电磁感应计算题专题
电磁感应最新计算题集

1.如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑪问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑫求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑬探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
2.如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L =0.2m ,一端通过导线与阻值为R =1Ω的电阻连接;导轨上放一质量为m =0.5kg 的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B =0.5T 的匀强磁场中.现用与导轨平行的拉力F 作用在金属杆上,金属杆运动的v-t 图象如图乙所示.(取重力加速度g =10m/s 2)求: (1)t =10s 时拉力的大小及电路的发热功率. (2)在0~10s 内,通过电阻R 上的电量.3.如图所示,AB 和CD 是足够长的平行光滑导轨,其间距为l ,导轨平面与水平面的夹角为θ。
整个装置处在磁感应强度为B 、方向垂直于导轨平面且向上的匀强磁场中。
AC 端连有阻值为R 的电阻。
若将一质量为M 、垂直于导轨的金属棒EF 在距BD 端s 处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。
现用大小为F 、方向沿斜面向上的恒力把金属棒EF 从BD 位置由静止推至距BD 端s 处,此时撤去该力,金属棒EF 最后又回到BD 端。
求: (1)金属棒下滑过程中的最大速度。
电磁感应计算题

【例1】如图9-2-1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O的过程中,环中产生的感应电动势的平均值是多大?【例2】在图9-2-2中,设匀强磁场的磁感应强度B=0.10T ,切割磁感线的导线的长度L=40cm ,线框向左匀速运动的速度V=5.0m/s ,整个线框的电阻R=0.5Ω,试求:感应电动势的大小;②感应电流的大小.【例3】如图9-2-3所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?【例4】如图9-2-4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .图9-2-3图9-2-1图9-2-2 图9-2-4【例5】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m ,宽L 2 = 0.5m ,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg 的木块,木块放在水平面上,如图9-2-5所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s 2,求回路中的电流强度.【例6】如图9-2-6所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?【例7】如图9-2-9所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速0V 向左滑行.设棒与导轨间的动摩擦因数为 ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.图9-2-5图9-2-6图9-2-9【例8】CD 、EF 为两足够长的导轨,CE =L ,匀强磁场方向与导轨平面垂直,磁感强度为B ,导体CE 连接一电阻R ,导体ab 质量为m ,框架与导体电阻不计,如图9-2-11所示.框架平面与水平面成θ角,框架与导体ab 间的动摩擦因数为μ,求导体ab 下滑的最大速度?【例9】.如图9-2-12所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a 2的比值.【例1】如图9-3-1甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图9-3-1乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.图9-2-11PM NQR a bF图9-2-12甲乙图9-3-1【例2】如图9-3-2,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为1/2.磁场的磁感强度为B ,方向垂直于纸面向里.现有一段长度为l/2、电阻为R/2的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ac 方向以恒定速度v 向b 端滑动,滑动中始终与ac 平行并与导线框保持良好接触.当MN 滑过的距离为l/3时,导线ac 中的电流是多大?方向如何?1. 如图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计. 导轨所在平面与磁感应强度 5.0T B =的匀强磁场垂直.质量26.010kg m -=⨯、电阻0.5r =Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有阻值均为3.0Ω的电阻1R 和2R .重力加速度取210m/s ,且导轨足够长,若使金属杆ab 从静止开始下滑,求: (1)杆下滑的最大速率m v ;(2)稳定后整个电路耗电的总功率P ; (3)杆下滑速度稳定之后电阻2R 两端的电压U .2. 如图所示(俯视图),相距为2L 的光滑平行金属导轨水平放置,导轨的一部分处在以OO '为右边界的匀强磁场中,匀强磁场的磁感应强大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计。
(完整版)电磁感应经典例题

电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。
高中物理电磁感应经典计算题

电磁感应经典计算题1如图所示,边长L=0.20m 的正方形导线框 ABCD 由粗细均匀的同种材料制成, 正方形导线 框每边的电阻R )=1.0 Q,金属棒MNW 正方形导线框的对角线长度恰好相等, 金属棒MN 勺电磁场的磁感应强度 B=0.50T ,方向垂直导线框所在且与导线框对角线 BD 垂直放置在导线框上,金属v=4.0m/s 的速度向右匀速运动,当金属棒运动至AC 的位置时,求:(计算结果保留两位有效数字 )(1) 金属棒产生的电动势大小;(2) 金属棒MN 上通过的电流大小和方向; (3 )导线框消耗的电功率。
2.如图所示,正方形导线框 abed 的质量为m 边长为I ,导线框的总电阻为 R 。
导线框从垂直纸面向里的水平有界匀强磁场的上方某处由静止自由下落, 下落过程中,导线框始终在与磁场垂直的竖直平面内,cd 边保持水平。
磁场的磁感应强度大小为 B ,方向垂直纸面向里,磁场上、下两个界面水平距离为 I 。
已知cd 边刚进入磁场时线框恰好做匀速运动。
重力加速度为g o(1 )求cd 边刚进入磁场时导线框的速度大小。
(2)请证明:导线框的cd 边在磁场中运动的任意瞬间,导线框克服安培 力做功的功率等于导线框消耗的电功率。
(3 )求从线框cd 边刚进入磁场到 ab 边刚离开磁场的过程中,线框克服 安培力所做的功。
3.如图所示,在高度差 h = 0.50m 的平行虚线范围内,有磁感强度 A0.50T 、方向水平向里的匀强磁场,正方形线框 abcd 的质量m= 0.10kg 、 边长L = 0.50m 、电阻R = 0.50 Q ,线框平面与竖直平面平行, 静止在位置“I ”时,cd 边跟磁场下边缘有一段距离。
现用一竖直向上的恒力 F = 4.0N 向上提线框,该框由位置"I”无初速度开始向上运动,穿过磁场区,最 后到达位置“n”( ab 边恰好出磁场),线框平面在运动中保持在竖直 平面内,且cd 边保持水平。
高二物理电磁感应大题专题

电磁感应计算题1.横截面积S=0.2 m2,n=100匝的圆形线圈A,处在如图所示的磁场中,磁感应强度随时间变化的规律是B=0.6-0.02t(T),开始时S未闭合,R1=4 Ω,R2=6 Ω,C=30 μF,线圈内阻不计。
求:(1)闭合开关S后,通过R2的电流大小和方向;(2)闭合开关S后一段时间又断开,问切断后通过R2的电荷量又是多少?2.用质量为m、总电阻为R的导线做成边长为l的正方形线框MNPQ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。
线框与导轨之间是光滑的,在导轨的下端有一宽度为l(即ab=l)、磁感应强度为B的有界匀强磁场,磁场的边界aa'、bb'垂直于导轨,磁场的方向与线框平面垂直。
如果把线框从静止状态释放,则线框恰好能够匀速地穿过磁场区域。
若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度大小;(2)开始释放时,MN与bb'之间的距离;(3)线框在通过磁场的过程中所产生的热量。
3.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T,棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求(1)棒在匀加速运动过程中,通过电阻R的电荷量q(2)撤去外力后回路中产生的焦耳热Q2(3)外力做的功W F4.如图,质量为M 的足够长金属导轨abcd 放在光滑的绝缘水平面上。
一电阻不计,质量为m 的导体棒PQ 放置在导轨上,始终与导轨接触良好,PQbc 构成矩形。
初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
电磁感应习题

1、选择题1、一个电阻为R,自感系数为L的线圈,将它接在一个电动势为的交变电源上,设线圈的自感电动势为,则通过线圈的电流为(B)A、B、C、D、2、面积为S和2S的两个线圈A和B的中心垂直轴相同,通有相同的电流I,由线圈A中电流产生通过线圈B的磁通量为,由线圈B中电流产生通过线圈A的磁通量为,则的关系为(C)A、=2B、=/2 C、=D、>3、下列那种情况下,不会出现位移电流( A )A、电场不随时间变化B、电场随时间变化C、交流回路D、在接通直流电路的瞬时4、一长为l的螺线管,原来用细导线单层密绕而成,如换用直径比原来的大一倍的导线绕制,则螺线管的自感系数为(C)A、增加到原来的两倍B、减少为原来的二分之一C、减少为原来的四分之一D、增加到原来的四倍2、填空题1、边长为a的正方形线圈放在一根长直导线旁,线圈与直导线共面,其中心距长直导线为3a/2,线圈的一组边与直导线平行,此时,正方形线圈与长直导线的互感系数为,若将线圈垂直于长直导线方向的两条边向外侧延长一倍而成矩形,此时的互感系数为。
2、两根直径为d的平行长直导线的中心轴线相距为l(l>>d),此时这两根长直导线单位长度上的自感系数为。
3、有两个自感线圈,线圈Ⅰ的自感系数为L1,电阻为R1,线圈Ⅱ的自感系数为L2,电阻为R2,且L2=2L1,R2=2R1。
若把两线圈串联后接在电源上,两自感线圈中储存的磁能W1:W2= 1:2 ,若把两线圈并联后接在电源上,两自感线圈中储存的磁能W1:W2= 2:1 ,4、一长为l,总匝数为N的细长密绕螺线管内,通有变化的电流(a、I0都为常数),则螺线管内距螺线管的轴线为r处一点的磁感应强度的大小为,电场强度的大小为。
5、有两个线圈,自感系数分别为L1=3mH、L2=5mH,串联成一个线圈后测得自感系数L=11mH,则两线圈的互感系数M= 1.5mH 。
3、计算题1、如图所示,两条长直平行输电导线和一矩形线圈共面,长直导线在无限远处相接,求线圈和两条导线的互感系数。
电磁感应定律典型例题

典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大 【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。
A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。
B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。
D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。
答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。
例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。
【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。
同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应计算题专题命题人:蓝杏芳 学号________. 姓名________. 四.计算题 (共15小题)1. 如图13-17所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的中距离为L ,导轨上横放着两根导体棒ab 和cd.设两根导体棒的质量皆m ,电阻皆为R ,导轨光滑且电阻不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B 。
开始时ab 和cd 两导体棒有方向相反的水平初速,初速大小分别为v 0和2v 0,求:(1)从开始到最终稳定回路中产生的焦耳热。
(2)当ab 棒的速度大小变为4v 时,回路中消耗的电功率。
2. 如图13-18所示,在空中有一水平方向的匀强磁场区域,区域的上下边缘间距为h ,磁感强度为B 。
有一宽度为b(b <h=、长度为L ,电阻为R 。
质量为m 的矩形导体线圈紧贴磁场区域的上边缘从静止起竖直下落,当线圈的PQ 边到达磁场下边缘时,恰好开始做匀速运动。
求:(1)线圈的MN 边刚好进入磁场时,线圈的速度大小。
(2)线圈从开始下落到刚好完全进入磁场,经历的时间。
3. 水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图.(取重力加速度g=10m/s 2) (1)金属杆在匀速运动之前做什么运动?(2)若m=0.5kg,L=0.5m,R=0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少?4. 如图1所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。
一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触A B b a cd v 0 2v 0 图13-17 hM NPQ 图13-18良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
5. 如图示,在磁感应强度B=0.2T,方向竖直向上的匀强磁场中,有间距L=0.2m的光滑平行导轨,导轨有倾斜和水平两部分,倾斜部分与水平面夹角θ=30°,导体棒ab质量m=0.02kg,电阻r=0.02Ω,放在导轨上,运动中与导轨有良好接触,并且垂直于导轨,电阻R=0.08Ω,其余电阻不计,当棒从h=5m处。
如图,由静止释放沿导轨下滑,到达水平导轨前,回路电流已达最大值,求:(1)电阻R上产生的最大热功率.(2)导体棒ab在滑到水平导轨前释放的热量.(3)导体棒ab在水平导轨上最多能产生的热量.6. 如图所示,半径为r、电阻不计的两个半圆形光滑导轨并列竖直放置,两导轨的间距为L,在轨道左上方的端点M、N间接有电阻为R的小电珠,且整个轨道处在竖直向下的、磁感应强度为B的匀强磁场中。
现有一质量为m、电阻也为R的金属棒ab从M、N处由静止释放,经一定时间到达导轨的最底点O、O',此时的速度为v(1)试分析金属棒ab从M、N到O、O'的过程中,通过小电珠的电流方向。
(2)求金属棒ab到达O、O'时,整个电路消耗的瞬时电功率。
(3)求金属棒ab从M、N到O、O'的过程中,小电珠和金属棒上产生的总热量。
7. 在同一水平面上有相距l 的两根光滑的不计电阻的平行金属导轨,导轨上金属杆ab 和cd 垂直导轨放置,杆cd 的中点系一轻绳,跨过定滑轮系一质量为m 的重物,整个装置处在竖直向上的磁场中,如图所示,已知磁感应强度B =1T ,l =0.5m ,m =2kg ,R ab =R cd =0.05Ω.问让ab 向左滑行,当其速度达到何值时,重物m 恰好被从地上提起?(g 取10m/s 2)8. 如图所示的空间,匀强电场的方向竖直向下,场强为E 1,匀强磁场的方向水平向外,磁感应强度为B .有两个带电小球A 和B 都能在垂直于磁场方向的同一竖直平面内做匀速圆周运动(两小球间的库仑力可忽略),运动轨迹如图。
已知两个带电小球A 和B 的质量关系为m A =3m B ,轨道半径为R A =3R B =9cm .(1) 试说明小球A 和B 带什么电,它们所带的电荷量B A q q之比等于多少?(2) 指出小球A 和B 的绕行方向?(3) 设带电小球A 和B 在图示位置P 处相碰撞,且碰撞后原先在小圆轨道上运动的带电小球B 恰好能沿大圆轨道运动,求带电小球A 碰撞后所做圆周运动的轨道半径(设碰撞时两个带电小球间电荷量不转移)。
9. 如图所示,两根平行金属导轨间的距离为0.4 m ,导轨平面与水平面的夹角为37°,磁感应强度为0.5 T 的匀强磁场垂直于导轨平面斜向上,两根电阻均为1 Ω、重均为0.1 N 的金属杆ab 、cd 水平地放在导轨上,杆与导轨间的动摩擦因数为0.3,导轨的电阻可以忽略.为使ab 杆能静止在导轨上,必须使cd 杆以多大的速率沿斜面向上运动?10. 如图所示,两平行光滑金属导轨与水平方向夹角为300,匀强磁场B=0.40T ,方向垂直导轨平面,导轨间距L=0.50m ,金属棒ab 质量为0.10kg ,cd 棒质量为0.20kg ,且垂直导轨放置,闭合回路有效电阻为0.20Q ,开始时两棒静止,当ab 棒在沿斜面向上外力作用下,以1.5m /s 的速度沿斜面向上匀速运动的同时,cdR A R BE B P棒也自由释放,则(g=10m /s2): (1)棒cd 的最大加速度为多少? (2)棒cd 的最大速度为多少?(3)当棒cd 运动的速度达到最大时,作用在棒ab 上外力的功率多大?11. 如图所示,L 1、L 2、L 3、L 4 是四根足够长的相同的光滑导体棒,它们彼此接触,正好构成一个正方形闭合电路,匀强磁场的磁感应强度为B ,方向垂直于纸面向外,现设法使四根导体棒分别按图示方向以相同大小的加速度a'同时从静止开始做匀速平动.若从开始运动时计时且开始计时时abcd 回路边长为I /,求开始运动后经时间t 回路的总感应电动势.12. 光滑的水平金属导轨如图,其左右两部分宽度之比为1∶2,导轨间有大小相等但左右两部分方向相反的匀强磁场.两根完全相同的均匀导体棒,质量均为m=2 kg ,垂直于导轨放置在左右磁场中,不计导轨电阻,但导体棒A 、B 有电阻.现用250 N 水平向右的力拉B 棒,在B 棒运动0.5 m 过程中,B 棒产生Q=30 J 的热,且此时速率之比v A ∶v B =1∶2,此时撤去拉力,两部分导轨都足够长,求两棒最终匀速运动的速度v A ′和v B ′.AB13. 如图所示,光滑水平平行导轨M 、N ,间距L =0.5m ,其电阻不计。
导轨间有竖直向下的匀强磁场,磁感应强度B =0.5T 。
金属棒ab 、cd 垂直导轨放置,且电阻都是R =100 ,质量都是m =0.5kg 。
现给棒ab 一个水平向右的冲量,使其具有v 0=8m /s 的初速度。
求:(1)cd 棒上最大电流的大小和方向。
(2)cd 棒运动的最大速度。
(3)cd 棒上产生的热量。
v 0a d bc MN14. 一有界匀强磁场区域如图甲所示,质量为m 、电阻为R 的长方形矩形线圈abcd 边长分别为L 和2L ,线圈一半在磁场内,一半在磁场外,磁感强度为B 0。
t 0=0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动, V-t 图象如图乙,图中斜向虚线为过0点速度图线的切线,数据由图中给出,不考虑重力影响,求:⑴磁场磁感强度的变化率。
⑵t 2时刻回路电功率。
15. 如图所示,平行导轨MN 和PQ 相距0.5m ,电阻可忽略,摩擦不计,其水平部分QSTN 置于磁感应强度大小为0.60T 。
方向竖直向上的匀强磁场中,倾斜部分PSTM 处没有磁场,两部分平滑对接,其上搁有两根导体棒a 、b ,b 垂直于水平导轨放置,a 垂直于倾斜导轨放置,已知细导体棒a 和b 质量均为0.20kg ,在导轨间部分的电阻均为0.15Ω,a 棒从斜轨上高为0.50m 处无初速释放,而b 棒始终被拴接在距ST 线1m 处不动。
求: (1)此后过程中,回路的最大电流是多少?(2)a 棒下滑后会与b 棒相撞吗?请写出你的论证过程。
参考答案(仅供参考)四.计算题答案:1. 由于ab 、cd 两导体棒切割磁感线,回路中产生感应电流,它们在安培力作用下做减速运动,当ab 减速为零时,cd 棒仍在向右的运动;以后cd 棒继续减速,而ab 棒反向加速,直到两棒达到共同速度后,回路中无感应电京戏,两棒以相同的速度v 做匀速运动。
(1)从开始到最终稳定的过程中,两棒总动量守恒,则,2,22000v v mv mv mv ==-由能量守恒得,整个过程中回路产生的焦耳热.49)2(21)2(212022020mv v m v vm Q =-+= (2)当ab 棒速度大小为40v 且方向向左时,设cd 棒的速度为v 1,由动量守恒定律有: ,45,42010100v v v m mv mv mv =-=-解得L2L B Vt V 0 0 t 1 t 2 ab c d,23)454(0001BLv v v BL :E=+=此时回路中的总电动势 R v l B R E :P 8922022211==则消耗的电功率当ab 棒速度大小为40v且方向向左时,设cd 棒的速度为v 2,由动量守恒定律得此时回路中的解得,43,42020100v v v mmv mv mv =-=- 总电动势:Rv L B R E P ,BLv v v BL E 8221)443(2222220001===-=则消耗的电功率2. (1)设线圈匀速穿出磁场的速度为v ′,此时线圈中产生的感应电动势为E=BLv ′ ① 产生的感应电流为REI =②线圈受到的安培力为F=BIL ③ 此过程线圈受到的重力与安培力平衡mg=F ④ 联立①~④式得22LB mgRv =' ⑤ 设线圈的上边刚好进入磁场时速度为v ,当线圈全部在磁场中运动时,根据动能定理:222121)(mv v m b h mg -'- ⑥联立⑤⑥,解得)(2)(222b h G L B mgR v --=⑦ (2)设线圈从开始下落刚好完全进入磁场所用的时间为t.根据动量定理mgt-I F =mv-0 ⑧ 在t 内,根据法拉第电磁感应律tBlbt E =∆Φ=⑨ 线圈中产生的平均电流REI =⑩ 故安培力的冲量Lt BI t F I F == ○11联立⑨⑩○11得Rb L B I F 22= ○12将⑦和○12代入⑧解得gb h L B R m mgR b L B t )(2442222--+= 3. (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动)。