近世代数 1.1 集合,1.2 映射
第一章 基本概念

二、代数系统的同构及性质
三、代数系统同构的意义
一、代数系统的同态及性质
定义1 设集合 M及 M 各有代数运算 o 及o, 且 ϕ是 M到 M 的一个映射 .
___ _ ___
如果 ϕ满足以下条件:对 M中任意元素 a, b, 在 ϕ之下由
a → a, b → b 总有 a o b → a o b,
n次置换
1.3
代数运算
一、代数运算的概念
近世代数的主要任务是研究各种抽象的代数系统(带有运算的集合)。 如何定义运算,先看几个我们熟悉的例子: (1)非负整数集Z上的普通加法“+”; (2)数域F上全体n阶矩阵集上的乘法。 可见运算“+” ,矩阵乘法就是个映射。 定义1 设M是一个集合.如果有一个法则,它对M中的任 意两个有次序的元素a 与b,在M中有一个惟一确定的元素 d与它们对应,则称这个法则是集合M的一个代数运算.
设ε表示集合 M的恒等变换,则对 ∀σ ∈T ( M ),有
σε ( x ) = εσ ( x ) = σ ( x ), (∀x ∈ M ),
从而 εσ = σε = σ,
在变换的乘法中,恒等变换着数1在数的普通乘法中相同的作用。
结论:设S(M)表示集合M的全体双射变换作成的集合,则
S ( M ) ⊆ T ( M ), 且变换乘法也是S ( M )的一个代数运算。
f o g, 即 f o g : X → Z,
对∀x ∈ X , ( f o g )( x ) = f [ g ( x )].
四、变换
定义:集合X 到自身的映射,叫做集合X的一个变换 . 定理3 含n个元素的任意集合共有n!个双射变换.
对有限集合的双射变换 ϕ,常用以下特殊符号表 示: L 2 n ⎞ ⎛ 1 ϕ =⎜ ⎜ ϕ (1) ϕ ( 2) L ϕ ( n) ⎟ ⎟ ⎝ ⎠
近世代数中关于集合的划分及其应用研究

近世代数中关于集合的划分及其应⽤研究近世代数中关于集合的划分及其应⽤研究摘要我们对集合并不陌⽣,我们所熟知的集合实际上是朴素集合.那么我们为什么要讨论集合的划分呢?因为它在商群、商环、商域等其他⽅⾯中有着极其重要的应⽤.我们要研究集合的划分就必须研究等价关系,因为它们是互相决定的。
因此我们先从等价关系开始说起,之后再来探讨集合的划分,然后观察集合的划分在各⽅⾯的应⽤.第⼀章等价关系与等价类定义1.1:设S 是⼀个⾮空集合,R 是关于S 的元素的⼀个条件.如果对S 中任意⼀个有序元素对(a ,b ),我们总能确定a 与b 是否满⾜条件R ,就称R 是S 的⼀个关系(relation ).如果a 与b 满⾜条件R ,则称a 与b 满⾜条件R ,则称a 与b 有关系R ,记做aRb ;否则称a 与b ⽆关系R.关系R 也成为⼆元关系.定义1.2:设~是集合A 上的⼀个⼆元关系,若满⾜下列性质:(1)⾃反性:?a ∈A ,a~a;(2)对称性:?a,b ∈A,a~b,则b~a;(3)传递性:?a,b,c ∈A,a~b,b~c,则a~c.则称~A 上的⼀个等价关系.当a~b 时,称a 与b 等价.定义1.3:设⼀个集合A 分成若⼲个⾮空⼦集,使得A 中每⼀个元素属于且只属于⼀个⼦集,则这些⼦集的全体成为A 的⼀个分类。
每个⼦集称为⼀个类.类⾥任何⼀个元素称为这个类的⼀个代表.由定义可知,A 的⾮空⼦集族S={i A |i ∈I } 是A 的⼀个分类当且仅当其满⾜下列性质:(1) Ii iA ∈=A; (2)当j i ≠时,=j i A A ?,即不同的类互不相交.定理1.1 设S={i A |i ∈I } 是A 的⼀个分类,规定~为: a~b ?a 与b 同属于同⼀个类,则~是A 上的⼀个等价关系.证明:⾸先由分类的定义,~是A 的⼀个关系.⽽且,显然?a ∈A ,a~a ;⼜?a ,b ∈A ,若a~b ,则a 与b 属于同⼀个类,从⽽b~a ;?a ,b ,c ∈A ,若a~b ,b~c ,则a 与b 属于同⼀个类,b 与c 属于同⼀个类,于是a 与c 属于同⼀个类,从⽽a~c.因此~是A 上的⼀个等价关系.定理1.2 设~是A 上的⼀个等价关系,对于a ∈A ,令[a]={x|x ∈A,x~a},则A 的⼦集族是A 的⼀个分类.证明(1)?a ∈A ,因为,a~a ,所以a ∈[a],从⽽[a]是⼀个⾮空⼦集,并且[]=∈ A a a A.(2)若[a] [b]≠?,则?c ∈[a] [b],于是c~a ,c~b ,从⽽a~b.x ∈[a],有x~a ,于是x~b ,所以x ∈[b],即[a]?[b].同理[b]?[a].这⾥就得到[a]=[b].所以不同的等价类互不相交.该定理中所构成的⼦集[a]称为A 的⼀个包含a 的~等价类.定义4:设~是A 上的⼀个等价关系,由A 的全体不同~等价类所组成的集合族称为A 关于~的商集,记作A/~.第⼆章商群我们研究商群必须要知道:它是由什么样的等价关系确定的什么样的等价类,然后由这些等价类构成的集合再定义⼀种什么样的运算才是商群,最后为了把⼀些较为复杂的群转化较为简单的群,再给出群的同态基本定理.⼀、什么样的等价关系我们知道由⼀个正整数m ,确定了整数间的⼀个等价关系m R ,即a m Rb ?m|a —b ,?a ,b ∈Z .其中Z 是⼀个由1⽣成的循环加群,(m )是Z 的⼀个⼦加群,且从⽽m R 也可以认为是由Z 的⼀个⼦群(m )所确定的.现在将这个思想推⼴到⼀般的群中,设H 是群G 的⼀个⼦群,在G 中定义⼀个关系R :G b a H ab H a b aRb 1-1-∈?∈∈?,,且容易验证R 是⼀个等价关系.利⽤这个等价关系可以决定群G 的⼀个分类.⼆、什么样的等价类定义2.1 设H ≤G ,由等价关系R 所决定的类称为H 的陪集.定理2.1 设H ≤G ,则包含元素a 的陪集等于Ha aH 或.证明将包含元素a 的陪集记作[a].?b ∈[a],有bRa ,即H h ba H h b a 2-111-∈=∈=且,即b=a 1h =∈a h 2Ha aH =,所以有[a]aH ?=Ha .反之,?b ∈Ha aH =,?21h h ,∈H ,使b=a h ah 21=,于是H h ba H h b a 2-111-∈=∈=且,即bRa ,从⽽b ∈[a],所以有aH ]a [].a [Ha aH =?=因此.三、商群定理2.2 设G 是群,N G ,令G/N={aN |a ∈G},规定: ,/G bN aN N ab bN aN N ∈?=,,)(则(G/N,?)是⼀个群.证明⾸先证明?是G/N 的代数运算,即G/N 到G/N 的映射,也就是要证与代表元的选取⽆关.设aN N a 1=,,bN N b 1=则N n a a 111-∈=,.N n b b 21-1∈=因为N G ,所以11111使3111n b b n =,这样N n n n b b b n b b a a b b a ab 3231-111-111-11-111-∈====)()()()()(,从⽽(ab )N=(11b a )N ,所以?是G/N 的代数运算,⼜?,/G cN bN aN N ∈,,有=====N bc aN ]bc [a N ]c )ab [(cN N ab cN bN aN )()()()(),(cN bN aN ??从⽽?满⾜结合律,且,/G aN eN aN aN eN N ∈??=?,从⽽N=eN 是G/N 的单位元.?,/G aN N ∈存在,/G N a 1-N ∈使,eN aN N a N a aN -11-=?=?从⽽.aN N a 1-的逆元是因此G/N 是⼀个群. 该定理中够作的群G/N 称为G 关于N 的商群.四、有限阶群的阶和⼦群阶的关系定理2.3(Lagrange (拉格朗⽇))设G 是有限群,H 是G 的⼦群,则|G|=[G :H]|H|证明因为G 是有限群,所以[G :H]有限,设为k ,则G=U U H a H a 21…H a k U .⼜因为在H 和H a i 之间存在⼀个双射,所以|H a i |=|H|,因此|G|=H a 1+…+H a k =k|H|=[G :H]|H|. 五、群的同态基本定理定理2.4(同态基本定理)设f 是群G 到G ’的同态,则(1)Kerf G ;(2)G/ Kerf ?Imf.证明(1)因为e ∈ Kerf ,所以Kerf ≠?.⼜?a ,b ∈ Kerf ,x ∈G ,即f (a )=f (b )=e ',则f (a 1b -)= f (a )1b f -)(= e '1e -= e ',f(xa -1x )=f(x)f(a)1x f -)(= f(x) e '1x f -)(=e ',从⽽a 1b -,xa -1x ∈ Kerf ,因此Kerf G.(2)在G/ Kerf 到Imf 间规定⼀个法则:Φ:aKerf f (a ).a) ? aKerf ,bKerf ∈Kerf G/ Kerf ,有aKerf=bKerf ?1a -∈Kerf ?f(1a -b)= e '1a f -)(f (b )= e ' ? f (a )=f (b ),从⽽Φ是⼀个G/ Kerf 到Imf 的映射.b )?a ' ∈ Imf ,?a ∈G ,使 f (a )= a ',于是Φ(aKerf )= f (a )=a ',从⽽Φ是满射.c) ? aKerf ,bKerf ∈Kerf G/ Kerf ,有Φ( aKerf)= Φ( bKerf) ? f (a )=f (b )?1a f -)( f (b )=e ' ?f(1a -b)=e ' ? 1a -b ∈Kerf ? aKerf=bKerf ,从⽽Φ是单射.d) ? aKerf ,bKerf ∈Kerf G/ Kerf ,有Φ( aKerf ?bKerf) =Φ( abKerf)=f(ab)= f (a )f (b )=Φ( aKerf)? Φ( aKerf)? Φ(bKerf),从⽽Φ保持运算.因此Φ是同构.于是G/ Kerf ?Imf.第三章商环我们研究商环的思路是:在商加群的基础上再定义⼀种乘法运算,使得该种运算在某⼀⼦环下构成代数运算进⽽对该种运算构成半群且慢⾜:乘法运算对加法运算符合左分配律和右分配律,在学习过程中我们发现理想是可以在我们定义的乘法运算下满⾜上⾯条件的⼦环,因此我们先研究什么是理想,从⽽给出商环的定义,最后得出环的同态基本定理.⼀、理想定义3.1 设(R ,+,?)是⼀个环,(A ,+)是(R ,+)的⼀个⼦加群,(1)若?r ∈R ,a ∈A 有ra ∈A ,则称A 是R 的左理想;(2)若?r ∈R ,a ∈A 有ar ∈A ,则称A 是R 的右理想;(3)若A 既是R 的左理想,⼜是R 的右理想,则称A 是R 的⽴、理想,记作A R .(4)若A R ,且A ≠R ,则称A 是R 的真理想.由定义可知理想⼀定是⼦环.⼆、商环定义3.2 设R 是环,A R ,在商群(R ,+)/(A ,+)={[x]|x ∈R}={x+A| x ∈R }中再规定:[x]?[y]=[xy],? [x] ,[y] ∈R/A ,则(R/A ,+,?)是⼀个环(R/A 称为R 关于A 的商环或剩余类环,[x]=x+A 称为R 模A 的剩余类).证明⾸先证明上⾯规定的乘法运算是代数运算,即与代表元的选取⽆关.设[x]=[1x ],[y]=[1y ],则x-1x ∈A ,y-1y ∈A.因为A 是R 的理想,所以xy-1x 1y =(x-1x )y+1x (y-1y )∈A ,从⽽[xy]= [1x 1y ].其次? [x],[y] ,[z] ∈ R/A ,有([x]?[y])? [z]= [xy] ? [z]=[( xy)z]= [ x(yz)]= [x] ? [yz]= ([y] ? [z]),从⽽?满⾜结合律.且[x] ?([y] +[z])= [x] ?([y] +[z])=[x(y+z)]=[xy+xz]=[xy]+[xz]= [x]?[y]+ [x] ? [z] 从⽽?对+满⾜左右分配律.同理可证,?对+也满⾜右分配律.因此R/A 是⼀个环.三、环的同态基本定理定理3.1(同态基本定理)设f 是环R 到环R ’的同态,则(1) Kerf R ;(2) R/Kerf ?Imf.证明(1)Kerf 是(R ,+)的⼦加群,⼜a ?∈Kerf ,r ∈ R ,有f (ra )=f (r )f (a )=f (r )0'=0', f (ar )=f (a )f (r )=0’f(r)=0',从⽽ra ,ar ∈Kerf R.(2)因为在R/Kerf 到Imf 间存在⼀个双射: ?:a+Kerf f (a ),且保持加法运算。
大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元
近世代数(抽象代数)课件

· eabc e eabc aaecb bb c e a c cba e
11
CHENLI
§1 代数运算
定义 1.2 设“ ”是非空集合 A 上的一个代数 运算.
意一个二元运算,并将其称为乘法.当 ab c
时, c 称为 a 与 b 的乘积;甚至还将等式 ab c
简写成 ab c .
6
CHENLI
§1 代数运算
例 1 设 R 是实数集.于是,平常的加法“”,减 法“-”和乘法“”都是 R 上的二元运算;除法“”是 R , R \{0}到 R 的代数运算,不是 R 上的二元运算.
明:在不改变元素顺序的前提下,无论怎样在其中添
加括号其中添加括号,这 n 个元素的乘积总等于
n
ai ,
i 1
从而与加括号的方式无关.
23
CHENLI
§1 代数运算
事实上,当 n 1或 n 2 时,无需加括号,我们的结论
自然成立.当 n 3时,由于“ ”适合结合律,我们的结论成
17
CHENLI
§1 代数运算
但是,当“ ”适合结合律时,我们可以定义 A 中任意有限 n ( n 3 )个元素 a1, a2 , , an 的乘积 a1a2 an .这是因为,容易证明,对于 A 中任意 n 个元素 a1, a2 , , an ,只要不改变它们的次序,运 算结果与加括号的方式无关(见习题 2).这样一 来,我们便可定义 a1, a2 , , an 的乘积 a1a2 an 就 是按任意一种方式添加括号后的算出的结果.
2
CHENLI
近世代数基础课件

第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
高等代数课程教学大纲

《高等代数》课程教学大纲一.课程教学目的与任务本课程是我院数学系数学教育专业的一门重要基础课程。
其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间、二次型等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识;另一方面还对提高学生的抽象思维、辑推理及运算能力,开发学生智能,加强“三基”(基础知识、基本理论、基本理论)和培养学生创造性能力等起到重要作用。
二.与各课程的联系本课程是数学专业的后继课程:如近世代数、数论、离散数学、计算方法、微分方程、泛函分析等的先导课程和基础课程。
三.教学时数及分配总学时198,其中课堂讲授 151学时,习题课(包括复习课)47学时。
各学期教学时数安排情况:第二学期:108学时,自第一章至第五章,周学时6第三学期:90学时,自第五章至第九章,周学时5四.讲授内容与要求:第一章基本概念(12学时)一.教学目的和要求:1. 正确理解集合的概念,明确集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系。
2.掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件。
3.理解和掌握数学归纳法原理,能熟练运用数学归纳法。
4.理解和掌握整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。
5.掌握数环,数域的概念,能够判别一些数集是否为数环、数域,懂得任意数域都包含有理数域。
二.教学内容:1.1 集合(2学时)1.2 映射(3学时)1.3 数学归纳法(2学时)1.4 整数的一些整除性质(3学时)1.5 数环,数域(2学时)第二章多项式(37学时)一.教学目的和要求:1.掌握数域上一元多项式的概念、运算以及多项式的和与积的次数。
2.正确理解多项式的整除概念和性质。
理解和掌握带余除法。
3.掌握最大公因式的概念、性质、求法以及多项式互素的概念和性质4.理解不可约多项式的概念,掌握多项式唯一因式分解定理。
近世代数第一章分析

1.1 集合 1.2 映射与变换 1.3 代数运算 1.4 运算律 1.5 同态与同构 1.6等价关系与集合的分类
运城学院
应用数学系
1.1 集合 1.2 映射与变换
教义和性质
映射,单射,满射,双射,逆
映射的定义及例子
变换,置换等的定义及例子
φ是单射 φ是满射 φ 是双
射
7.映射是函数概念的推广,是对应法则,A 是定义域,B包含值域,根据B是否与值域 相等,可将映射区分为是否是满射。A中不 同元素的像可能相同,也可能不同,据此 可区分映射是否为单射。 定义:设为A到B的一个映射,如果B中 每个元素在A中都有逆像,则称为A到B的一 个满射。如果A 中不同的元素在B中的像也 不同,则称是从A到B的一个单射。如果既 是满射又是单射,则称是从A到B的一个双 射,或一一映射。
并称 στ
为 σ 与 τ 的合成或乘积。
x →σ(τ(x))
12.集合A 到自身的映射,叫做集合A的一个变换, 类似可定义单变换,满变换,双射变换(一一变 换)等。 将集合A每个元素映为自身的变换,称为A的恒 等变换,φ :A → Bφ 它是一个一 一变换。 x → x,
例:P9例9-10 定理:含有n个元素的集合共有n!个双射变换。
A B表示A是B的真子集,即B中有不存 在A的元素
A B表示A不是B的子集
A B表示A不是B的真子集 A=B A B且B A 3.如果集合A含有无穷多个元素,则记为 |A|= ∞ ,如果A含有n个元素,则记为 =n 。(A的阶),有|A∪B|+ |B∪A| = |A| + |B|
4.称集合A-B={a| a A, a B}为集合A
10.设б与 τ 都是A到B的映射,如果 x A,都有б(x)=τ (x),则称б与τ 相
1,2,1映射

是
课堂小结:
本节课学习了以下内容:
对应:
映射概念: 特征: 要素:
谢 谢 配合 再见
应才是一个映射? 一对一,多对一是映射.
但一对多显然不是映射.
三.一一映射的概念
一般地,设A、B是两个非空集合, 若 f:A→B是从集合A到集合B的映射,且对于集 合A中的不同元素在集合B中都有不同的象,B 中任一元素都有原象,那么,这个映射就叫做 从A到B的一一映射.
例3.在下列对应中,哪些对应是A到B的映射?哪些是A到B 上的一一映射?为什么?
A a1 a2 a3 a4 (1) B b1 b2 b3 b4 A a1 a2 a3 a4 B b1 b2 b3 b4 A a1 a2 a3 a4 B b1 b2 b3 b4 A a1 a2 a3 a4 B b1 b2 b3 b4
(2)
(3)
(4)
说明:A是原象集,B不是象集,象的集合C是B的子集,
下面我们将学习一种特殊的对应------
映
射
2、设A,B分别是两个集合,为简明起见,设A, B分别是两个有限集,观察下列三个对应: A乘2B A平方B A相反数B 1 2 -1 1 -1 -2 1 -1 2 4 -2 4 0 0 2 1 3 6 -3 9 1 2 3
对于左边集合A中的任何一个元素,在右边集合B中都 有唯一的元素和它对应。 (1) (2) (3)
注意:
①任意性:映射中的两个集合A,B可以是数集、 点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A 的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中 都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的 象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须 是B中的元素,不要求B中的每一个元素都有原象,即 返回 A中元素的象集是B的子集.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:
近世代数
(抽象代数)
使用教材:张禾瑞著
《近世代数基础》
主要参考书:朱平天等编《近世代数》
杨子胥编著《近世代数》
第一章 基 本 概 念
§ 1 集 合
定义 令A 1 , A 2 , … , A n 是n 个集合,由一切从A 1 , A 2 , … , A n
里顺序取出的元素组12(,,,),n i i a a a a A ∈ 所做成的集合叫做集合 A 1 , A 2 , … , A n 的直积(Descartes 积). 记为A 1⨯ A 2⨯⋯⨯ A n .
A 1⨯ A 2⨯⋯⨯ A n = { ( a 1, a 2,⋯ , a n ) | a i ∈ A i , i = 1,2, ⋯ , n }
§2 映 射
定义 如通过一个法则φ, 对于任一个 12n A A A ⨯⨯⨯ 的元(a 1, a 2, …, a n ) (a i ∈A i ), 都能得到D 的一个唯一的元d , 那么这个法则φ叫做集合 12n A A A ⨯⨯⨯ 到集合D 的一个映射, 元d 叫做元 (a 1, a 2, …, a n ) 在映射φ之下的像, 元 (a 1, a 2, …, a n ) 叫做元d 在φ之下的逆像(原像) . 通常表为:
φ: (a 1, a 2, …, a n ) → d = φ( a 1, a 2, …, a n )
注 如果令A = A 1⨯A 2⨯⋯⨯A n , 则上述定义中的φ 就是熟知的集
合A 到集合D 的映射.。