调整该值主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层。

《高规》规定:高层建筑结构其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻3层侧向刚度平均值的80%。

4.4 刚重比
刚重比是结构刚度与重力荷载之比。

它是控制结构整体稳定的重要指标,是影响重力二阶效应的主要参数通过对结构刚重比进行控制,可使高层建筑满足稳定性要求。

4.5 轴压比
轴压比指针对柱(墙)考虑地震作用组合的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积的比值。

它是影响墙柱抗震性能的主要因素之一,是保证竖向构件具有良好延性和耗能能力的主要指标。

5 结束语
结构工程师在进行高层建筑结构设计时,应对建筑有总体的概念把握,对结构设计中的难点、关键部分要着重优化设计。

面对经
济性与安全性这一对矛盾,通过合理的结构优化来达到双赢,既能很好地满足安全性的要求,也能达到经济性的要求。

相关文档
最新文档