焊接接头的性能和影响因素

合集下载

不同焊接工艺参数对Q235焊接接头组织及性能的影响

不同焊接工艺参数对Q235焊接接头组织及性能的影响

机电信息工程不同焊接工艺参数对Q235焊接接头组织及性能的影响陈辰(青海高等职业技术学院,青海 海东810700)摘要:Q235钢广泛应用于各种焊接结构生产中,也常用于学校焊接实训室。

用3. 2mm 的E4303焊条,选用焊接电流(I )为 60A 、70A 、80A 、90A 、100A 、110A 、120A 、130A 时分别进行焊接试验,分析不同的焊接电流对焊接的工艺性、焊接接口显微组织、焊接 接口力学性能的影响,确定最优焊接参数。

结果表明,直径3. 2mm 的E4303焊条,其最佳焊接电流为 100〜110A,与经验公式I=10d 2相符合。

关键词:Q235;E4303;焊接工艺性能;显微组织;学能1 试验材料及过程1.1试验材料试验用焊接材料为Q235B 钢板,用剪板机下料, 下料尺寸为120mmX 30mmX 10mm,共8块;用直径3. 2mmE4303焊条表面堆焊,其Q235B 钢板化学成分及力学性能见表1及E4303焊条的主要成分见表1,E4303焊条熔敷金属化学成分见表2,熔敷金属拉伸试验力学性能见表3所示。

1.2试验过程焊接试验所用焊接电流为60A 、70A 、80A 、90A 、表1 Q235B 化学成分及力学性能牌号等级化学成分(质量分数)(%)力学性能C MnSi SP Rm /(MPa )Re /(MPa *A /(%*(Q235A 0. 14〜0. 220. 30〜0. 650300. 050004575〜50023526B0. 12〜0. 200. 30〜0. 700. 045C(0.18035〜0800. 0400. 040D(0.180.0350.035表2 E4303焊条熔敷金属化学成分焊条型号化学成分(质量分数)(%)CMn Si P S Ni Cr Mo V 其他E43030. 20 1. 20 1. 000. 0400.0350. 300. 200. 300.08—表3 E4303熔敷金属拉伸试验力学性能焊条型号抗拉强度Rm / MPa屈服强度ReL/MPa 断后伸长率A/%冲击试验温度/NE4303%430%330%20100A 、110A 、120A 、130A , 共8 , 据理,分别用不同的焊接电流在Q235试板上进行堆焊, 详细记录焊接过程中表现出的焊接工艺性能;焊接完 成之后,截取金相试样,观察不同焊接电流下焊接接口外观及焊缝区、熔合区、热影响区的显微组织,然后进行力学性能试验,综合比较,分析出最优焊接参数 和焊接电流。

焊接接头的组成

焊接接头的组成

1、焊接接头的组成,影响焊接接头组织和性能的因素。

(1)接头组成:包括焊缝、熔合区和热影响区。

(2)组织1)焊缝区接头金属及填充金属熔化后,又以较快的速度冷却凝固后形成。

焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织不致密。

但是,由于焊接熔池小,冷却快,化学成分控制严格,碳、硫、磷都较低,还通过渗合金调整焊缝化学成分,使其含有一定的合金元素,因此,焊缝金属的性能问题不大,可以满足性能要求,特别是强度容易达到。

2)熔合区熔化区和非熔化区之间的过渡部分。

熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织。

其性能常常是焊接接头中最差的。

熔合区和热影响区中的过热区(或淬火区)是焊接接头中机械性能最差的薄弱部位,会严重影响焊接接头的质量。

3)热影响区被焊缝区的高温加热造成组织和性能改变的区域。

低碳钢的热影响区可分为过热区、正火区和部分相变区。

(1)过热区最高加热温度1100℃以上的区域,晶粒粗大,甚至产生过热组织,叫过热区。

过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。

(2)正火区最高加热温度从Ac3至1100℃的区域,焊后空冷得到晶粒较细小的正火组织,叫正火区。

正火区的机械性能较好。

(3)部分相变区最高加热温度从Ac1至Ac3的区域,只有部分组织发生相变,叫部分相变区。

此区晶粒不均匀,性能也较差。

在安装焊接中,熔焊焊接方法应用较多。

焊接接头是高温热源对基体金属进行局部加热同时与熔融的填充金属熔化凝固而形成的不均匀体。

根据各部分的组织与性能的不同,焊接接头可分为三部分。

,在焊接发生熔化凝固的区域称为焊缝,它由熔化的母材和填充金属组成。

而焊接时基体金属受热的影响(但未熔化)而发生金相组织和力学性能变化的区域称为热影响区。

熔合区是焊接接头中焊缝金属与热影响区的交界处,熔合区一彀很窄,宽度为0.1~0.4mm。

(3)影响焊接接头性能的因素焊接材料焊接方法焊接工艺2、减少焊接应力常采用的措施有哪些?(1)选择合理的焊接顺序(2)焊前预热(3)加热“减应区”(4)焊后热处理3焊接变形的基本形式有哪些?消除焊接变形常用的措施有哪些?(1)焊接变形1)收缩变形2)角变形3)弯曲变形4)波浪形变形5)扭曲变形(2)措施1)合理设计焊接构件2)采取必要的技术措施①反变形法②加裕量法③刚性夹持法④选择合理的焊接顺序⑤采用合理的焊接方法4、为什么要对焊接冶金过程进行保护?采用的保护技术措施有哪些?焊接冶金过程特点:电弧焊时,被熔化的金属、熔渣、气体三者之间进行着一系列物理化学反应,如金属的氧化与还原,气体的溶解与析出,杂质的去除等。

焊接材料的性能及其影响因素分析

焊接材料的性能及其影响因素分析

焊接材料的性能及其影响因素分析焊接是一种常见的金属连接方法,通过熔化金属材料并使其冷却后重新凝固,实现金属工件的连接。

而焊接材料的性能对焊接质量和连接强度有着重要的影响。

本文将对焊接材料的性能及其影响因素进行分析。

首先,焊接材料的性能包括力学性能、化学性能和物理性能等方面。

力学性能是指焊接材料在外力作用下的变形和破坏特性,如强度、韧性和硬度等。

焊接材料的强度是指其抵抗外力破坏的能力,而韧性则是指焊接材料在受力时的塑性变形能力。

硬度则是指焊接材料的抗压能力,通常用于评估焊接接头的耐磨性。

化学性能是指焊接材料在不同环境下的耐腐蚀性能,如抗氧化性、耐酸碱性等。

物理性能则包括焊接材料的导热性、导电性和热膨胀系数等。

其次,焊接材料的性能受多种因素影响。

首先是焊接材料的成分。

焊接材料通常由基体金属和填充金属组成,其成分对焊接接头的性能有着重要影响。

例如,填充金属的成分可以调整焊接接头的强度和韧性。

其次是焊接材料的热处理状态。

焊接材料经过热处理可以改变其晶体结构和性能,如提高强度和韧性。

此外,焊接过程中的热输入也会对焊接材料的性能产生影响。

过高的焊接温度可能导致焊接材料发生烧结、热裂纹等缺陷,从而影响焊接接头的质量。

再次,焊接材料的性能还受焊接工艺的影响。

焊接工艺包括焊接方法、焊接参数和焊接环境等。

不同的焊接方法对焊接材料的性能有着不同的要求。

例如,氩弧焊适用于焊接不锈钢等高合金材料,而电阻焊适用于焊接低碳钢等材料。

焊接参数,如焊接电流、焊接速度和焊接压力等,也会对焊接材料的性能产生影响。

过高或过低的焊接参数可能导致焊接接头的质量下降。

焊接环境的气氛对焊接材料的化学性能有着重要的影响。

例如,在氧气存在下进行焊接可能导致氧化反应,从而降低焊接接头的质量。

最后,焊接材料的性能评价方法多种多样。

常用的评价方法包括金相显微镜观察、拉伸试验、冲击试验和硬度测试等。

金相显微镜观察可以用于观察焊接接头的显微组织和缺陷情况。

钢结构焊接影响因素及焊接质量控制

钢结构焊接影响因素及焊接质量控制

钢结构焊接影响因素及焊接质量控制摘要:钢结构焊接是一种常见且重要的连接方法,在建筑、桥梁、船舶等领域中得到广泛应用。

它能够提供高强度和可靠的连接,确保结构的稳定性和安全性。

然而,钢结构焊接的质量和性能往往受到多种因素的影响。

了解这些影响因素并采取适当的控制措施,对于确保焊接质量至关重要。

本文主要探讨钢结构焊接的影响因素及质量控制方法,仅供相关人士参考。

关键词:钢结构;焊接;影响因素;焊接质量一、钢结构焊接影响因素(一)材料选择钢材质量和成分是影响焊接性能的重要因素之一。

首先,钢材质量的优劣直接影响焊接接头的强度和稳定性。

高质量的钢材具有更好的强度、韧性和耐腐蚀性能,可以确保焊接连接的牢固性和长久的使用寿命。

而低质量的钢材可能存在缺陷、杂质等问题,容易引发焊接缺陷和开裂现象,从而影响焊接质量。

其次,在焊接过程中,钢材成分的选择也起着重要作用。

不同成分的钢材会对焊接性能产生不同的影响。

例如,含碳量高的钢材在焊接过程中容易产生较多的热影响区,同时易于形成脆性组织,增加焊接接头的脆性。

因此,在进行钢结构焊接时,应根据具体需求选择合适的钢材质量和成分,以确保焊接接头的质量和性能。

(二)设计与几何参数在钢结构的焊接过程中,正确的组件设计和连接方式的选择对焊接质量至关重要。

合理的组件设计和连接方式可以保证焊接接头的强度和稳定性。

例如,对于梁-柱连接,可选择使用角焊缝、对接焊缝或T型焊缝,这些不同的连接方式会对焊接接头的强度和稳定性产生不同的影响。

因此,在设计和选择连接方式时,应综合考虑结构的应力分布、负载情况以及施工工艺等因素,确保焊接接头的质量。

焊缝形状和尺寸的设计也对焊接质量具有重要影响。

合理的焊缝形状和尺寸可以增加焊接接头的强度、韧性和稳定性。

例如,焊接接头的角焊缝宽度和高度的设计应符合规范的要求,确保焊接接头具有足够的强度和韧性。

此外,在进行焊缝设计时,还应注意控制焊缝的凹凸度和夹渣等缺陷,以提高焊接接头的质量。

5焊接热影响区的组织和性能

5焊接热影响区的组织和性能

5焊接热影响区的组织和性能焊接热影响区(Heat Affected Zone, HAZ)是指在焊接过程中,未被完全熔化但受到高温加热的区域。

在焊接过程中,高温会引起HAZ的组织和性能发生变化,这可能会对焊接接头的性能和可靠性产生重要影响。

本文将讨论HAZ的组织和性能的变化,并重点介绍几个重要的影响因素。

首先,HAZ的组织变化是由高温引起的。

在焊接过程中,焊接电弧和熔化池的高温作用下,HAZ的温度会迅速升高,达到几百摄氏度甚至更高的温度。

高温会导致HAZ中的晶粒长大、晶格变形和相结构改变。

通常情况下,HAZ中的晶粒比母材中的晶粒要大,且晶格常常发生变形。

晶粒尺寸的增加和晶格变形会导致材料硬度的提高,并可能降低材料的韧性。

其次,HAZ的性能变化是由组织变化引起的。

HAZ中的晶粒长大和晶格变形会导致材料的硬度提高,但与此同时,硬度的增加也会导致韧性的降低。

在一些情况下,HAZ还可能出现脆性相的形成,这会极大地降低焊接接头的可靠性。

此外,HAZ还可能出现裂纹和变形等缺陷,这也会对焊接接头的性能产生严重影响。

因此,在焊接接头设计和制造过程中,必须对HAZ的组织和性能进行充分考虑,以确保焊接接头的质量和可靠性。

HAZ的组织和性能变化受多种因素影响,以下列举几个重要因素:1.焊接热输入:焊接热输入是指在单位长度或单位面积上输送到工件中的热量。

热输入的大小与焊接电压、电流和焊接速度等参数有关。

过高或过低的热输入都会导致HAZ中的晶粒长大和晶格变形,从而影响HAZ的性能。

2.材料的化学成分和微观结构:不同材料的化学成分和微观结构会对HAZ的组织和性能产生重要影响。

一些合金元素的存在可以改变晶粒的生长速率和晶格的变形行为。

此外,材料的粗晶相和弥散相等局部微观结构也会对HAZ的性能产生重要影响。

3.冷却速率:冷却速率是指焊接过程中HAZ冷却的速度。

冷却速率的快慢会影响晶粒生长和晶格变形行为。

通常情况下,快速冷却会导致HAZ 中的晶粒更细小,且硬度更高。

影响焊接接头性能的因素

影响焊接接头性能的因素

4 影响焊接接头性能的因素
焊接材料:焊丝和药皮,影响焊缝的化学成份。

焊接方法:不同的焊接方法其热影响区的宽度不同。

焊接工艺:焊接速度快,电流小,则热影响区窄。

5 改善接头性能的方法:采用合适的焊接材料,以保证焊缝的化学成份;
焊接方法和工艺:采用热影响区小的焊接方法,工艺上可用细焊条,多层焊。

调整焊接规范;减小焊接电流,加快焊接速度
以减少热输入;
焊后热处理。

三焊接应力和变形
1 焊接应力和变形产生的原因:
2 焊接变形的基本形式:
3 减少和消除变形、应力的措施:a 合理设计焊接结构:
减少焊缝长度、数量和断面积;
焊缝对称布置;
避免交叉焊缝;
收缩变形角变形弯曲变形扭曲变形波浪变形
b 工艺措施:
反变形法;
加余量法;加0.1~0.2%的补缩量。

刚性固定;
合理的焊接顺序;先条后块原则。

焊接接头的组织和性能课件

焊接接头的组织和性能课件
搅拌摩擦焊
搅拌摩擦焊是一种新型的固相焊接技术,具有低热输入、低变形、 无裂纹等优点,适用于铝合金、镁合金等轻质材料的焊接。
电子束焊接
电子束焊接具有高能量密度、深穿透、高精度等优点,适用于难熔金 属、复合材料等特殊材料的焊接。
高性能焊接接头的设计与制备
1 2
材料选择与匹配
根据材料的物理和化学性质,选择合适的母材和 填充材料,以提高焊接接头的性能。
实验研究
通过实验研究,测试焊接接头的 力学性能、耐腐蚀性能和疲劳性 能等,为实际应用提供依据。
THANKS。
04
环境因素对耐腐蚀性的 影响:如温度、湿度、 氧气浓度等。
04
焊接接头的影响因素
焊接工艺参数的影响
焊接电流
电流大小影响熔深和焊接速度。电流过大可能导致热影响 区扩大,焊接变形增大;电流过小则可能造成未熔合、未 焊透等缺陷。
电弧电压
电弧电压主要影响焊缝的宽度和余高。电压过高可能导致 焊缝宽而低,反之则窄而高。
焊接接头的无损检测技术
超声检测
利用超声波在材料中传播的特性,检测焊接接头 内部的缺陷和异常。
射线检测
通过X射线或γ射线的穿透和成像,检测焊接接头 内部的缺陷和异常。
磁粉检测
利用磁粉在磁场中的吸附特性,检测焊接接头表 面的裂纹和缺陷。
焊接接头的质量评估与改进
质量评估
根据无损检测和力学性能试验的结果,对焊接接头质量进行评估 ,确定是否满足设计要求和使用条件。
焊接工艺优化
通过调整焊接参数,如电流、电压、焊接速度等 ,优化焊接工艺,提高焊接接头的质量。
3
热处理与后处理
适当的热处理和后处理可以改善焊接接头的组织 和性能,进一步提高其力学性能和耐腐蚀性。

焊接接头的组织和性能

焊接接头的组织和性能

.
24
以上就是低合金高强钢焊缝金属可能存在 的几种组织。概括而言,我们希望得到较 多的针状细晶铁素体,不希望得到侧板条 铁素体,先共析铁素体,如果合金成分能 显著增加奥氏体稳定性,降低其分解温度, 这一愿望即可实现。试验表明Mn含量0.8~ 1.0%、Si0.1~0.25%,而Mn/ Si=3~6时,即 可得到细晶铁素体和针状铁素体。我们还 希望得到的贝氏体为下贝氏体,而不希望 产生上贝氏体或粒状贝氏体,以及孪晶高 碳马氏体,其办法是控制
.
25
冷却速度;使在600~450℃区间(贝氏体转变的 高温段)停留时间尽量短,以尽量减少形成粒 状贝氏体和上贝氏体的机会(可控制t8-5来实 现)、降低含C量,使一且发生马氏体转变时
能形成板条状位错型马氏体,它的存在有利 而无害。有资料表明,焊缝含有微量Ti、B有
利形成针状铁素体,而抑制先共析铁素体的 形成,Ti与B同时加入最佳,因为Ti优先和氧 反应对B不被氧化起到保护作用。B凝聚在A
学性能。
.
9
2、焊缝金属的显微组织与性能
低碳钢是亚共析钢,在焊接熔池冷却凝固 的一次结晶完成后,在一定温度下将发生 二次结晶即固态相变,这时的组织应该是 铁素体加少量珠光体。其组织质量分数的 不同和性能的不同取决于冷却速度,即冷 却速度越大,铁素体含量越少,
.
10
珠光体越高,硬度强度也随之增高,且组织 细小。反之则组织变粗,铁素体越多珠光体 越少、硬度强度降低。需要注意的是铁素体 的形态,在不同冷却速度下也是不同的。且 对性能有影响。
低温压力容器、锅炉专业用低合金高强度钢 标准。
.
18
1、低合金高强度钢的焊缝合金化
我们以焊条电弧焊为例来讨论。其实从焊条标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.低合金高强度钢的焊缝组织
低合金钢合金元素含量较小时,其焊缝 组织与低碳钢相似,在一般冷速条件下 为铁素体加少量珠光体,冷速过大时, 也会产生粒状贝氏体。
第八章
焊接接头的性能及其影响因素
主要内容
第一节
焊 接 接头
第二节
焊 接 热循环
第三节 焊缝的金属组织和性能
第四节 熔合区和热影响区的组织和性

第 五节 影响焊接接头性能的因素及其
处理方法
ห้องสมุดไป่ตู้
第一节 焊 接 接 头
焊接接头是基本金属或基本金属和填充 金属在高温热源的作用下,经过加热和冷 却过程而形成不同组织和性能的不均匀体。
2.热影响区
受焊接热循环作用,组织和性能 发生变化的基本金属部分。 热影响区的宽度主要取决于焊接 线能量的大小。
3.熔合区
熔合区是焊缝区和热影响区的交 界处,在焊接过程中,处于固、 液状态的半熔化区。
熔合区一般很窄,约有 0.1~0.4mm宽,常称熔合线,在 合金钢焊接接头中很难区分出熔 合区。
焊接线能量是单位长度焊缝内输入的焊接能量,对电弧焊常用 下式表示:
Q= IU/υ Q-----线能量,J/cm I----焊接电流,A U-焊接电压,V υ—焊速, cm/s
焊接线能量越大,热影响区越宽,加热到1100℃以上高温区域也 就越宽,而且t过和t8/5越大,焊接线能量偏小时,不利于焊缝的熔透 和成形,因此焊接线能量必须在一个合理的范围才能保证焊接接头 具有良好的性能。
在熔化焊的条件下,焊缝及其邻近的 母材组织及性能发生变化的区域共同组成 焊接接头。
一.焊接接头的组成
焊接接头一般由三个区域组成: (1)焊缝 (2)熔合区 (3)热影响区
1.焊缝
焊缝是焊接接头的主体,
焊缝金属是焊接时由填充金属(焊 条、焊丝)和部分基本金属经过熔 化、结晶凝固而形成的。
焊缝区的宽度取决于坡口型式和焊 接线能量。
金属材料预热温度一般不超过350℃,在低 温(600℃)时对冷却速度能起到显著的降低作 用,对t过值影响不大,所以预热对焊接线能量 不起增强作用,对焊接热循环是有利的。
在多层多道焊接中,层间温度一般等于或略 高于预热温度,控制层间温度的目的在于降低 焊接接头在低温时的冷却速度,有利于焊接热 循环的作用。
一、焊接熔池的一次结晶
1.结晶过程的特点
(1)熔池的体积小、冷却速度快; (2)液态金属温度高; (3)运动状态下结晶; (4)以散热方向向焊缝中呈柱状生长。
2.组织特征与组织偏析
柱状晶是一次结晶的组织特征。
由于冷却速度极快,相内的成分来不及趋于 一致,所以保持着结晶先后而产生成分不均 匀性,这种不均匀性就是晶内偏析,
一般通过焊接规范来调整焊接线能量,不同的焊接方法,在常规规 范条件下,焊接线能量的差别较大,埋弧焊时焊接线能量较大,手 工电弧焊次之、钨极氩弧焊最小。
3.预热与层间温度的影响
焊接性差的钢材,一般要采取预热和保持层 间温度的技术措施,以降低焊接接头的冷却速 度,降低焊接过程的淬硬倾向,防止裂纹的产 生。
4.连接结构和钢材性能的影响
焊缝处的连接结构是由焊件厚度和接头型式 决定的,焊件厚度越大,焊接接头的相对冷却 速度越大,t8/5越小;当焊缝为角接接头时,其 冷却速度比对接接头速度要大,t8/5比对接接头 焊缝要小
钢材的导热性能对焊接热循环具有直接的影 响,导热性不同的钢材在相同的线能量条件下, 焊接接头的t过和t8/5是不同的,导热性好的钢材 t过和t8/5都小于导热性差的钢材。
2.基本要素
(1) 加热速度 (2)最高加热温度 (3)高温停留时间 (4)冷却速度
3.焊接热循环特性指标
反映焊接热循环特性的指标主要有2个:t 过和t8/5。
t间过,:其焊值接越接大头,在焊110接0℃接头以的上高组温织与的停性留能越时 差。
的t 8时/5间:,焊这接个接温头度由区80域0℃是冷焊却缝到金5属00固℃态所相需 变过程,其值大小,对焊缝金属的充分转 变、过热过程或淬硬倾向均有一定影响。
二.焊接接头的特点:
(1)具有组织和性能的不均匀性, (2)易产生各种焊接缺陷, (3)存在着应力集中、焊接残余应力、 焊接变形等。
第二节 焊接热循环
一、焊接热循环的特点
1.概念 焊接热循环是指在焊接热源的作用下,
焊件上某点的温度随着时间由低而高、又 由高而低的变化过程。
在加热和冷却过程中,焊件上不同位置 所经受的热循环状态是不同的,靠焊缝越 近的位置,被加热的最高温度越高,反之, 越远的位置被加热的最高温度越低。
二、焊缝金属的二次结晶
焊缝熔池金属一次结晶后的组织基本是 柱状奥氏体,在冷却至室温的过程中, 焊缝金属还会发生组织转变,这就是焊 缝金属的二次结晶。。
1.低碳钢的焊缝组织
低碳钢的焊缝组织含碳量低,组织一般 为粗大的柱状铁素体和少量珠光体,如 果高温停留时间过长(如气焊、电渣焊) 焊缝还会出现魏氏组织。多层多道焊时, 后一层焊道对前一层焊道有热处理作用, 部分柱状晶可转化为细小的等轴晶,其 金属组织为细小的铁素体和少量的珠光 体。
4.焊接热循环的主要特点
1)急剧加热且温度高,熔池(焊缝)附近 最高加热温度比一般热处理加热温度都高, 故发生过热,致使该区晶粒长大粗化严重。
2)急速冷却且速度快,从而致使焊接接头 容易发生淬硬,形成淬硬组织,加剧了焊 接冷裂纹的产生。
二、影响焊接热循环的因素
影响焊接热循环的因素主要有焊接方法、 焊接规范、焊接线能量、预热和层间温度、焊 件厚度和接头型式及材料本身的导热性等。
第三节 焊缝的金属组织和性能
熔池中的金属从液态变为固态的这种过 程称为熔池的一次结晶。
熔池凝固后的焊缝金属从高温冷却到室 温时,还会发生固态的相变,产生不同 的组织。焊缝的这种固态相变过程称为 焊缝金属的二次结晶。
焊缝金属组织除与化学成分有关外,在 很大程度上取决于这两次结晶的特征, 而焊缝金属的性能与其组织有密切关系。
1.焊接方法 焊接方法不同,加热速度、高温停留时间和焊 后冷却速度都会有所不同。气焊加热速度慢, 冷却速度也慢,高温停留时间长;而钨极氩弧 焊,则加热速度快,冷却速度也快,高温停留 时间较短。
2。焊接规范及线能量的影响
焊接规范指焊接时的主要工艺参数,也就是保证焊接质量而选 定的各物理量,如焊接电流、电弧电压、焊接速度、线能量等。
相关文档
最新文档