八年级数学上册利用一次函数解决实际问题教案

合集下载

运用一次函数解决实际问题教案

运用一次函数解决实际问题教案

一次函数是初中数学学习的一个主要内容,它在数学中是一个非常基础的知识点,但是在现实生活中却具有重要的应用价值。

一次函数的解法能够帮助我们解决许多实际问题,比如求解直线方程、计算速度、距离等。

如何将一次函数的知识点应用到实际问题中,是初中数学学习最为重要的一环,下面将介绍一些教学案例,帮助学生更好地理解和掌握一次函数的应用。

一、直线方程问题:在解决直线方程问题时,一次函数是非常有用的。

比如说,兔子在跑步时,经过起点时速度是20米每秒,然后随着时间推移速度逐渐增加,最后在10秒钟时超过终点,求兔子的速度公式。

首先我们可以使用速度等于距离除以时间的公式:v=d/t。

因为兔子是在一条直线上跑步,所以可以将问题转化为一个直线方程。

在这个例子中,兔子的起点坐标为(0,0),速度为20米每秒,所以直线方程为y=20x。

这个方程描述的是兔子的速度随着时间而变化的过程。

二、距离问题:距离问题也是一次函数非常有效的应用场景。

比如,一个人从起点出发,以10米每秒的速度向前行走,每40秒钟会有一个休息的时间,休息时不计算时间消耗,请计算出这个人在3分钟内行走的距离。

在这个例子中,我们可以将这个问题转化为一个一次函数的形式。

人的速度为10米每秒,因此他每走1秒的距离就是10米,一段时间内走的距离就是这段时间内的秒数*10米,如果这段时间中有多段时间休息,那么可以将这段时间分成多个小段,然后求各小段内的距离总和即可。

因此,这个问题转化成一次函数的形式为f(x)=10x-40*floor(x/40)。

三、速度问题:速度问题也是一次函数的应用场景之一。

比如,在一辆汽车行驶的过程中,它的速度随时间而变化,如果我们知道汽车在某一时刻的速度,可以计算出汽车行驶的距离、时间和最终速度。

在解决速度问题时,我们需要使用以下公式:v=dx/dt,其中v表示速度,d表示距离,t 表示时间。

因为速度是在一条直线上变化的,所以我们可以使用一次函数来描述速度-时间的关系,将速度公式转化为直线方程。

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。

教材中给出了丰富的实例,为学生提供了充足的学习材料。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。

但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。

因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

3.培养学生的动手操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:一次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。

六. 教学准备1.准备与一次函数应用相关的实例。

2.准备教学课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。

让学生思考如何用数学模型来表示这个问题。

2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。

让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。

3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。

通过这个环节,巩固学生对一次函数模型的理解和应用。

八年级数学教案: 用一次函数解决问题(全2课时)

八年级数学教案: 用一次函数解决问题(全2课时)
(2)他第5 年的年收入能否超过40000元?
三.交流展示
某市出租车收费标准:不超过3千米计费为 7.0元,
3千米后按2.4元/千米计费.
(1)当路程表显7km时,应付费多少元?
(2)写出车费y(元)与路程x(千米)之间的函数表达式;
(3)小亮乘出租车出行,付费19元,计算小亮乘车的路程.
在这里需要说明的是:在现实生活中,两个变量之间的数量关系并不完全遵循同一个标准,在这样的情况下,往往根据自变量不同的取值范围,分别列出不同的函数表达式.
课时NO:主备人:审核人用案时间:年月日星期
教学课题
6.4 用一次函数解决问题(1)
教学目标
1.能根据实际问题中变量之间的关系,确定一次函数关系式;
2.能将简单的实际问题转化为数学问题建立一次函数,从而解决实际问题;
3.通过具体问题的分析,发展解决问题的能力,增强应用意识
教学重点
根据实际问题中变量之间的关系,确定一次函数的关系式
2.A、B两家旅行社分别推出家庭旅游优惠活动,两家旅行社的票价均为90元/人,但优惠办法不同.A旅行社的优惠办法是:全家有一人购全票,其余的人半价优惠;B旅行社的优惠办法是:每人均按 票价优惠.你将选择哪家旅行社?
四.小结与反思
布置作业
课外作业:
P159第3、5题.
板书设计
教后札记
四.小结与反思
布置作业
课外作业:
板书设计
教后札记
课时NO:主备人:审核人用案时间:年月日星期
教学课题
6.4 用一次函数解决问题(2)
教学目标
1.能根据实际问题中变量之间的关系,确定一次函数的关系式;
2.能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题;

4.4 一次函数的应用 北师大版八年级数学上册教案

4.4  一次函数的应用 北师大版八年级数学上册教案

4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。

八年级数学上册 第四章 一次函数 4 一次函数的应用 4.4.2 简单一次函数的实际应用教案

八年级数学上册 第四章 一次函数 4 一次函数的应用 4.4.2 简单一次函数的实际应用教案
例:科学家通过实验探究出,一定质量的某气体 在体积不变的情况下,压强P(千帕)随温度t(℃)变化的函数关系是P=kt+b,其图象如图.
(1)根据图象求出上述气体的压强P与温度t的函数关系式;
(2)当 压强P为200千帕时,求上述气体的温度.
解:(1)因为函数P=kt+b的图象经过点(0,100),(25,110)
让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组 长督促组员迅速完成.
教学过程
教学环节
课堂合作交流
二次备课
(修改人:)

节一
师生合作完成教材第92页“议一议”的学习与探究.
讨论:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?
课中作业
课本91页例2



典例讲解:
所以,
把①代入②得,k= ,
故所求函数关系式 为P= t+100(t≥0);
(2)当P=200时,由(1)得 t+100=200,解得t=250.
即 当压强为200千帕时,气体的温度是250℃.
课中作业
课本92页做一 做



仿例:某种拖拉机的油箱可储油40升,加满油并开始工作后,油箱中的余油量y(升)与工作时间x(小时)之间为一次函数关系如图.
(1)求y与x之间的函数关系式;
(2)一 箱油可供拖拉机工作几小时?
解:(1)设y=kx+b,根据题意,
得 ∴ ∴y=-5x+40;
(2)8小时.
课中作业
课本92页议一议
课后ห้องสมุดไป่ตู้业设计:
92页知识技能,数学理解
(修改人:)
板书设计:
一次函数的应用

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。

12.4综合与实践一次函数模型的应用-沪科版八年级数学上册教案

12.4综合与实践一次函数模型的应用-沪科版八年级数学上册教案

12.4 综合与实践一次函数模型的应用-沪科版八年级数学上册教案一、教学目标1.理解一次函数模型的概念和基本特征;2.掌握利用一次函数模型解决实际问题的方法;3.培养学生综合运用数学知识解决实际问题的能力。

二、教学重点1.理解一次函数模型的概念和基本特征;2.掌握利用一次函数模型解决实际问题的方法。

三、教学难点1.培养解决实际问题的能力;2.能够运用数学知识解决跨学科问题。

四、教学内容及安排1. 一次函数模型的概念和基本特征1.通过教学PPT介绍一次函数的概念和定义;2.讲解一次函数的基本特征,如自变量、因变量、斜率、截距等。

2. 一次函数模型解决实际问题的方法Step1: 明确问题解题思路1.分析问题条件;2.明确问题所求。

Step2: 求解过程1.确定自变量和因变量;2.列出函数模型;3.解方程,求出变量值;4.求解问题。

3. 练习与拓展1.在课堂上进行部分例题的讲解;2.布置习题课后练习;3.扩展问题的解决。

五、教学方法1.教师讲授与学生练习相结合;2.合作学习、讨论、呈现等多种方式;3.引导学生思考,培养学生解决问题的能力。

六、教学过程与时间安排1. 教师引入(5分钟)介绍本节课的教学目标和安排,并激发学生学习的兴趣和热情。

2. 阐述一次函数的概念和基本特征(15分钟)1.通过PPT进行讲解;2.询问学生,让学生拓展思路,增加理解。

3. 讲解一次函数模型解决实际问题的方法(25分钟)1.通过教学PPT,讲解解决问题的方法,引导学生理解方法;2.对选择的实际问题进行解题演示;3.鼓励学生自己动手解题。

4. 练习及拓展(20分钟)1.转化思路,增加难度,进行课堂练习;2.接着进行拓展,探究更多实际问题。

5. 课堂总结(5分钟)回顾本节课教学目标,并询问学生遇到的问题和思路拓展。

七、课堂设计说明本节课的教学重点在于提高学生的综合运用数学知识解决实际问题的能力。

在教学过程中,既要让学生掌握一次函数模型的基本概念和特征,又要引导学生把数学知识应用到实际问题中去,帮助学生培养跨学科问题解决的能力。

北师大版八年级上册一次函数的应用说课稿

北师大版八年级上册一次函数的应用说课稿

北师大版八年级上册一次函数的应用说课稿一. 教材分析北师大版八年级上册数学教材中,一次函数的应用是本节课的主要内容。

一次函数是初中数学中的重要知识点,也是解决实际问题的重要工具。

本节课通过引入一次函数的概念和性质,使学生能够理解和掌握一次函数的基本特征,并能够运用一次函数解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了代数知识,对数学概念和符号有一定的理解。

但是,对于一次函数的应用,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于解决实际问题感到困惑,需要教师进行引导和指导。

三. 说教学目标1.知识与技能目标:学生能够理解一次函数的概念和性质,能够运用一次函数解决实际问题。

2.过程与方法目标:学生能够通过实例和练习,掌握一次函数的应用方法,培养解决实际问题的能力。

3.情感态度与价值观目标:学生能够对数学产生兴趣和自信心,培养积极的学习态度和合作精神。

四. 说教学重难点1.教学重点:一次函数的概念和性质,一次函数的应用方法。

2.教学难点:一次函数在实际问题中的应用,理解函数的图像和性质。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例和练习,引导学生自主学习和合作学习。

2.教学手段:利用多媒体课件和板书,展示一次函数的图像和性质,帮助学生直观理解。

六. 说教学过程1.导入:通过引入一次函数的实例,激发学生的兴趣,引导学生思考一次函数的应用。

2.新课导入:介绍一次函数的概念和性质,引导学生通过实例和练习来理解和掌握一次函数的应用方法。

3.课堂讲解:通过多媒体课件和板书,展示一次函数的图像和性质,引导学生直观理解。

4.练习与讨论:学生进行练习,教师进行个别指导和解答疑问,引导学生通过合作学习来解决问题。

5.总结与反思:教师引导学生总结一次函数的应用方法,反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计要简洁明了,突出一次函数的概念和性质,以及一次函数的应用方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
一、内容和内容解析
1.内容
利用一次函数解决实际问题.
2.内容解析
一次函数是最基本的初等函数之一,是学习后续各类函数的基础.一次函数的核心内容是一次函数的概念、图象和性质以及应用.一次函数的图象和性质的核心,是图象“特征”、函数“特征”以及它们之间相互转化关系,这也是一次函数的本质属性所在.一次函数图象和性质,本身就是“数”与“形”的统一体.通过对实际问题图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法.
本节课内容属于《义务教育数学课程标准(2011年版)》中的“数与代数”领域,是在已经学习了一次函数的图象和性质的基础上,由一个贴近学生生活的中国渔政执法视频开始,利用问题串的形式,用一次函数的相关知识来解决实际问题.在具体的探究过程中,先由分析图象开始,并由分析所得的信息解决相关的实际问题,再利用几何画板将图象进行变化,由此分析其操作的实际意义并衍生处两个新的问题,最终利用一次函数的知识解决这两个问题.在解决实际问题的过程中,体会运用一次函数解决实际问题的作用,初步体验建立函数模型的过程和方法.
基于以上分析,确定本节课的教学重点是:分析实际问题的图象,利用一次函数解决具体问题.
二、目标和目标解析
1.目标
(1)掌握并运用一次函数的图象和性质,体会数形结合思想和建立函数模型研究数学问题的基本方法.
(2)通过对实际问题图象的分析,进一步加深对一次函数性质的理解.
(3)能够从实际问题中抽象出一次函数关系,并运用一次函数及其性质解决实际问题,发展学生的应用意识.
2.目标解析
(1)从复习一次函数的图象和性质开始,不断渗透图象中k、b、交点坐标的实际意义,体会并利用数学结合的思想来解决问题。

(2)对于问题情境中给出的三个问题,以及衍生的两个变式,无一不是通过对函数图象的分析,结合一次函数的性质来解决。

在这样的过程中,巩固对性质的理解。

(3)对于前面所学的一次函数的图象和性质,能够运用其解决具体的实际问题,这是本节课的目标。

而给出的一次函数的图象,能够将其进行动态变化,并能分析其中的含义,是对图象和性质的更高要求,提高了学生对函数思想和方法的掌握。

三、教学问题诊断分析
在本节课之前,学生已经学习了一次函数的图象和性质.本节课,学生将进一步研究一次函数图象和性质,并利用其解决生活中的实际问题,学生在对函数图象分析中,是否能够将所学的知识与实际问题相联系,并利用一次函数的性质解决,将是本节课的难点.
基于以上分析,本节课的教学难点是:理解实际问题中一次函数的模型,并利用所学知识解决问题.
四、教学支持条件分析
根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板软件为平台,通过动态的演示,发现函数图象蕴含的实际问题,并结合所学的知识解决.
五、教学过程设计
教学过程设计
问题与情境师生活动设计意图
活动1 复习回顾师:在前面的学习中,我们已经
了解了一次函数的定义和性质,我们知道,一次函数的一般形式是。

(生答)对于一次函数y=0.2x+5,大家能说出k和b在图中的意义吗?
学生回答。

师:加入了一次函数y=0.5x之后,两个图象的交点坐标大家会求吗?请动手试一试。

学生求解出交点坐标。

师追问:交点坐标的意义是什么?什么时候y1>y2,什么时候y1<y2?
学生回答。

通过复习回顾,为本节课的学习奠定知识储备。

同时加强对k、交点坐标等知识点的强调,为后续探究埋下伏笔。

活动2 观看视频,展示问题
1、观看视频
2、给出问题
问题:我国执法船接到情报,近海处有一可疑船只A正向公海方向行驶,执法船迅速派出快艇B 追赶。

师:数学来源于生活,应用于生
活。

下面我们就一起来看看一次函数
在具体问题中的应用,请同学们先看
视频。

学生观看中国渔政执法视频。

师展示问题。

通过中国渔
政执法视频的展
示,体现数学来
源于生活,同时
抒发爱国情怀,
引导学生进入数
学学习。

活动3 分析图象,解决问题
下图两条直线分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系。

(1)从图中你能得到哪些信息?
(2)15分钟内,B能否追上A?
(3)当A逃到距离海岸12海里以外的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?
师:下图两条直线分别表示两船
相对于海岸的距离s(海里)与追赶
时间t(分)之间的关系。

从图中你能得到哪些信息?
学生通过观察图形,从特殊点、
图象的倾斜程度、函数关系式等方面
分析并回答。

师:同学们从图中得到了很多信
息,接下来我们就来看看是否能用这
些信息解决下面两个问题:15分钟
内,B能否追上A?
学生上台板书计算判断的过程。

师:当A逃到距离海岸12海里
以外的公海时,B将无法对其进行检
查,照此速度,B能否在A逃入公海
前将其拦截?
学生回答。

(可利用上一问的结
果进行本小题的解决)
问题(1)的
设计是为了后续
两个问题做准
备,同时进一步
提高学生对图象
的分析能力。

问题(2)是
一次函数解决问
题最基本方法的
体现,学生可以
通过诸如函数等
多种方法解答。

问题(3)是
在前两小题的基
础上进行解答,
体现的问题的层
层递进,不断加
深对函数思想的
理解和函数方法
的掌握。

活动4 探索变式,提升能力
变式1:若我国执法船发现可疑船只A的时候,A船距离海岸m海里,派出的追赶快艇B和A船的速度
师:刚刚同学们利用所学的一次
函数的知识很好的解决了给出的问
题,我们知道,实际问题充满了变化,
通过几何画
板的操作,既巩
固了在平移操作
不变,要保证B还能在A进入公海前将其拦截,则m的最大值是多少?
变式2:若A将速度提高至Va,B 要保证A逃到公海前将其拦截,B 也将速度提高至Vb,那么Va和Vb需要满足什么条件? 若将l1向上平移,这样的操作从实际
意义来看,什么发生了改变,什么没
有改变?
学生感知后,思考回答。

师追问:若我国执法船发现可疑
船只A的时候,A船距离海岸m海里,
派出的追赶快艇B和A船的速度不
变,要保证B还能在A进入公海前将
其拦截,则m的最大值是多少?
先由一名学生上台操作几何画
板,找到m最大值的情况。

学生再计算后回答。

师操作:拉动交点P的位置。

师:这样的操作从实际意义来
看,什么发生了改变,什么没有改
变?
学生回答。

师追问:我们知道,在被发现时
间固定的情况下,A船想要逃跑,必
须加速。

但我们的执法B船肯定会圆
满完成任务,顺利拦截。

若A将速度提高至Va,B要保证
A逃到公海前将其拦截,B也将速度
提高至Vb,那么Va和Vb需要满足什
么条件?
学生讨论后,板书,回答。

中函数k的不变
性,也让学生通
过操作发现了拦
截的不同情况。

如此动态的变
化,让学生更能
感知到数学的魅
力。

变式2的处
理具有一定的难
度,通过讨论加
强了学生的思想
碰撞,也提升了
本节课的高度,
让学生感受到建
模的思想。

活动5 课堂小结
通过今天的学习,你有什么体会或收获?
让学生完成本节课知识与方法
的小结,再次巩固本节课的内容。

师小结:这节课我们从欣赏轴对
称图形开始,通过折叠这一操作研究
了轴对称的概念和性质。

折叠这一操
作对应的数学概念是轴对称,由此产
生许多相等的几何量(拿起学生制作
的等腰三角形),它又有什么性质
呢?你能观察到吗?我们将在明天
进一步学习轴对称图形的性质。

及时总结回
顾,帮助学生构
建新知识,培养
学生的归纳能力
和口头表达能
力。

活动6 课后思考及作业
(1)回顾本节课的所有问题及变式,与同伴探讨尝试提出新的问题并解决。

(2)课本P44:练习1,2教师布置作业,学生课后完成。

巩固并提升所学
知识。

板书设计
课题
学生板书问题(2)学生板书变式2 s=0.2t+5 Va=0.2
s=0.5t Vb=0.5
六、目标检测设计
课本62页:A组复习题第11题.
如图,甲骑自行车与乙骑摩托车沿相同路线由A地到B地行驶,两地之间的距离是60 km,请根据图象回答:
(1)乙骑摩托车的速度是多少?
(2)甲骑自行车的速度是多少?
(3)两人相遇的时候,距B地还有多远?
(4)乙比甲晚多少时间出发,又早到多少时间?
设计意图:让学生体会一次函数在生活中的广泛应用,学习利用一次函数的知识解决问题.。

相关文档
最新文档