电磁感应计算题总结

合集下载

电磁感应计算题及解答讲解

电磁感应计算题及解答讲解

电磁感应计算题及解答讲解⼀、选择题1、如图所⽰,空间存在两个磁场,磁感应强度⼤⼩均为B,⽅向相反且垂直纸⾯,MN、PQ为其边界,OO’为其对称轴。

⼀导线折成变长为的正⽅形闭合回路abcd,回路在纸⾯内以恒定速度v o向右运动,当运动到关于OO’对称的位置时A.穿过回路的磁通量为零B.回路中感应电动势⼤⼩为C.回路中感应电流的⽅向为顺时针⽅向D.回路中ab边与cd边所受安培⼒⽅向相同2、如图8,在O点下⽅有⼀个具有理想边界的磁场,铜环在A点由静⽌释放向右摆⾄最⾼点B,不考虑空⽓阻⼒,则下列说法正确的是()A.A、B两点在同⼀⽔平线B.A点⾼于B点C.A点低于B点D.铜环将做等幅摆动⼆、计算题3、如图所⽰,两根质量均为m=2kg的⾦属棒垂直地放在光滑的⽔平导轨上,左右两部分导轨间距之⽐为1∶2,导轨间有⼤⼩相等但左右两部分⽅向相反的匀强磁场,CD棒电阻为AB棒电阻的两倍,不计导轨电阻,今⽤250N的⽔平⼒F向右拉CD棒,在CD棒运动0.5m的过程中,两棒上产⽣的焦⽿热共为45J,此时CD棒速率为8m/s,⽴即撤去拉⼒F,设导轨⾜够长且两棒始终在不同磁场中运动,求:(1)撤去拉⼒F瞬间AB棒速度v A;(2)两棒最终匀速运动的速度v A′和v C′。

4、如图所⽰,光滑矩形斜⾯ABCD的倾⾓为,在其上放置⼀矩形⾦属线框,的边长,的边长,线框的质量,电阻,线框通过细线绕过定滑轮与重物相连,细线与斜⾯平⾏且靠近。

重物质量,离地⾯的⾼度为。

斜⾯上区域是有界匀强磁场,⽅向垂直于斜⾯向上,已知AB到的距离为,到的距离为,到CD的距离为,取。

现让线框从静⽌开始运动(开始时刻与AB边重合),发现线框匀速穿过匀强磁场区域,求:(1)区域内匀强磁场的磁感应强度B(2)线框在通过磁场区域过程中产⽣的焦⽿热Q(3)通过计算分析画出线框从开始运动到边与CD边重合过程中线框的图象5、如图所⽰,半径为r的圆形导线框内有⼀匀强磁场,磁场⽅向垂直于导线框所在平⾯,导线框的左端通过导线接⼀对⽔平放置的平⾏的⾦属板,两极间的距离为d,板长为L。

高中物理电磁感应现象习题知识归纳总结附答案解析

高中物理电磁感应现象习题知识归纳总结附答案解析

高中物理电磁感应现象习题知识归纳总结附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad 边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s【解析】【分析】【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R =() 此时线框所受的磁场力与阻力平衡,得:F f =2m 028m/s 4fR v v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv =线圈中的电流:E I R= 实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L v t ft mv R∑∆+= 而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-== 所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--= 得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat = 金属框中感应电流002BLat I R= 又因为安培力2200042B L at F BI L R== 对实验车,由牛顿第二定律得:0F f = 即2204B L at f R= 得:02s t =2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。

电磁感应计算题总结(易错题型)

电磁感应计算题总结(易错题型)

电磁感应易错题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=1.0Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=0.20Ω。

导线框放置在匀强磁场中,磁场的磁感应强度B =0.50T ,方向垂直导线框所在平面向里。

金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。

若金属棒以v =4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。

2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g 。

(1)求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。

(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。

3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =0.50T 、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =0.50Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力F =4.0N 向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。

高中物理电磁感应现象习题知识归纳总结

高中物理电磁感应现象习题知识归纳总结

高中物理电磁感应现象习题知识归纳总结一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mvI Rt-=3.如图所示,无限长平行金属导轨EF 、PQ 固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m ,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T 。

电磁感应知识点总结以及习题

电磁感应知识点总结以及习题

图9-1-4电磁感应一磁通量的计算:只适用于匀强磁场的情况,且式中的S 是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS ⊥=BSsinθ,θ是S 与磁场方向的夹角.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负.磁通量的意义:指穿过某个面的磁感线的条数练习1面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场 中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过 abcd 的磁通量变化量ΔΦ= .练习2 在水平面上有一不规则的多边形导线框,面积为S=20cm 2, 在竖直方向加以如图9-1-2所示的磁场,则下列说法中正确的 是(方向以竖直向上为正)( )A.前2s 内穿过线框的磁通的变化为ΔΦ=0B .前1s 内穿过线框的磁通的变化为ΔΦ=-30WbC .第二个1s 内穿过线框的磁通的变化为ΔΦ=-3x10-3W bD .第二个1s 内穿过线框的磁通的变化为ΔΦ= -1x10-3W b 二、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律内容:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量变化.(增反减同)练习3 如图9-1-4所示,用一根长为L 质量不计的绝缘细杆与一个上弧长为0l 、下弧长为d 0的金属线框的中点连结并悬挂于O 点,悬点正下方存在一个上弧长为20l 、下弧长为2d 0的方向垂直纸面向里的匀强磁场,且 d 0<<L .先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦力,下列说法正确的是( ) A.金属线框进入磁场时感应电流的方向为a →b →c →d →aB.金属线框离开磁场时感应电流的方向为a →d →c →b →aC.金属线框dc 边进入磁场与ab 边离开磁场的速度大小总是相等D.金属线框最终将在磁场内做往复运动图9-1-1图9-1-2图9-1-16练习4某实验小组用如图9-1-3所示的实验装置来验 证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电 流计的感应电流方向是( )A.a →○G →b B.先a →○G →b,后b →○G →a C.先b →○G →a D.先b →○G →a,后a →○G →b 三 、楞次定律的应用:阻碍相对运动 (来拒去留)练习5如图9-1-5所示,ab 是一个可以绕垂直于纸面的轴 O 转动的闭合矩形导体线圈,当滑动变阻器R 滑片 P 自左向右滑 的过程中,线圈ab 将( ) A.静止不动 B.顺时针转动 C.逆时针转动 D.发生转动,但电源的极性不明,无法确定转动方向 练习6一个弹性导体做成的闭合线圈,垂直于磁场方向放置,如图所示,当磁感应强度B 发生变化时,观察到线圈所围的面积增大了,那么磁感应强度B 的方向和大小变化的情况可能是A. B 的方向垂直于线圈向里,并不断增大B. B 的方向垂直于线圈向里,并不断减小C. B 的方向垂直于线圈向外,并不断增大D. B 的方向平行于线圈向外,并不断减小 5.如图所示,当变阻器的滑片向左滑动时,练习7如图 9-1-16所示,水平放置的两条光滑轨道上,有可自由移动的金属棒PQ 、MN ,当PQ 在外力作用下运动时,MN 在磁场力作用下向右运动,则PQ 所做的运动可能是( )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动四、感应电动势的计算1感生电动势 (磁场变化)公式:nt∆ΦE=∆ 计算平均值2.动生电动势 (导体切割磁感线产生的感应电动势)一般计算瞬时值 (1)公式:E=BL v sin θ (2)对公式的理解其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直(实际应用中一般只涉及此种情况).若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定图9-1-5R 图9-1-3图9-2-7图12-1ABD平面的垂线上的投影长度.直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L vω+= ,所以122LωE=练习8如图12-1所示,平行导轨间距为d ,一端跨接一个电阻为场的磁感强度为B ,方向与导轨所在平面垂直。

高中物理法拉第电磁感应定律例题试题总结

高中物理法拉第电磁感应定律例题试题总结

法拉第电磁感应定律一、基础练1.当穿过线圈的磁通量发生变化时,下列说法中正确的是( ) A .线圈中一定有感应电流 B .线圈中一定有感应电动势C .感应电动势的大小跟磁通量的变化成正比D .感应电动势的大小跟线圈的电阻有关答案 B 解析 穿过闭合电路的磁通量发生变化时才会产生感应电流,感应电动势与电路是否闭合无关,且感应电动势的大小跟磁通量的变化率成正比.2.一根直导线长0.1 m ,在磁感应强度为0.1 T 的匀强磁场中以10 m/s 的速度匀速运动,则导线中产生的感应电动势的说法错误的是( )A .一定为0.1 VB .可能为零C .可能为0.01 VD .最大值为0.1 V答案 A 解析 当公式E =BL v 中B 、L 、v 互相垂直而导体切割磁感线运动时感应电动势最大:E m =BL v =0.1×0.1×10 V =0.1 V ,考虑到它们三者的空间位置关系,B 、C 、D 正确,A 错.3.(双选)无线电力传输目前取得重大突破,在日本展出了一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力.两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图1所示.下列说法正确的是( )图1A .若A 线圈中输入电流,B 线圈中就会产生感应电动势B .只有A 线圈中输入变化的电流,B 线圈中才会产生感应电动势C .A 中电流越大,B 中感应电动势越大D .A 中电流变化越快,B 中感应电动势越大答案 BD 解析 根据产生感应电动势的条件,只有处于变化的磁场中,B 线圈才能产生感应电动势,A 错,B 对;根据法拉第电磁感应定律,感应电动势的大小取决于磁通量变化率,所以C 错,D 对.4.闭合回路的磁通量Φ随时间t 的变化图象分别如图2所示,关于回路中产生的感应电动势的下列论述,其中正确的是( )图2A .图甲回路中感应电动势恒定不变B .图乙回路中感应电动势恒定不变C .图丙回路中0~t 1时间内感应电动势小于t 1~t 2时间内感应电动势D .图丁回路中感应电动势先变大后变小答案 B 解析 因E =ΔΦΔt ΔΦΔt =0,即电动势E 为0;图乙中ΔΦΔt=恒量,即电动势E 为一恒定值;图丙中E 前>E 后;图丁中图象斜率ΔΦΔt先减后增,即回路中感应电动势先减后增,故只有B 选项正确.5.如图3所示,PQRS 为一正方形导线框,它以恒定速度向右进入以MN 为边界的匀强磁场,磁场方向垂直线框平面向里,MN 线与线框的边成45°角,E 、F 分别是PS 和PQ 的中点.关于线框中的感应电流,正确的说法是( )图3A .当E 点经过边界MN 时,线框中感应电流最大B .当P 点经过边界MN 时,线框中感应电流最大C .当F 点经过边界MN 时,线框中感应电流最大D .当Q 点经过边界MN 时,线框中感应电流最大 答案 B 解析 当P 点经过边界MN 时,切割磁感线的有效长度最大为SR ,感应电流达到最大.6.如图4(a)所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t 0和B 0.导线的电阻不计.图4求0至t 1时间内(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电荷量q 及电阻R 1上产生的热量. 答案 (1)nB 0πr 223Rt 0从b 到a(2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 20 解析 (1)由图象分析可知,0至t 1时间内ΔB Δt =B 0t 0.由法拉第电磁感应定律有E =n ΔΦΔt =n ΔB Δt·S ,而S =πr 22.由闭合电路欧姆定律有I 1=E R 1+R .联立以上各式得,通过电阻R 1上的电流大小I 1=nB 0πr 223Rt 0.由楞次定律可判断通过电阻R 1上的电流方向从b 到a . (2)通过电阻R 1上的电量:q =I 1t 1=nB 0πr 22t 13Rt 0电阻R 1上产生的热量:Q =I 21R 1t 1=2n 2B 20π2r 42t 19Rt 20二、提升练7.(双选)如图5所示,A 、B 两闭合线圈为同样导线绕成,A 有10匝,B 有20匝,两圆线圈半径之比为2∶1.均匀磁场只分布在B 线圈内.当磁场随时间均匀减弱时( )图5A .A 中无感应电流B .A 、B 中均有恒定的感应电流C .A 、B 中感应电动势之比为2∶1D .A 、B 中感应电流之比为1∶2答案 BD 解析 只要穿过线圈内的磁通量发生变化,线圈中就有感应电动势和感应电流,因为磁场变化情况相同,有效面积也相同,所以,每匝线圈产生的感应电动势相同,又由于两线圈的匝数和半径不同,电阻值不同,根据欧姆定律,单匝线圈电阻之比为2∶1,所以,感应电流之比为1∶2.因此正确的答案是B 、D.8.在匀强磁场中,有一个接有电容器的导线回路,如图6所示,已知电容C =30 μF ,回路的长和宽分别为l 1=5 cm ,l 2=8 cm ,磁场变化率为5×10-2 T/s ,则( )图6A .电容器带电荷量为2×10-9C B .电容器带电荷量为4×10-9 C C .电容器带电荷量为6×10-9 CD .电容器带电荷量为8×10-9 C答案 C 解析 回路中感应电动势等于电容器两板间的电压,U =E =ΔΦΔt =ΔB Δt·l 1l 2=5×10-2×0.05×0.08 V =2×10-4 V .电容器的电荷量为q =CU =CE =30×10-6×2×10-4 C =6×10-9C ,C 选项正确.9.(双选)如图7所示,一正方形线圈abcd 在匀强磁场中绕垂直于磁感线的对称轴OO ′匀速运动,沿着OO ′观察,线圈沿逆时针方向转动.已知匀强磁场的磁感应强度为B ,线圈匝数为n ,边长为l ,电阻为R ,转动的角速度为ω.则当线圈转至图示位置时( )图7 A .线圈中感应电流的方向为abcda B .线圈中的感应电流为nBl 2ωRC .穿过线圈的磁通量为0D .穿过线圈的磁通量的变化率为0答案 BC 解析 图示位置bc 和ad 的瞬时切割速度均为v =ωl 2,ad 边与bc 边产生的感应电动势都是E =Bl v =12Bl 2ω且bd 为高电势端,故整个线圈此时的感应电动势e =2×n 12Bl 2ω=nBl 2ω,感应电流为nBl 2ωR,B 正确.由右手定则可知线圈中的电流方向为adcba ,A 错误.此时磁通量为0,但磁通量变化率最大,故选项为B 、C. 10.(双选)如图8所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴.一导线折成边长为l 的正方形闭合回路abcd ,回路在纸面内以恒定速度v 0向右运动,当运动到关于OO ′对称的位置时( )图8A .穿过回路的磁通量为零B .回路中感应电动势大小为Bl v 0C .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同答案 AD 解析 线框关于OO ′对称时,左右两侧磁通量大小相等,磁场方向相反,合磁通量为0;根据右手定则,cd 的电动势方向由c 到d ,ab 的电动势方向由a 到b ,且大小均为Bl v 0,闭合电路的电动势为2Bl v 0,电流方向为逆时针;根据左手定则,ab 和cd 边所受安培力方向均向左,方向相同,故正确的选项为A 、D.11.用均匀导线做成的正方形线框边长为0.2 m ,正方形的一半放在垂直纸面向里的匀强磁场中,如图9甲所示.当磁场以10 T/s 的变化率增强时,线框中点a 、b 两点间的电势差是( )图9A .U ab =0.1 VB .U ab =-0.1 VC .U ab =0.2 VD .U ab =-0.2 V答案 B 解析 题中正方形线框的左半部分磁通量变化而产生感应电动势,从而在线框中有感应电流,把左半部分线框看成电源,设其电动势为E ,内电阻为r2,画出等效电路如图乙所示.则ab 两点间的电势差即为电源的路端电压,设l 是边长,正方形线框的总电阻为r ,且依题意知ΔB Δt 10 T/s. 由E =ΔΦΔt 得E =ΔBS Δt =ΔBl 22Δt =10×0.222V =0.2 V ,所以U =I r 2=E r 2+r 2·r 2=0.2r ×r2V =0.1 V . 由于a 点电势低于b 点电势,故U ab =-0.1 V ,即B 选项正确.12.如图10所示,在空间中存在两个相邻的、磁感应强度大小相等、方向相反的有界匀强磁场,其宽度均为L .现将宽度也为L 的矩形闭合线圈,从图示位置垂直于磁场方向匀速拉过磁场区域,则在该过程中,能正确反映线圈中所产生的感应电流或其所受的安培力随时间变化的图象是( )图10答案 D 解析 由楞次定律可知,当矩形导线框进入磁场和出磁场时,磁场力总是阻碍物体的运动,方向始终向左,所以外力F 始终水平向右,因安培力的大小不同,故选项D 是正确的,选项C 是错误的.当矩形导线框进入磁场时,由法拉第电磁感应定律判断,感应电流的大小在中间时是最大的,所以选项A 、B 是错误的.点评 题中并没有明确电流或安培力的正方向,所以开始时取正值或负值都可以,关键是图象能否正确反映过程的特点. 13.如图11所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.图11(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8) 解析 (1)金属棒开始下滑的初速度为零,根据牛顿第二定律得mg sin θ-μmg cos θ=ma ①,由①式解得 a =10×(0.6-0.25×0.8) m/s 2=4 m/s 2②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡,mg sin θ-μmg cos θ-F =0③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率F v =P ④,由③④两式解得:v =P F =80.2×10×(0.6-0.25×0.8) m/s=10 m/s ⑤ (3)设电路中电流为I ,两导轨间金属棒的长为L ,磁场的磁感应强度为B ,I =BL vR⑥,P =I 2R ⑦由⑥⑦两式解得:,B =PRv L =8×210×1T =0.4 T ⑧,磁场方向垂直导轨平面向上法拉第电磁感应定律同步练习二基础达标:1、法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小 ( )A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁感应强度成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁通量的变化量成正比 2、将一磁铁缓慢地或迅速地插到闭合线圈中同样位置处,不发生变化的物理量有 ( ) A.磁通量的变化率 B.感应电流的大小 C.消耗的机械功率 D.磁通量的变化量E.流过导体横截面的电荷量3、恒定的匀强磁场中有一圆形闭合导线圈,线圈平面垂直于磁场方向,当线圈在磁场中做下列哪种运动时,线圈中能产生感应电流 A.线圈沿自身所在平面运动 B.沿磁场方向运动 C.线圈绕任意一直径做匀速转动 D.线圈绕任意一直径做变速转动4、一个矩形线圈,在匀强磁场中绕一个固定轴做匀速运动,当线圈处于如图所示位置时,此线圈 ( ) A.磁通量最大,磁通量变化率最大,感应电动势最小 B.磁通量最大,磁通量变化率最大,感应电动势最大 C.磁通量最小,磁通量变化率最大,感应电动势最大 D.磁通量最小,磁通量变化率最小,感应电动势最小5、一个N 匝的圆线圈,放在磁感应强度为B 的匀强磁场中,线圈平面跟磁感应强度方向成30°角,磁感应强度随时间均匀变化,线圈导线规格不变.下列方法中可使线圈中感应电流增加一倍的是 ( )A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向 6、闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比( ) A 、磁通量 B 、磁感应强度 C 、磁通量的变化率 D 、磁通量的变化量 7、穿过一个单匝数线圈的磁通量,始终为每秒钟均匀地增加2 Wb ,则( ) A 、线圈中的感应电动势每秒钟增大2 V B 、线圈中的感应电动势每秒钟减小2 V C 、线圈中的感应电动势始终为2 V D 、线圈中不产生感应电动势8、如图1所示,矩形金属框置于匀强磁场中,ef 为一导体棒,可在ab 和cd 间滑动并接触良好;设磁感应强度为B ,ef 长为L ,在Δt 时间内向左匀速滑过距离Δd ,由电磁感应定律E=nt∆∆Φ可知,下列说法正确的是( )图1A 、当ef 向左滑动时,左侧面积减少L ·Δd,右侧面积增加L ·Δd ,因此E=2BL Δd/ΔtB 、当ef 向左滑动时,左侧面积减小L ·Δd ,右侧面积增大L ·Δd ,互相抵消,因此E=0C 、在公式E=nt∆∆Φ中,在切割情况下,ΔΦ=B ·ΔS ,ΔS 应是导线切割扫过的面积,因此E=BL Δd/ΔtD 、在切割的情况下,只能用E=BLv 计算,不能用E=nt∆∆Φ计算9、在南极上空离地面较近处,有一根与地面平行的直导线,现让直导线由静止自由下落,在下落过程中,产生的感应电动势( ) A 、增大 B 、减小 C 、不变 D 、无法判断10、一个200匝、面积为20 cm 2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05 s 内由0.1 T 增加到0.5 T.在此过程中穿过线圈的磁通量的变化是___________ Wb;磁通量的平均变化率是___________ Wb/s;线圈中的感应电动势的大小是___________ V.能力提升:11、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab以水平初速度v0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将()A.越来越大B.越来越小C.保持不变D.无法确定12、如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab以后的运动情况可能是()A.减速运动到停止B.来回往复运动C.匀速运动D.加速运动13、粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图4-3-12所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是()14、一个面积S=4×10-2m2、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,则下列判断正确的是()A、在开始的2 s内穿过线圈的磁通量变化率等于-0.08 Wb/sB、在开始的2 s内穿过线圈的磁通量的变化量等于零C、在开始的2 s内线圈中产生的感应电动势等于-0.08 VD、在第3 s末线圈中的感应电动势等于零15、如图所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则()<W2,q1<q2B、W1<W2,q1=q2 C、W1>W2,q1=q2D、W1>W2,q1>q2A、W16、如图所示,半径为r的n匝线圈套在边长为L的正方形abcd之外,匀强磁场局限在正方形区域内且垂直穿过正方形面积.当磁感应强度以ΔB/Δt的变化率均匀变化时,线圈中产生感应电动势的大小为____________________.17、在图中,EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆.有均匀磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB()A、匀速滑动时,I1=0,I2=0B、匀速滑动时,I1≠0,I2≠0C、加速滑动时,I1=0,I2=0D、加速滑动时,I1≠0,I2≠018、如图4-3-10所示,在光滑的绝缘水平面上,一个半径为10 cm、电阻为1.0 Ω、质量为0.1 kg的金属环以10 m/s的速度冲入一有界磁场,磁感应强度为B=0.5 T.经过一段时间后,圆环恰好有一半进入磁场,该过程产生了3.2 J的电热,则此时圆环的瞬时速度为___________m/s;瞬时加速度为___________ m/s2.19、如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同.图中O位置对应于弹簧振子的平衡位置,P、Q两位置对应于弹簧振子的最大位移处.若两导轨的电阻不计,则()A、杆由O到P的过程中,电路中电流变大B、杆由P到Q的过程中,电路中电流一直变大C、杆通过O处时,电路中电流方向将发生改变D、杆通过O处时,电路中电流最大20、如图4-3-14所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B,方向垂直于纸面向内.一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计.导体棒与圆形导轨接触良好.求:(1)、在滑动过程中通过电阻r的电流的平均值;(2)、MN从左端到右端的整个过程中,通过r的电荷量;(3)、当MN通过圆导轨中心时,通过r的电流是多大?21、如图所示,两根平行且足够长的金属导轨置于磁感应强度为B的匀强磁场中,磁场的方向垂直于导轨平面,两导轨间距为L,左端连一电阻R,右端连一电容器C,其余电阻不计。

电磁感应题型汇总

电磁感应题型汇总

电磁感应专题复习汇总2(基础练)专题一:等效电路的问题1. 产生感应电流的部分导体相当于整个电路中的电源,可画出等效电路图2. 电源的电动势可用E ntφ∆=∆或,,===E E BLv I F BIL R 计算3. 判断电源正负极或比较电路中电势可根据等效电路中外电路的电流方向判断(电流在电源外部是从 极流向 极,从 电势流向 电势) 4. 根据闭合电路的欧姆定律EI R =总算出电流,由此还可算出电功率或热量 5. 通过闭合回路电量的公式:总φ∆=q nR 1、(北京市西城区2014届高三上学期期末考试) (1)如图1所示,两根足够长的平行导轨,间距L =0.3 m ,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B 1 = 0.5 T 。

一根直金属杆MN 以v= 2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好。

杆MN 的电阻r 1=1,导轨的电阻可忽略。

求杆MN 中产生的感应电动势E 1。

(2)如图2所示,一个匝数n=100的圆形线圈,面积S 1=0.4m 2,电阻r 2=1Ω。

在线圈中存在面积S 2=0.3m 2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图3所示。

求圆形线圈中产生的感应电动势E 2。

(3)有一个R=2Ω的电阻,将其两端a 、b 分别与图1中的导轨和图2中的圆形线圈相连接,b 端接地。

试判断以上两种情况中,哪种情况a 端的电势较高?求这种情况中a 端的电势φa 。

2、有人设计了一种可测速的跑步机,测速原理如图所示. 该机底面固定有间距为L 、长度为d 的平行金属电极,电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R. 绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻. 若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率; (2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功.巩固题:1.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动,则电路稳定后A .电容器两端的电压为零B .电阻两端的电压为BLvC .电容器所带电荷量为CBLvD .导线MN 所受安培力的大小为22B L VR2、两块水平放置的金属板间的距离为d,用导线与一个n匝线圈相连,线圈电阻为r,线圈中有竖直方向的磁场,电阻R与金属板连接,其余电阻均不计。

高中物理法拉第电磁感应定律习题知识归纳总结

高中物理法拉第电磁感应定律习题知识归纳总结

高中物理法拉第电磁感应定律习题知识归纳总结一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。

线圈的半径为r1。

在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。

导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。

(2)通过电阻R1上的电荷量q。

【答案】(1)2023n B rRtπ电流由b向a 通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。

(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==2.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上线圈的电阻r=1.0Ω,定值电阻、,电容器的电容C=30μF.在一段时间内,螺线管中磁场的磁感应强度B按如图所示的规律变化.(1)求螺线管中产生的感应电动势.(2)闭合开关S,电路中的电流稳定后,求电阻的电功率.(3)开关S断开后,求流经电阻的电荷量.【答案】(1)1.2V(2)(3)【解析】【详解】(1)根据法拉第电磁感应定律得(2)根据闭合电路欧姆定律得电阻的电功率.(3)开关S断开后,流经电阻的电荷量即为S闭合时电容器所带的电荷量.电容器两端的电压流经电阻的电荷量.故本题答案是:(1)1.2V(2)(3)【点睛】根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。

3.两平行金属导轨位于同一水平面上,相距l, 左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应易错题1.如图所示,边长L=0.20m 的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R 0=Ω,金属棒MN 与正方形导线框的对角线长度恰好相等,金属棒MN 的电阻r=Ω。

导线框放置在匀强磁场中,磁场的磁感应强度B =,方向垂直导线框所在平面向里。

金属棒MN 与导线框接触良好,且与导线框对角线BD 垂直放置在导线框上,金属棒的中点始终在BD 连线上。

若金属棒以v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字) (1)金属棒产生的电动势大小;(2)金属棒MN 上通过的电流大小和方向; (3)导线框消耗的电功率。

2.如图所示,正方形导线框abcd 的质量为m 、边长为l ,导线框的总电阻为R 。

导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。

磁场的磁感应强度大小为B ,方向垂直纸面向里,磁场上、下两个界面水平距离为l 。

已知cd 边刚进入磁场时线框恰好做匀速运动。

重力加速度为g 。

(1)求cd 边刚进入磁场时导线框的速度大小。

(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培力做功的功率等于导线框消耗的电功率。

(3)求从线框cd 边刚进入磁场到ab 边刚离开磁场的过程中,线框克服安培力所做的功。

3.如图所示,在高度差h =0.50m 的平行虚线范围内,有磁感强度B =、方向水平向里的匀强磁场,正方形线框abcd 的质量m =0.10kg 、边长L =0.50m 、电阻R =Ω,线框平面与竖直平面平行,静止在位置“I”时,cd 边跟磁场下边缘有一段距离。

现用一竖直向上的恒力F =向上提线框,该框由位置“Ⅰ”无初速度开始向上运动,穿过磁场区,最后到达位置“Ⅱ”(ab 边恰好出磁场),线框平面在运动中保持在竖直平面内,且cd 边保持水平。

设cd 边刚进入磁场时,线框恰好开始做匀速运动。

(g 取10m /s 2) 求:(1)a b d c l线框进入磁场前距磁场下边界的距离H 。

(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F 做的功是多少?线框内产生的热量又是多少?4.如图所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP '是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里。

在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R 。

使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP '为止。

从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q 。

求:(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电量是多少? (2)线框是从cd 边距边界PP'多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?5.如图所示,质量为m 、边长为l 的正方形线框,从有界的匀强磁场上方由静止自由下落.线框电阻为R ,匀强磁场的宽度为H (l <H ),磁感应强度为B ,线框下落过程中ab 边与磁场边界平行且沿水平方向.已知ab 边刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是31g .求:(1)ab 边刚进入磁场时与ab 边刚出磁场时的速度大小. (2)cd 边刚进入磁场时,线框的速度大小. (3)线框进入磁场的过程中,产生的热量.6.如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属环,在M 、 N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知 R 1=12R ,R 2=4R 。

在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小 均为B 。

现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下 落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。

已知 导体棒ab 下落r /2时的速度大小为v 1,下落到MN 处的速度大小为v 2。

(1)求导体棒ab 从A 下落r /2时的加速度大小;(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁场I 和II 之间的距离h 和R 2上的电功率P 2;(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。

ba d c7. 如图所示,空间存在垂直纸面向里的两个匀强磁场区域,磁感应强度大小均为B ,磁场 Ⅰ宽为L ,两磁场间的无场区域为Ⅱ,宽也为L ,磁场Ⅲ宽度足够大。

区域中两条平行直光 滑金属导轨间距为l ,不计导轨电阻,两导体棒ab 、cd 的质量均为m ,电阻均为r 。

ab 棒静 止在磁场Ⅰ中的左边界处,cd 棒静止在磁场Ⅲ中的左边界处,对ab 棒施加一个瞬时冲量, ab 棒以速度v 1开始向右运动。

(1)求ab 棒开始运动时的加速度大小;(2)ab 棒在区域Ⅰ运动过程中,cd 棒获得的最大速度为v 2,求ab 棒通过区域Ⅱ的时间; (3)若ab 棒在尚未离开区域Ⅱ之前,cd 棒已停止运动,求:ab 棒在区域Ⅱ运动过程中产生的焦耳热。

8.如图所示,一正方形平面导线框abcd ,经一条不可伸长的绝缘轻绳与另一正方形平面导线框a 1b 1c 1d 1相连,轻绳绕过两等高的轻滑轮,不计绳与滑轮间的摩擦.两线框位于同一竖直平面内,ad 边和a 1d 1边是水平的.两线框之间的空间有一匀强磁场区域,该区域的上、下边界MN 和PQ 均与ad 边及a 1d 1边平行,两边界间的距离为h =78.40 cm .磁场方向垂直线框平面向里.已知两线框的边长均为l = 40. 00 cm ,线框abcd 的质量为m 1 = 0. 40 kg ,电阻为R 1= 0. 80Ω。

线框a 1 b 1 c 1d 1的质量为m 2 = 0. 20 kg ,电阻为R 2 =0. 40Ω.现让两线框在磁场外某处开始释放,两线框恰好同时以速度v =1.20 m/s 匀速地进入磁场区域,不计空气阻力,重力加速度取g =10 m/s 2.(1)求磁场的磁感应强度大小.(2)求ad 边刚穿出磁场时,线框abcd 中电流的大小.9.如图所示,倾角为θ=37o、电阻不计的、间距L =0.3m 且足够长的平行金属导轨处在磁感强度B =1T 、方向垂直于导轨平面的匀强磁场中.导轨两端各接一个阻值R 0=2Ω的电阻.在平行 导轨间跨接一金属棒,金属棒质量m =1kg 电阻r =2Ω,其与导轨间的动摩擦因数μ=。

金 属棒以平行于导轨向上的初速度υ0=10m/s 上滑直至上升到最高点的过程中,通过上端电阻的电量Δq =0.1C (g =10m/s 2)(1)金属棒的最大加速度;(2)上端电阻R 0中产生的热量。

10.如图所示,金属框架竖直放置在绝缘地面上,框架上端接有一电容为C的电容器,框架上有一质量为m、长为L的金属棒平行于地面放置,与框架接触良好无摩擦。

离地高为h、磁感应强度为B匀强磁场与框架平面相垂直,开始时电容器不带电,自静止起将棒释放,求棒落到地面的时间。

不计各处电阻。

11.如图所示,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面。

开始时,给导体棒一个平行于导轨的初速度v0。

在棒的运动速度由v0减小至v1的过程中,通过控制负载电阻的阻值使棒中的电流强度I保持恒定。

导体棒一直在磁场中运动。

若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。

12.磁悬浮列车运行的原理是利用超导体的抗磁作用使列车向上浮起,同时通过周期性变换磁极方向而获得推进动力,其推进原理可简化为如图所示的模型,在水平面上相距L的两根平行导轨间,有竖直方向且等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以速度v向右匀速运动,这时跨在两导轨间的长为L 宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动,设直导轨间距L = 0.4m,B = 1T,磁场运动速度为v = 5 m/s,金属框的电阻R = 2Ω。

试问:(1)金属框为何会运动,若金属框不受阻力时金属框将如何运动?(2)当金属框始终受到f= 1N 阻力时,金属框最大速度是多少?(3)当金属框始终受到1N阻力时,要使金属框维持最大速度,每秒钟需消耗多少能量?这些能量是谁提供的?v13.图中虚线为相邻两个匀强磁场区域1和2的边界,两个区域的磁场方向相反且都垂直于纸面,磁感应强度大小都为B ,两个区域的高度都为l 。

一质量为m 、电阻为R 、边长也为l 的单匝矩形导线框abcd ,从磁场区上方某处竖直自由下落,ab 边保持水平且线框不发生转动。

当ab 边刚进入区域1时,线框恰开始做匀速运动;当线框的ab 边下落到区域2的中间位置时,线框恰又开始做匀速运动。

求:(1)当ab 边刚进入区域1时做匀速运动的速度v 1;(2)当ab 边刚进入磁场区域2时,线框的加速度的大小与方向; (3)线框从开始运动到ab 边刚要离开磁场区域2时的下落过程中产生的热量Q 。

14.半径为a 的圆形区域内有均匀磁场,磁感强度为B =,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径O O '的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。

(2)撤去中间的金属棒MN 将右面的半圆环O OL '2以O O '为轴向上翻转90º,若此时磁场随时间均匀变化,其变化率为ΔB/Δt =(4 /π)T/s ,求L 1的功率。

15.如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一上、下两层均 与水平面平行的“U ”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m 的匀质 金属杆A 1和A 2,开始时两根金属杆位于同一竖直面内且杆与轨道垂直。

相关文档
最新文档