高考数学总复习教师用书:第1章第1讲集合
(整理版)高一数学教师用书第一章§1集合的含

§1 集合的含义与表示 应用创新演练课下作业1.以下说法正确的选项是( )A .深圳大学生运动会所有比赛工程组成一个集合B .某个班年龄较小的学生组成一个集合C .{∅}是空集解析:A 项中因为标准确定所以可以构成一个集合,B 项中“较小〞标准不确定不能构成集合,C 项表示一个单元素集合,不是空集.D 项中组成的集合有五个元素. 答案:A( ) ①0与{0}表示同一个集合 ②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1} ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2} ④集合{x |4<x <5}可以用列举法表示A .只有①和④B .只有②和③C .只有② 解析:①中“0〞不能表示集合,而“{0}〞可以表示集合.根据集合中元素的无序性可知②正确;根据集合的互异性可知③错误;④不能用列举法表示,原因是有无数个元素,不能一一列举.答案:C3.给出以下关系:①12∈R ;②2∉Q ;③|-3|∉N +;④|-3|∈N. 其中正确的个数为( ) A .1B .2C .3D .4解析:①②正确,③④错误.答案:B4.定义集合运算:A *B ={}z |z =xy ,x ∈A ,y ∈B ,设A ={}1,2,B ={}0,2,那么集合A *B 的所有元素之和为( )A .0B .2C .3D .6 解析:x =1,y =0时,z =0;x =1,y =2时,z =2;x =2,y =0时,z =0,x =2,y =2时,z =4.根据元素的互异性知,A *B ={}0,2,4,所以A *B 中所有元素之和为0+2+4=6. 答案:D5.集合A ={x |125-x∈N ,x ∈N},那么用列举法表示为________. 解析:根据题意,5-x 应该是12的因数,故其可能的取值为1,2,3,4,6,12,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}6.由实数x ,-x ,|x |,x 2,3x 3所构成的集合最多有________个元素.解析:|x |=x 2,3x 3=x ,讨论x 的符号,故最多有两个元素.答案:27.选择适当的方法表示以下集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合;(3)一次函数y =x +6图像上所有点组成的集合.解:(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2; (3)一次函数y =x +6图像上有无数个点,用描述法表示为{(x ,y )|y =x +6}.8.设x ∈R ,集合A 中含有三个元素3,x ,x 2-2x ,(1)求元素x 应满足的条件;(2)假设-2∈A ,求实数x .解:(1)根据集合元素的互异性可知 ⎩⎪⎨⎪⎧ x ≠3,x ≠x 2-2x ,x 2-2x ≠3,即x ≠0且x ≠3,x ≠-1;(2)∵x 2-2x =(x -1)2-1≥-1,又-2∈A ,∴x =-2.。
新教材高考数学一轮复习第一章1.1集合课件

(3)A
解析 (1)(数形结合)由数轴可知
所以A∪B={x|1≤x<4},故选C.
(2)满足x,y∈ N*,y≥x,且x+y=8的元素(x,y)有(1,7),(2,6),(3,5),(4,4),共4个,故
A∩B中元素的个数为4.
(3)∵A∪B={-1,0,1,2},
∴∁U(A∪B)={-2,3}.故选A.
A.{1,4} B.{1,4,5}
)
C.{4,5} D.{6,7}
答案 C
解析 由题意得∁UB={1,4,5},又A={2,3,4,5},所以A∩(∁UB)={4,5},故选C.
5.(202X江苏南京六校5月联考,1)已知集合A={x|x2-2x<0},B={x|x<1},则
A∪B=
.
答案 (-∞,2)
D.[-4,4]
(2)(202X年1月8省适应测试)已知M,N均为R的子集,且∁RM⊆N,则
M∪(∁RN)=(
A.⌀
B.M
)
C.N
D.R
(3)(202X山东潍坊一模,1)设集合A={2,4},B={x∈N|x-3≤0},则A∪B=(
A.{1,2,3,4}
B.{0,1,2,3,4}
C.{2}
D.{x|x≤4}
= 2
=
=
1
,
4
或
1
2
= 0,
1
故 a=0 或4.
= 1,
解题心得与集合中的元素有关问题的求解策略:
(1)确定集合中的代表元素是什么,即集合是数集、点集,还是其他类型的
集合.
(2)看这些元素满足什么限制条件.
(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验
2020新课标高考艺术生数学复习教师用书:第一章第1节 集 合 Word版含解析

第1节 集 合最新考纲核心素养 考情聚焦1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解全集与空集的含义.4.理解集合之间包含与相等的含义,能识别给定集合的子集.5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.7.能使用Venn 图表达集合的基本关系与基本运算,体会图形对理解抽象概念的作用1.集合的基本概念,形成直观想象和提升数学运算的素养.2.集合间的基本关系,提升逻辑推理和数学运算的素养.3.集合的基本运算,形成直观想象,提升逻辑推理和发展数学运算的素养集合的概念及运算的考查以集合的运算为主,其中交、并、补集的运算以及两集合包含关系的考查是高考的热点;题型多以选择题或填空题的形式出现,一般难度不大,属低档题型,通常与函数、方程、不等式等知识结合,也常出现新情景设置题,考查考生函数与方程、转化与化归、数形结合等数学思想的运用以及对新情景设置题的阅读理解能力1.集合的基本概念(1)集合元素的性质:确定性、无序性、互异性. (2)元素与集合的关系①属于,记为∈;②不属于,记为∉. (3)常见数集的记法集合 自然数集正整数集 整数集 有理数集实数集符号NN *(或N +)ZQR(4)集合的表示方法:①列举法;②描述法;③图示法. 2.集合间的基本关系 关系自然语言符号语言Venn 图A B或B A{x|x∈A,且x∈1.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.2.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)∅={0}.()(2)空集是任何集合的子集,两元素集合是三元素集合的子集.()(3)a在集合A中,可用符号表示为a⊆A.()(4)N⊆N*⊆Z.()(5)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.()答案:(1)×(2)×(3)×(4)×(5)×[小题查验]1.若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A解析:D [由题意知A ={0,1,2,3},由a =22,知a ∉A .] 2.(2018·全国Ⅰ卷)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}解析:B [A ={x |x 2-x -2>0}={x |x <-1或x >2}, ∴∁R A ={x |-1≤x ≤2},故选B.]3.(2017·全国Ⅲ卷)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:B [由题意可得:圆x 2+y 2=1与直线y =x 相交于两点⎝⎛⎭⎫22,22,⎝⎛⎭⎫-22,-22,所以A ∩B 中有两个元素.故选B.]4.(2019·全国Ⅲ卷)已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B =( )A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2} 解析:A [本题考查了集合交集的求法,是基础题.由题意得,B ={x |-1≤x ≤1},则A ∩B ={-1,0,1}.故选A.]5.(人教A 版教材习题改编)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},B ={1,3,5,7},则A ∩(∁U B )=___________________________.答案:{2,4}考点一 集合的基本概念(自主练透)[题组集训]1.(2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:A [∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1, 当x =-1时,y =-1,0,1; 当x =0时,y =-1,0,1; 当x =1时,y =-1,0,1; 所以共有9个,选A.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0D .0或98解析:D [若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.]3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去.当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-324.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n ) 2019=________.解析:由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧ m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2.∴(m -n )2019=-1或0. 答案:-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二 集合间的基本关系(师生共研)[典例] (1)已知集合A ={x |ax =1}, B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________________________________________________________________________.[解析] (1)由题意,得B ={-1,1}, 因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1. 又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}.故选D. (2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4. [答案] (1)D (2){m | m ≤4} [互动探究]本例(1)中若A ={x |ax >1(a ≠0)},B ={x |x 2-1>0},其他条件不变,则a 的取值范围是________.解析:由题意,得B ={x |x >1,或x <-1},对于集合A ,①当a >0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1a . 因为A ⊆B ,所以1a≥1.又a >0,所以0<a ≤1.②当a <0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a. 因为A ⊆B ,所以1a ≤-1,又a <0,所以-1≤a <0,综上所述,0<a ≤1,或-1≤a <0.答案:[-1,0)∪(0,1]由集合的关系求参数的关键点由两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论,注意区间端点的取舍.提醒:解决两个集合的包含关系时,要注意空集的情况.[跟踪训练]1.若集合A={x|ax2+ax+1=0}的子集只有两个,则实数a=________.解析:∵集合A的子集只有两个,∴A中只有一个元素,即方程ax2+ax+1=0只有一个根.当a=0时方程无解.当a≠0时,Δ=a2-4a=0,∴a=4.故a=4.答案:42.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.解析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a).由于A⊆B,如图所示,则a>4,即c=4.答案:4考点三集合的基本运算(多维探究)[命题角度1]求交集、并集1.(2019·全国Ⅱ卷)设集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.(-∞,2)C.(-1,2) D.∅解析:C[A={x|x>-1},B={x|x<2},∴A∩B=(-1,2).]2.(2017·全国Ⅰ卷)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:A[A={x|x<1},B={x|3x<1}={x|x<0},所以A∩B={x|x<0},A∪B={x|x<1}.] [命题角度2]集合的交、并、补的综合运算3.(2019·全国Ⅰ卷)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A =()A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}解析:C[∵∁U A={1,6,7},∴B∩∁U A={6,7}.]4.(2019·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B)=()A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:B[由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.][命题角度3]利用集合的基本运算求参数的取值(范围)5.(2017·全国Ⅱ卷)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=() A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:C[由题意知x=1是方程x2-4x+m=0的解,代入解得m=3,所以x2-4x+3=0,解得x=1或x=3,从而B={1,3}.]6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.解析:∁R B={x|x<1,或x>2},要使A∪(∁R B)=R,则a≥2.答案:[2,+∞)解集合运算问题应注意以下三点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.提醒:Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.1.(2018·全国Ⅱ卷)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5} D.{1,2,3,4,5,7}解析:C[A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.]2.(2019·全国Ⅰ卷)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=() A.{x|-4<x<3} B.{x|-4<x<-2}C .{x |-2<x <2}D .{x |2<x <3}解析:C [∵x 2-x -6<0,∴-2<x <3, 即N ={x |-2<x <3},∴M ∩N ={x |-2<x <2},故选C.]3.如图所示,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是( )A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁I S )D .(M ∩P )∪(∁I S )解析:C [图中的阴影部分是M ∩P 的子集,不属于集合S ,属于集合S 的补集的子集,即是∁I S 的子集,则阴影部分所表示的集合是(M ∩P )∩(∁I S ).故选C.]4.(2019·漳州模拟)满足{2 018}⊆A{2 018,2 019,2 020}的集合A 的个数为( )A .1B .2C .3D .4解析:C [满足{2 018}⊆A {2 018,2 019,2 020}的集合A 可得:A ={2 018},{2 018,2 019},{2 018,2 020}.因此满足的集合A 的个数为3.]5.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:C [因为P ∪M =P ,所以M ⊆P ,即a ∈P , 得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].]6.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A.⎣⎡⎭⎫0,12 B .(-∞,0)∪⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 解析:D [A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}=⎝⎛⎭⎫0,12, 所以A ∩B =⎝⎛⎭⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎡⎭⎫12,+∞.] 7.(2019·合肥模拟)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R |12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎡⎦⎤12,1C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.] 8.(2019·石家庄模拟)函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =( )A .(1,2]B .[1,2]C .(-∞,1]∪[2,+∞)D .(-∞,1)∪[2,+∞)解析:D [使x -2有意义的实数x 应满足x -2≥0,∴x ≥2,∴M =[2,+∞),y =ln(1-x )中x 应满足1-x >0,∴x <1,∴N =(-∞,1),所以M ∪N =(-∞,1)∪[2,+∞),故选D.]9.已知集合A ={(x ,y )|x ,y ∈R ,x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,y =4x 2-1},则A ∩B 的元素个数是________.解析:集合A 是以原点为圆心,半径等于1的圆周上的点的集合,集合B 是抛物线y =4x 2-1上的点的集合,观察图象可知,抛物线与圆有3个交点,因此A ∩B 中含有3个元素.答案:310.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]11.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =3x ,x ∈R },B ={y |y =-(x -1)2+2,x ∈R },则A ⊕B =________________.解析:由题意得A ={y |y =3x ,x ∈R }={y |y >0},B ={y |y =-(x -1)2+2,x ∈R }={y |y ≤2},故A -B ={y |y >2},B -A ={y |y ≤0},所以A ⊕B ={y |y ≤0,或y >2}.答案:(-∞,0]∪(2,+∞)12.(2019·淮南一模)若A ={x |ax 2-ax +1≤0,x ∈R }=∅,则a 的取值范围是________. 解析:∵A ={x |ax 2-ax +1≤0,x ∈R }=∅,∴a =0或⎩⎪⎨⎪⎧a >0Δ=(-a )2-4a <0,解得0≤a <4.∴a 的取值范围是[0,4).答案:[0,4)。
高中数学精品辅导讲义:必修一第1讲 集合(教师版)

第1讲 集 合考点1:集合的概念 集合的引入(说明为什么要学习集合)塔罗牌中有一张牌叫巴比塔,是一个倒了的塔,这个塔源自《圣经·旧约》,《圣经》上说,人类的祖先最初讲的是同一种语言.他们在两河流域定居下来,修起了城池.后来,他们的日子越过越好,决定修建一座可以通到天上去的高塔,这就是巴比塔.直到有一天,高高的塔顶已冲入云霄.上帝耶和华得知此事,立即从天国下凡视察.上帝一看,又惊又怒,认为这是人类虚荣心的象征.上帝心想,人们讲同样的语言,就能建起这样的巨塔,日后还有什么办不成的事情呢?于是,上帝决定让人世间的语言发生混乱,使人们互相言语不通. 数学家希望建立一个所有学数学的人有一个能共同对话的平台,这个平台就是集合.那到底什么叫集合呢?1.⑴ 集合的含义:一些能够确定的不同的对象所构成的整体叫做集合.构成集合的每个对象叫做这如:现在我们班上的所有同学,构成了一个集合,其中每个同学都是这个集合中的一个元素.⑵ 一般情况下,集合用英文大写字母,,,A B C 表示.元素用英文小写字母,,,a b c 表示; ⑶ 不含任何元素的集合叫做空集,记作∅.集合含义的理解对于集合的含义,我们需要注意集合首先是一个整体,所有满足条件的对象都必须在这个集合中. “能够确定”是指有明确的可界定的规则,每一个对象是不是在范围中都能得到客观判定.理解这个要注意以下三点:①界定的规则一定是一个客观的属性,不依赖主观的感觉;如:中国所有的比较老的人不能构成一个集合;中国所有年龄在60岁以上的人可以构成一个集合;这种类型的例子很多,如我们班同学中比较高的人不能构成一个集合,因为姚明与潘长江的标准会很不相同,但给身高一个标准就构成一个集合了,如高于160cm 的人.再如我们班比较帅的人,比较漂亮的人,这个因为有审美观的主观差异,还有情人眼里出西施的特殊情况,所以都不能构成集合.在数学上,由于数学本身的严格,这个东西会变得简单,如方程2320x x -+=的根;小于等于3的实数都可以构成集合;②这个整体如果客观存在,即使不知道也不影响确定性.知识点睛 1.1 集合的概念与表示函数1级集合如:我们班头发根数最多的4个人.世界第五高的山峰;存在,虽然你并不知道.但它们都能构成集合.③方程210x +=的实数根能不能构成一个集合呢?我们可以判定任意一个实数都不在其中,所以它可以构成一个集合,这个集合就是什么都没有的集合,叫做空集,用∅表示.再如,小于3又大于3的集合.我们班既是男性又是女性的同学.都是空集.下面可以构成集合的有_______.①中国人口排在第8-12位的城市;②到两定点的距离的和等于两定点间的距离的点;③高一数学课本中的难题;④方程220x +=的实数解;正解:①②④.2.元素与集合的关系:如果a 是集合A 中的元素,就说a 属于A ,记作a A ∈;如果a 不是集合A 中的元素,就说a 不属于A ,记作a A ∉.3<教师备案> 常见数集写法的字母意义:自然数N 是Natural Number (自然数)的首字母,N 即全体非负整数构成的集合;习惯用*N 或+N 表示正整数集,其中*N 的星是非零的意思;整数集的Z 是德文Zahlen (数字)的首字母.有理数集的Q 是英语/德语Quotient (商)的首字母,因为有理数都可以写成两整数的商. 实数R 是Real Number(实数)的首字母. 在后面的学习中,会在均值不等式部分用+R 表示正实数集,在复数中引入C 表示复数集之外,高中不会接触到其它数集的表示形式.为什么要用一个德文首字母表示整数集呢?使用Z 作为整数集的标记,是因为19世纪德国数论很强很强,所以德国的某些数学家引入的记号后来就通行了,至于这个数学家是谁,说法不一,有人说是朗道,有人说是诺特(此人是迄今为止最牛的女数学家,没有之一).数学中的符号使用,就两个原则.一是优先:谁先提出,得到认可,后面就跟着用.二是方便:谁的符号更实用,更方便.就会得到大家认可,从而流行.例如数字,中国、印度、希腊都有自己的系统,但现在只用阿拉伯数字,就是它方便,而且它有0(汉字的零是后来从阿拉伯数字0抄来的).用∈,∉填空.①1-___N ;②3-___*N ;③12__Z ;④3.14___Q ;___Q ;⑥___R ;⑦π___R ;;∈;∉;∈;∉;∈;∈. 4.元素的性质①确定性:集合中的元素是确定的,不能模棱两可. ②互异性:集合中的元素是互不相同的,相同的元素在集合中只能算作一个. ③无序性:集合中的元素是无次序关系的.<教师备案> 确定性在讲集合的概念时就已经说明了.互异性是指集合中的元素互不相同,这样给定一个集合,会有一些天然的避讳,有一些默认的事实存在,如由1a ,构成的集合中,一定满足1a ≠.因为这里没讲集合的表示法,所以元素的性质都需要结合一些实际中的问题进行讲解.集合的互异性可以通过班上同学举例,如要从班上选出五个同学组队参加一个比赛,这里选出的五个人构成一个集合,这五个人必须是不同的五个人,必须满足互异性,把一个人重复指点五次并不能构成这个集合.集合无序性是指集合中的元素没有顺序,同样还是上面选出的五个人,把他们的姓名按照姓氏笔画顺序排列,还是按照拼音字母顺序排列,还是按照体重数量排列,都是这五个人.这个集合并没有变化.【例1】 ⑴ 若221x x +,,是一个集合中的三个元素,实数x 应满足什么条件? ⑵设R x ∈,将对象x ,x -M ,则集合M 中元素最多时有( )A .3个B .4个C .5个D .6个 ⑶下列叙述中正确的个数是( )①若a -∈Z ,则a ∈Z ;②若a -∉N ,则a ∈N ;③a ∈Z ,若a -∉N ,则a ∈N ;④a ∈Z ,若a ∈N ,则a -∉N .A .0个B .1个C .2个D .3个 【解析】 ⑴ 1x ≠±且2x ≠.⑵ A⑶ C .讲完集合的概念与元素的性质之后,我们自然需要知道如何把一个集合与数学的语言表示出来.下面,我们来看看集合的表示法.考点2:集合的表示法——列举法与描述法5.集合的表示法⑴ 列举法:把集合的所有元素都列举出来或列出几个元素作为代表,其它元素用省略号表示,并写在大括号“{ }”内的表示集合的方法.例如:{12345},,,,,{12345},,,,,.知识点睛 经典精讲【注意】列举法既可以表示有限集(集合中元素个数是有限多个的),也可以表示元素呈现一定规律的无限集,如不大于100的自然数,可以表示为{0123100},,,,,,自然数集可以表示成{0123},,,,.有了列举法,我们就很容易将一些语言翻译成集合语言,如方程260x x +-=的解集可以写成{23}-,;直线2y x =与直线2y x =的交点集合可以写成{(00)(24)},,,. 描述法引入列举法非常简单直观,一个对象是否在集合中很容易判断,但凡是很简单的方法往往就会有一些问题与局限性,如果一个集合中元素太多,而规律性又不强,这时把所有的元素都列出来,就很难做到了:如世界上所有高度在3000米以上的山峰,《红楼梦》中所有的人物,这两个集合用列举法表示非常困难;而所有大于3的实数构成的集合用列举法就根本表示不出来了.另外,有些集合虽然可以确定,元素个数也不多,但元素是哪些却不容易得到,如班上头发最多的四位同学,这用列举法就很难表示.再比如方程220x x a ++=(a 为参数)的解.遇到这样的集合,就需要一些新的表示方法.⑵ 描述法(又称特征性质描述法): 用集合所含元素的共同特征表示集合的方法称为描述法,形如{|()}x A p x ∈,()p x 称为集合的特征性质,x 称为集合的代表元素.A 为x 的范围,有时也写为{|()}x p x x A ∈,.例如:大于3的所有整数用描述法表示为{|3}x x ∈>Z .方程260x x +-=的实根用描述法表示为2{|60}x x x ∈+-=R .【注意】①描述法给出了一个客观的标准,用{|}表示,竖线前面表示集合描述的是谁,竖线后面表示集合中描述的元素具有什么特点.如:{3000}x x 是山峰|的高度在米以上;{|}x x 是人物角色是《红楼梦》中出现的人;{|}x x 是人是《西游记》中出现的人,老师讲到此处时,可以调节一下课堂气氛,问一下学生: 孙悟空在这个集合中吗?不在,他不是人;猪八戒在吗?不在,他也不是人.李世民在吗?在;天篷元帅在吗?……{|3}x x ∈R ≥,说明集合描述的是实数x ,这个实数具有大于等于3的特点.若元素范围为R ,在不致发生误解时,x ∈R 也可以省略,直接写成{|3}x x ≥.但对于集合{|3}x x ∈Z ≥,则x ∈Z 一定不能省略.②除了数集外,还有一类集合是点集,集合中的元素是点,竖线前面的代表元素为()x y ,.如:2{()|}x y y x x =∈R ,,,说明集合是点集,点()x y ,满足2y x =,故集合中的点在抛物线2y x =上,即此集合表示抛物线2y x =上所有的点.③描述法需要注意集合描述与字母选取无关,即{|2}x x >与{|2}y y >表示的是同一个集合.字母只是一个代号,是浮云,后面学到函数我们还会强调这一点.就相当于不管你怎么改名字,你还是你.<教师备案> 在教学用书中有这样的说明:有些集合可以直接写出元素名称,并用花括号括起来表示这类元素的全体,如用{}奇数表示所有的奇数组成的集合.当成是一种特殊的特征性质描述法.遇到这种写法可以向学生作个说明,但不推荐使用.为了方便起见,在后面的教。
新教材老高考适用2023高考数学一轮总复习第一章集合与常用逻辑用语第一节集合pptx课件北师大版

表示
数学运算
2.集合间的关系
直观想象
3.集合的运算
强基础 增分策略
知识梳理
1.集合及其表示
集合中求参数问题检验的依据
(1)集合元素的三大特征:确定性、互异性、无序性.
(2)元素与集合的关系:属于 ∈ 或不属于 ∉ ,二者必居其一.
(3)常见集合的符号表示
数集
自然数集 正整数集 整数集
符号
(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(2,0),共13个,故选D.
(2)由于-1=3×(-1)+2∈M,故A错误;由于10=3×
8
3
+2∉M,故B错误;由于
6k-1=3×(2k-1)+2,所以6k-1∈M,故C正确;由于当k∈Z时,有k2∈Z,所以
N
N+或N*
Z
有理数集 实数集
正实数集
Q
R+
R
(4)集合的表示方法:自然语言、
区间表示法.
(5)集合的分类:有限集和无限集.
列举法
、
描述法
、Venn图法、
2.集合间的基本关系
关系
子集
真子
集
自然语言
集合A中的 任何一个元素都
属于集合B
集合A⊆B,且A≠B
符号语言
A⊆B(或B⊇A)
A⫋B(或B⫌A)
第一章
第一节 集合
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
1.通过实例,了解集合的含义,理解
元素与集合的“属于”关系,能够用
高中数学(苏教版必修一)教师用书第1章 1.1 第1课时 集合的含义 Word版含解析

.集合的含义及其表示第课时集合的含义.通过实例理解并掌握集合的有关概念..初步理解集合中元素的三个特征.(重点).体会元素与集合的属于关系.(重点).掌握常用数集及其专用符号,初步认识用集合语言表示有关数学对象.(重点、易错易混点)[基础·初探]教材整理集合的含义阅读教材开始至倒数第四自然段,完成下列问题..元素与集合的概念确定的一般地,一定范围内某些、不同的对象的全体构成一个集合.集合每一个中的对象称为该集合的元素,简称元..集合中元素的特性确定性集合中元素的特性:、、.无序性互异性判断(正确的打“√”,错误的打“×”)()漂亮的花可以组成集合.( ) ()在一个集合中可以找到两个(或两个以上)相同的元素.( )【解析】()×.因为“漂亮”没有明确的标准,其不满足集合中元素的确定性.()×.因为集合中的元素具有互异性,故在一个集合中一定找不到两个(或两个以上)相同的元素.【答案】()×()×教材整理元素与集合的关系阅读教材最后三个自然段,完成下列问题..元素与集合的表示()元素的表示:通常用小写拉丁字母,,,表示集合中的元素.…,,,()集合的表示:通常用大写拉丁字母表示集合.….元素与集合的关系∈),是集合中的元素,记作()属于(符号:,读作∈.“”属于),不是集合中的元素,记作∉()不属于(符号:或∉或.,读作”不属于“.常用数集及表示符号用“∈”、“∉”填空..;-;;*;.【解析】因为不是自然数,故∉;因为-是整数,故-∈;因为是实数,故∈;因为不是正整数,故∉*;因为是有理数,故∈.。
高考(新课标)数学(理)一轮复习教师用书§1.1 集合及其运算 Word版含解析

第一章集合与常用逻辑用语
.集合
()集合的含义与表示
①了解集合的含义,体会元素与集合的属于关系.
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
()集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集.
②在具体情境中,了解全集与空集的含义.
()集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
③能使用图表达集合间的基本关系及集合的基本运算.
.常用逻辑用语
()理解命题的概念.
()了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
()理解必要条件、充分条件与充要条件的含义.
()了解逻辑联结词“或”“且”“非”的含义.
()理解全称量词和存在量词的意义.
()能正确地对含一个量词的命题进行否定.
§集合及其运算
.集合的基本概念
()我们把研究对象统称为,把一些元素组成的总体叫做.
()集合中元素的三个特性:,, .
()集合常用的表示方法:和.
.元素与集合、集合与集合之间的关系()元素与集合之间存在两种关系:如果是集合中的元素,就说集合,记作;如果不是集合中的元素,就说
集合,记作.
结论:集合{,,…,}的子集有个,非空子集有个,非空真子集有个.
.集合运算中常用的结论
()①∩;②∩;
③∩=;④∩∅=;
⑤∩∩.
()①∪; ②∪;
③∪=;④∪∅=;。
2018北师大版文科数学高考总复习教师用书1-1集合Word版含答案

第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系4.(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)任何集合都有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.()(3)若{x2,1}={0,1},则x=0,1.()(4)若A∩B=A∩C,则B=C.()解析(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)错误.当x=1,不满足互异性.(4)错误.当A=∅时,B,C可为任意集合.答案(1)×(2)×(3)×(4)×2.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是() A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A解析由题意知A={0,1,2,3},由a=22,知a∉A.答案 D3.(2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=() A.{1,3} B.{3,5} C.{5,7} D.{1,7}解析因为A={1,3,5,7},而3,5∈A且3,5∈B,所以A∩B={3,5}.答案 B4.(2017·西安模拟)设全集U={x|x∈N+,x<6},集合A={1,3},B={3,5},则∁U(A∪B)等于()A.{1,4} B.{1,5} C.{2,5} D.{2,4}解析由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},∴∁U(A∪B)={2,4}.答案 D5.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A ∩B的元素个数为________.解析集合A表示圆心在原点的单位圆,集合B表示直线y=x,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.答案 2考点一集合的基本概念【例1】(1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3 C.5 D.9(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.92 B.98C.0 D.0或98解析(1)当x=0,y=0,1,2时,x-y=0,-1,-2;当x=1,y=0,1,2时,x-y=1,0,-1;当x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知,B的元素为-2,-1,0,1,2,共5个.(2)若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.当a=0时,x=23,符合题意;当a≠0时,由Δ=(-3)2-8a=0,得a=9 8,所以a的取值为0或9 8.答案(1)C(2)D规律方法(1)第(1)题易忽视集合中元素的互异性误选 D.第(2)题集合A中只有一个元素,要分a=0与a≠0两种情况进行讨论,此题易忽视a=0的情形.(2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合. 【训练1】 (1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.(2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________.解析 (1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0,所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2. (2)由A =∅知方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意,舍去; 当a ≠0时,Δ=9+8a <0,∴a <-98. 答案 (1)2 (2)⎝ ⎛⎭⎪⎫-∞,-98考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .AB B .BA C .A ⊆B D .B =A(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此BA .(2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4].答案(1)B(2)(-∞,4]规律方法(1)若B⊆A,应分B=∅和B≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn图,化抽象为直观进行求解.【训练2】(1)(2017·南昌质检)若集合A={x|x>0},且B⊆A,则集合B可能是() A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R(2)(2016·渭南调研)已知集合A={x|x=x2-2,x∈R},B={1,m},若A⊆B,则m 的值为()A.2 B.-1C.-1或2 D.2或2解析(1)因为A={x|x>0},且B⊆A,再根据选项A,B,C,D可知选项A正确.(2)由x=x2-2,得x=2,则A={2}.因为B={1,m}且A⊆B,所以m=2.答案(1)A(2)A考点三集合的基本运算【例3】(1)(2015·全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2(2)(2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=() A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2)∪[1,+∞)解析(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.(2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪(∁R Q)={x|-2<x≤3}.答案(1)D(2)B规律方法(1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.(2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】(1)(2017·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=∅C.M⊆N D.M∩N=R(2)(2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=() A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}解析(1)易知N=(-2,3),且M={-1,1},∴M⊆N.(2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.答案(1)C(2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:25分钟)一、选择题1.(2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.AB D.BA解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.(2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=() A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}.答案 D3.(2017·宝鸡模拟)已知集合A={x|lg x>0},B={x|x≤1},则()A.A∩B≠∅B.A∪B=RC.B⊆A D.A⊆B解析由B={x|x≤1},且A={x|lg x>0}=(1,+∞),∴A∪B=R.答案 B4.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是() A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C5.(2016·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=() A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析由y=2x,x∈R,知y>0,则A=(0,+∞).又B ={x |x 2-1<0}=(-1,1). 因此A ∪B =(-1,+∞). 答案 C6.(2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( )A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A .1 B .3 C .7 D .31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 B8.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1} D .{x |0<x <1} 解析∵A ={x |x ≤0},B ={x |x ≥1},∴A ∪B ={x |x ≤0或x ≥1},在数轴上表示如图. ∴∁U (A ∪B )={x |0<x <1}. 答案 D 二、填空题9.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析 ∵1∉{x |x 2-2x +a >0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案(-∞,1]10.(2016·天津卷)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=________. 解析由A={1,2,3},B={y|y=2x-1,x∈A},∴B={1,3,5},因此A∩B={1,3}.答案{1,3}11.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.解析由x(x+1)>0,得x<-1或x>0,∴B=(-∞,-1)∪(0,+∞),∴A-B=[-1,0).答案[-1,0)12.(2017·合肥质检)已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案(2 016,+∞)能力提升题组(建议用时:10分钟)13.(2016·全国Ⅲ卷改编)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁R S)∩T=() A.[2,3] B.(-∞,-2)∪[3,+∞)C.(2,3) D.(0,+∞)解析易知S=(-∞,2]∪[3,+∞),∴∁R S=(2,3),因此(∁R S)∩T=(2,3).答案 C14.(2016·黄山模拟)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 B15.(2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N 14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________. 解析 由14≤2x ≤16,x ∈N , ∴x =0,1,2,3,4,即A ={0,1,2,3,4}. 又x 2-3x >0,知B ={x |x >3或x <0}, ∴A ∩B ={4},即A ∩B 中只有一个元素. 答案 116.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0. 答案 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A的补集为∁U A图形表示(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).诊断自测1.判断正误(在括号内打“√”或“×”)(1)任何集合都有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.()(3)若{x2,1}={0,1},则x=0,1.()(4)若A∩B=A∩C,则B=C.()解析(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.(3)错误.当x=1,不满足互异性.(4)错误.当A=∅时,B,C可为任意集合.答案(1)×(2)×(3)×(4)×2.(必修1P7练习2改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆AB.a⊆AC.{a}∈AD.a∉A解析由题意知A={0,1,2,3},由a=22,知a∉A.答案D3.(·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}解析因为A={1,3,5,7},而3,5∈A且3,5∈B,所以A∩B={3,5}.答案 B4.(·杭州模拟)设全集U ={x |x ∈N *,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( ) A.{1,4}B.{1,5}C.{2,5}D.{2,4}解析 由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}. 答案 D5.(·绍兴调研)已知全集U =R ,集合A ={x |x ≥2},B ={x |0≤x <5},则A ∪B =________,(∁U A )∩B =________.解析 ∵A ={x |x ≥2},B ={x |0≤x <5},∴A ∪B ={x |x ≥0},(∁U A )∩B ={x |0≤x <2}. 答案 {x |x ≥0} {x |0≤x <2}6.已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.解析 集合A 表示圆心在原点的单位圆,集合B 表示直线y =x ,易知直线y =x 和圆x 2+y 2=1相交,且有2个交点,故A ∩B 中有2个元素. 答案 2考点一 集合的基本概念【例1】 (1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A.1B.3C.5D.9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92B.98C.0D.0或98解析 (1)当x =0,y =0,1,2时,x -y =0,-1,-2; 当x =1,y =0,1,2时,x -y =1,0,-1; 当x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知,B 的元素为-2,-1,0,1,2,共5个. (2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98, 所以a 的取值为0或98. 答案 (1)C (2)D规律方法 (1)第(1)题易忽视集合中元素的互异性误选D.第(2)题集合A 中只有一个元素,要分a =0与a ≠0两种情况进行讨论,此题易忽视a =0的情形. (2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合. 【训练1】 (1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,则b -a =________.(2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________. 解析(1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0, 所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2. (2)由A =∅知方程ax 2+3x -2=0无实根, 当a =0时,x =23不合题意,舍去; 当a ≠0时,Δ=9+8a <0,∴a <-98. 答案 (1)2 (2)⎝ ⎛⎭⎪⎫-∞,-98考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.A BB.B AC.A ⊆BD.B =A(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此B A .(2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4. 综上,m 的取值范围为(-∞,4]. 答案 (1)B (2)(-∞,4]规律方法 (1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(·镇海中学质检)若集合A ={x |x >0},且B ⊆A ,则集合B 可能是( ) A.{1,2} B.{x |x ≤1} C.{-1,0,1}D.R(2)(·郑州调研)已知集合A ={x |x =x 2-2,x ∈R },B ={1,m },若A ⊆B ,则m 的值为( ) A.2 B.-1 C.-1或2D.2或2解析 (1)因为A ={x |x >0},且B ⊆A ,再根据选项A ,B ,C ,D 可知选项A 正确.(2)由x =x 2-2,得x =2,则A ={2}. 因为B ={1,m }且A ⊆B , 所以m =2. 答案 (1)A (2)A 考点三 集合的基本运算【例3】 (1)(·全国Ⅰ卷)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( ) A.5B.4C.3D.2(2)(·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2)∪[1,+∞)解析(1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.(2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪(∁R Q)={x|-2<x≤3}.答案(1)D(2)B规律方法(1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.(2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】(1)(·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆MB.N∩M=∅C.M⊆ND.M∩N=R(2)(·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析(1)易知N=(-2,3),且M={-1,1},∴M⊆N.(2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U(A∪B)={2,6}.答案(1)C(2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:25分钟)一、选择题1.(·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则()A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案D2.(·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}.答案D3.(·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则()A.A∩B≠∅B.A∪B=RC.B⊆AD.A⊆B解析 由B ={x |x ≤1},且A ={x |lg x >0}=(1,+∞),∴A ∪B =R . 答案 B4.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A.(-∞,-1] B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1]. 答案 C5.(·山东卷)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A.(-1,1) B.(0,1) C.(-1,+∞)D.(0,+∞)解析 由y =2x ,x ∈R ,知y >0,则A =(0,+∞). 又B ={x |x 2-1<0}=(-1,1). 因此A ∪B =(-1,+∞). 答案 C6.(·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∪Q =( ) A.{1} B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴(∁U P )∪Q ={1,2,4,6}. 答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( ) A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 B8.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U(A∪B)={x|0<x<1}.答案D二、填空题9.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案(-∞,1]10.(·宁波调研)集合A={0,|x|},B={1,0,-1},若A∪B=B,则A∩B=________;A∪B=________;∁B A=________.解析A={0,|x|},B={1,0,-1},若A∪B=B,则A⊆B,∴|x|=1,∴A∩B ={0,1},A∪B={-1,0,1},∁B A={-1}.答案{0,1}{-1,0,1}{-1}11.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B=________.解析由x(x+1)>0,得x<-1或x>0,∴B=(-∞,-1)∪(0,+∞),∴A-B=[-1,0).答案[-1,0)12.(·湖州质检)已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案(2 016,+∞)13.(·金华模拟)设集合A ={x ∈N |6x +1∈N },B ={x |y =ln(x -1)},则A =________,B =________,A ∩(∁R B )=________.解析 当x =0,1,2,5时,6x +1的值分别为6,3,2,1,当x ∈N 且x ≠0,1,2,5时,6x +1∉N ,∴A ={0,1,2,5},由x -1>0,得x >1,∴B ={x |x >1},∁R B={x |x ≤1},∴A ∩(∁R B )={0,1}. 答案 {0,1,2,5} {x |x >1} {0,1}能力提升题组 (建议用时:10分钟)14.(·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =( ) A.[2,3] B.(-∞,-2)∪[3,+∞) C.(2,3)D.(0,+∞)解析 易知S =(-∞,2]∪[3,+∞),∴∁R S =(2,3), 因此(∁R S )∩T =(2,3). 答案 C15.(·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y = ln(1-x )},则图中阴影部分所表示的集合是( ) A.{x |x ≥1} B.{x |1≤x <2} C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}. 答案 B16.(·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________. 解析 由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}. 又x 2-3x >0,知B ={x |x >3或x <0},第11页 共11页 ∴A ∩B ={4},即A ∩B 中只有一个元素.答案 117.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0.答案 018.(·丽水质检)若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的,若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则(1)“好集”P 中的元素最大值为________;(2)“好集”P 的个数为________.解析 (1)由题意得,⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b⇒1a +2a +c =2c ⇒c (a +c )+2ac =2a (a +c )⇒c 2+ac -2a 2=0⇒(c +2a )(c -a )=0,∵c ≠a ,∴c =-2a ,b =a +c 2=-a 2,∴c =4b ,令-2 014≤4b ≤2 014,得-503≤b ≤503,∴P 中最大元素为4b =4×503=2 012.(2)由(1)知P ={-2b ,b ,4b }且-503≤b ≤503,所以“好集”P 的个数为2×503=1 006.答案 (1)2 012 (2)1 006。