蒙特卡洛模拟方法页PPT文档
合集下载
第六讲 蒙特卡洛方法ppt课件

蒙特卡罗方法的特点
优点 能够比较逼真地描述具有随机 性质的事物的特点及物理实验 过程。 受几何条件限制小。 收敛速度与问题的维数无关。 具有同时计算多个方案与多个 未知量的能力。 误差容易确定。 程序结构简单,易于实现。 缺点 收敛速度慢。 误差具有概率性。 在粒子输运问题中, 计算结果与系统大小 有关。
2 2 t / 2 P X E ( X ) e dt 1 N 0 N 2
f(X)是X的分布密度函数。则
0 ( x E ( X )) f ( x ) dx
2 2
平均值
当N充分大时,有如下的近似式
X N
MC方法随机理论的基础
MC方法的随机理论基础
g(u)均匀分布
N 1 x 2 t/ 2 P X E ( X ) x e dt N lim x N 2
MC方法随机理论的基础
• 大数法则
MC方法随机理论的基础
中心极限定理
该定理指出,如果随机变量序列 X1 ,X2,…, XN独立 同分布,且具有有限非零的方差σ2 ,即
MC方法概述
• 为了得到具有一定精确度的近似解,所需随机试 验的次数是很多的,通过人工方法作大量的试验 相当困难,甚至是不可能的。因此,蒙特卡罗方 法的基本思想虽然早已被人们提出,却很少被使 用。本世纪四十年代以来,由于电子计算机的出 现,使得人们可以通过电子计算机来模拟随机试 验过程,把巨大数目的随机试验交由计算机完成, 使得蒙特卡罗方法得以广泛地应用,在现代化的 科学技术中发挥应有的作用。
• 目前,已经广泛的应用于社会科学,材料, 物理,系统工程,科学管理,生物遗传等 领域。可以说,有随机工程事件的领域, 就可以应用Monte Carlo模拟。
蒙特卡洛方法第四讲ppt课件

27
3>. xM功能,表示数值等于它前面数据的x 倍。 例如:5 4M => 4 20 4>. nJ功能,表示从它所在位置跳过n项不 指定的数据而使用缺省值。 • 这四项输入简写功能可以综合运用。
28
b) 列输入格式 列输入只能用于数据块中,对栅元参数和源 的描述比较有用。按行输入的栅元重要性、 体积、权窗等数据项可读性较差,而且增加 或删除栅元时要在行输入卡上仔细寻找相应 项。列输入的可读性有很大提高,删除或增 加与某一栅元相对应的数据项时也比较方便。
37
• 任何曲面都把空间分成两部分,一部分相对于该 曲面具有正坐向,另一部分具有负坐向。填写栅 元卡时,在曲面号之前用正负号表示栅元中的点 相对于该曲面的坐向,正号可省略。 对于一个封闭的曲面,例如球面,坐向(sense)就 变成: 内部=负值 Negative 外部=正值 Positive
38
39
• 再举一个例子:有一个大球面S1,它的里 面有一个小球面S2。在小球面S2外且在大 球面S1里的部分,是这样定义的:-1 +2
• 在小球面S2里的部分,是这样定义的:-2
40
41
(2) 交集和并集(intersection & union) 交集是两个集合的公共部分,如图所示。
42
• 并集是两个集合的合集:
29
• 列输入格式的第一行以#开始,#可以放在 1∼5列的任意位置,卡片助记名逐个放在该 行6列以后,在这些助记名之下按列给出数 据项。同一个列输入格式块中的卡片必须是 同一类卡片,比如都是栅元参数卡、都是曲 面参数卡或都是源参数卡等,在#号下面的 1∼5列放置栅元号、曲面号或源分布号。
30
c) 缺省值 MCNP许多输入卡的参数项有缺省值,用 户不必每次都给出这些参数,如果卡片输 入项有固定顺序,可以使用nJ功能跳过n个 输入项。如果卡片上所有数据项都想缺省, 只给出卡片助记名即可。有些卡片不给出 也有缺省值,如MODE N卡就可以省略。
3>. xM功能,表示数值等于它前面数据的x 倍。 例如:5 4M => 4 20 4>. nJ功能,表示从它所在位置跳过n项不 指定的数据而使用缺省值。 • 这四项输入简写功能可以综合运用。
28
b) 列输入格式 列输入只能用于数据块中,对栅元参数和源 的描述比较有用。按行输入的栅元重要性、 体积、权窗等数据项可读性较差,而且增加 或删除栅元时要在行输入卡上仔细寻找相应 项。列输入的可读性有很大提高,删除或增 加与某一栅元相对应的数据项时也比较方便。
37
• 任何曲面都把空间分成两部分,一部分相对于该 曲面具有正坐向,另一部分具有负坐向。填写栅 元卡时,在曲面号之前用正负号表示栅元中的点 相对于该曲面的坐向,正号可省略。 对于一个封闭的曲面,例如球面,坐向(sense)就 变成: 内部=负值 Negative 外部=正值 Positive
38
39
• 再举一个例子:有一个大球面S1,它的里 面有一个小球面S2。在小球面S2外且在大 球面S1里的部分,是这样定义的:-1 +2
• 在小球面S2里的部分,是这样定义的:-2
40
41
(2) 交集和并集(intersection & union) 交集是两个集合的公共部分,如图所示。
42
• 并集是两个集合的合集:
29
• 列输入格式的第一行以#开始,#可以放在 1∼5列的任意位置,卡片助记名逐个放在该 行6列以后,在这些助记名之下按列给出数 据项。同一个列输入格式块中的卡片必须是 同一类卡片,比如都是栅元参数卡、都是曲 面参数卡或都是源参数卡等,在#号下面的 1∼5列放置栅元号、曲面号或源分布号。
30
c) 缺省值 MCNP许多输入卡的参数项有缺省值,用 户不必每次都给出这些参数,如果卡片输 入项有固定顺序,可以使用nJ功能跳过n个 输入项。如果卡片上所有数据项都想缺省, 只给出卡片助记名即可。有些卡片不给出 也有缺省值,如MODE N卡就可以省略。
《蒙特卡罗模拟》PPT课件

(3)系统模拟法:是用数字对含有随机变量的系统进行模拟,可看作 是蒙特卡洛法的应用。一般说来,蒙特卡洛法用于静态计算,而系统模 拟法用于动态模型计算。我们主0,1]区间上均匀分布随机数的产生
定义 1:设 R 为[0,1]上服从均匀分布的随机变量,即的分布密度函数与 分布函数分别为:
布物物的理理随方方机法法数::一。一是是放放射射性性物物质质随随机机蜕蜕变变;;二二是是电电子子管管回回路路的的热热噪噪声声。(。(如如
②可可产将将生热热方噪噪法声声源源装装于于计计算算机机外外部部,,按按其其噪噪声声电电压压的的大大小小表表示示不不同同的的随随机机 物数数理。。方此此法法法:产产一生生是的的放随随射机机性性性物最最质好好随,,机但但蜕产产变生生;过过二程程是复复电杂杂子。。)管)回路的热噪声。(如 可查查将随随热机机噪数数声表表源-----装---””R于Raan计ndd算TTaa机bblel外e”(”(部11,995按555其年年噪由由美声美国电国兰压兰德的德公大公司小司编表编制示制,不,有同有随的随机随机数机数 数1100。00 此万万法个个产。。))生随随的机机随数数机表表性中中最的的好数数,字字但具具产有有生均均过匀匀程的的复随随杂机机。性)性,,没没有有周周期期性性。。使使 查用用随时时机,,数可可表根根-据据---需需”R要要an任任d取T取a一b一l段e段”(((1横9横5或或5 竖年竖)由)。。美如如国需需兰220德0个公个,司,便编便可可制从从,中有中取随取(机(顺数顺 1次次00))万2200个个个。,),需随需要机要几几数位位表取取中几几的位位数,,字随随具机机有数数均表表匀无无的所所随谓谓机位位性数数,,,没不不有能能周四四期舍舍性五五入。入。使。 用 次由 个由个时 )我递 随递随2,们推 机推机0可在数公个数公根使是式,是式据用由(需由(中需第如要第如可要同几i同i以个任余个位余在按取数按取数E一一公一几公x定c段式定e位式l公(中)公,)式产横在式随在推生或计推机计算随竖 算算数算出机机)出表机。来数内来无内如的,产的所产需,命生,谓生故令2伪故0位伪并为随个并数随非R机,非a,机真n数便真d不数正(:可正能:的)由从的四由随于中随于舍机第取机第五数(i数+入。i1+顺。。1 由但但递满满推足足公::式(如同余数公式)在计算机内产生伪随机数:由于第 i+1 个aa随))机有有数较较是好好由的的第随随机i机个、、按均均一匀匀定性性公。。式推算出来的,故并非真正的随机数。 但abcbdcbdc) ))满)) ))))有 算周足算周 算 故算故周算较 法期:法期 法 这法期法这好 过长过长 可 是过长可是的 程、程、 再 目程、再目随 不重不前重 现不前重现机 退复退复 , 最退复,最、 化化性性 速常化性速常均 ((差差 度 用(差度用即匀 即的。 快。即的。快不方性 不。不方。能法。 能能法反。反反。cd复复))复出出算算出现现法法现某某过可某一程再一一常不现常常数退,数数。化速。。)))度快。
定义 1:设 R 为[0,1]上服从均匀分布的随机变量,即的分布密度函数与 分布函数分别为:
布物物的理理随方方机法法数::一。一是是放放射射性性物物质质随随机机蜕蜕变变;;二二是是电电子子管管回回路路的的热热噪噪声声。(。(如如
②可可产将将生热热方噪噪法声声源源装装于于计计算算机机外外部部,,按按其其噪噪声声电电压压的的大大小小表表示示不不同同的的随随机机 物数数理。。方此此法法法:产产一生生是的的放随随射机机性性性物最最质好好随,,机但但蜕产产变生生;过过二程程是复复电杂杂子。。)管)回路的热噪声。(如 可查查将随随热机机噪数数声表表源-----装---””R于Raan计ndd算TTaa机bblel外e”(”(部11,995按555其年年噪由由美声美国电国兰压兰德的德公大公司小司编表编制示制,不,有同有随的随机随机数机数 数1100。00 此万万法个个产。。))生随随的机机随数数机表表性中中最的的好数数,字字但具具产有有生均均过匀匀程的的复随随杂机机。性)性,,没没有有周周期期性性。。使使 查用用随时时机,,数可可表根根-据据---需需”R要要an任任d取T取a一b一l段e段”(((1横9横5或或5 竖年竖)由)。。美如如国需需兰220德0个公个,司,便编便可可制从从,中有中取随取(机(顺数顺 1次次00))万2200个个个。,),需随需要机要几几数位位表取取中几几的位位数,,字随随具机机有数数均表表匀无无的所所随谓谓机位位性数数,,,没不不有能能周四四期舍舍性五五入。入。使。 用 次由 个由个时 )我递 随递随2,们推 机推机0可在数公个数公根使是式,是式据用由(需由(中需第如要第如可要同几i同i以个任余个位余在按取数按取数E一一公一几公x定c段式定e位式l公(中)公,)式产横在式随在推生或计推机计算随竖 算算数算出机机)出表机。来数内来无内如的,产的所产需,命生,谓生故令2伪故0位伪并为随个并数随非R机,非a,机真n数便真d不数正(:可正能:的)由从的四由随于中随于舍机第取机第五数(i数+入。i1+顺。。1 由但但递满满推足足公::式(如同余数公式)在计算机内产生伪随机数:由于第 i+1 个aa随))机有有数较较是好好由的的第随随机i机个、、按均均一匀匀定性性公。。式推算出来的,故并非真正的随机数。 但abcbdcbdc) ))满)) ))))有 算周足算周 算 故算故周算较 法期:法期 法 这法期法这好 过长过长 可 是过长可是的 程、程、 再 目程、再目随 不重不前重 现不前重现机 退复退复 , 最退复,最、 化化性性 速常化性速常均 ((差差 度 用(差度用即匀 即的。 快。即的。快不方性 不。不方。能法。 能能法反。反反。cd复复))复出出算算出现现法法现某某过可某一程再一一常不现常常数退,数数。化速。。)))度快。
Monte-Carlo模拟教程

举例
例1 在我方某前沿防守地域,敌人以一个炮排(含两门火炮) 为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地 进行了伪装并经常变换射击地点.
经过长期观察发现,我方指挥所对敌方目标的指示有50%是准 确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁 伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮.
蒙特卡罗方法的关键步骤在于随机数的产生, 计算机产生的随机数都不是真正的随机数(由算 法确定的缘故),如果伪随机数能够通过一系列 统计检验,我们也可以将其当作真正的随机数 使用。
rand('seed',0.1);
rand(1) %每次运ra行nd程('s序tat产e',s生um的(1值00*是clo相ck同)*r的and);
E = P(A0) = P(j=0)P(A0∣j=0) + P(j=1)P(A0∣j=1)
= 1 0 1 1 0.25 2 22
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1)
= 10 11 1 2 23 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
非常见分布的随机数的产生
• 逆变换方法
由定理 1 ,要产生来自 F(x) 的随机数,只要先 产生来自U (0,1) 随机数 u ,然后计算 F 1(u) 即 可。具体步骤如下:
(1) 生成 (0,1)上 均匀分布的随机数U。
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
蒙特卡罗方法的基本思想很早以前就被人们所发现和 利用。早在17世纪,人们就知道用事件发生的“频率” 来决定事件的“概率”。19世纪人们用蒲丰投针的方法 来计算圆周率π,上世纪40年代电子计算机的出现,特别 是近年来高速电子计算机的出现,使得用数学方法在计算 机上大量、快速地模拟这样的试验成为可能。
蒙特卡洛分析ppt课件

Model file used for LNA example
NoteThis is not based on foundry data but modeled for illustrative purposes.
13
Cadence simulation setup (Monte Carlo)
Monte Carlo simulation
6
Cadence simulation setup (Normal)
Monte Carlo simulation
1.Choose analysis to run 2.Choose output to plot 3.Create netlist and run
Set up analysis(dc,ac,sp etc.),create netlist and run simulator
Design- Specific Section – designer according to his need can specify Monte Carlo analysis.For example in a current mirror circuit,matched transistors are used and designer can give some correlation factor between these matched transistor.
Matching S11
S22
(Analyzing waveform)
Process parameter and mismatch effect
DEGRADES Input & Output matching N/W
DEGRADES Overall design performance (noise,gain etc.)
NoteThis is not based on foundry data but modeled for illustrative purposes.
13
Cadence simulation setup (Monte Carlo)
Monte Carlo simulation
6
Cadence simulation setup (Normal)
Monte Carlo simulation
1.Choose analysis to run 2.Choose output to plot 3.Create netlist and run
Set up analysis(dc,ac,sp etc.),create netlist and run simulator
Design- Specific Section – designer according to his need can specify Monte Carlo analysis.For example in a current mirror circuit,matched transistors are used and designer can give some correlation factor between these matched transistor.
Matching S11
S22
(Analyzing waveform)
Process parameter and mismatch effect
DEGRADES Input & Output matching N/W
DEGRADES Overall design performance (noise,gain etc.)
蒙特卡罗模拟与编程张晓峒PPT课件

@cbinom(x, n, p) @dbinom(x, n, p)
@qbinom(s, n, p)
卡方分布
@rchisq(v)
@cchisq(x, v)
@dchisq(x, v)
@qchisq(p, v)
指数分布
@rexp(m)
@cexp(x, m)
@dexp(x, m)
@qexp(p, m)
极值分布 I @rextreme
第6页/共50页
2.蒙特卡罗模拟和自举原理 进行蒙特卡罗模拟和自举首先要设定数据生成系统。而设定数据生成系 统的关键是要产生大量的随机数。例如模拟样本容量为 100 的一元线性回归 模型中参数的分布,若试验 1 万次,则需要生成 200 万个随机数。 计算机所生成的随机数并不是“真随机数”,而是具有某种相同统计性质 的随机数。计量经济学中蒙特卡罗模拟和自举所用到的随机数一般是服从 N(0,1)分布或均匀分布的随机数。计算机生成的随机数称作“伪随机数” (pseudo-random number)(以下简称随机数)。生成的随机数的程序称作“伪 随机数生成系统”。实际上计算机不可能生成真随机数。
' u序列初始值为零。
' 生成 AR(1) 序列 x1=0.8*x1(-1)+u
series x1
' 定义x1序列
x1(1)=0
' 定义x1序列初始值为零
smpl 2 1000 x1=.8*x1(-1)+u ' 生成 AR(1) 序列 ' 生成 MA(1) 序列 x1=u+0.8*u(-1)
一种为数值计算法。也称为有限样本近似法(finite-sample approximation)。 这种方法要用到许多数学知识,专业性很强,使没有受过专门训练的人员运用 此方法受到限制。
蒙特卡罗方法PPT课件
第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍
是
,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率
蒙特卡罗模拟PPT课件
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
问题:试验次数 n 多大时,对给定的置信度 1-α(0<α<1),估计精度达到ε.
即问:取多大的n 使
P pˆ
p
P
kn n
p
1
成立?
答案:
n
p(1 2
p) z2
其中, zα是正态分布的临界值.
证明
频率法是事件A出现的频率作为概率p的估计
pˆ kn n
n次独立试验中A出现的次数kn~B(n, p).由中 心极限定理知
相当于第i 个随机点落 在1/4圆内.
若有k 个点落在l/4圆内
随机事件“点落入1/4圆内”的 频率为 k/n 根据概率论中的大数定律, 事件发生的频率
依概率收敛于事件发生的概率p,即有
lim
n
P{
k n
p
}
1
得圆周率π的估计值为
ˆ 4k n
且当试验次数足够大时, 其精度也随之提高.
分析:实际上概率值为
01
1 x2dx 4
恰为1/4圆 的面积
频率法: 利用随机变量落进指定区域内的频 率来计算定积分.
平均值法: 利用随机变量的平均值(数学期望) 来计算定积分.
I ab f ( x)dx
平均值法的算法如下:
(1)产生RND 随机数:r1,r2,…,rn;
(2)令 ui=a+(b-a)ri,i=1,2,…,n;
要增大100倍.
P197表8.2中列出了置信度为0.95 时, 在不同
问题:试验次数 n 多大时,对给定的置信度 1-α(0<α<1),估计精度达到ε.
即问:取多大的n 使
P pˆ
p
P
kn n
p
1
成立?
答案:
n
p(1 2
p) z2
其中, zα是正态分布的临界值.
证明
频率法是事件A出现的频率作为概率p的估计
pˆ kn n
n次独立试验中A出现的次数kn~B(n, p).由中 心极限定理知
相当于第i 个随机点落 在1/4圆内.
若有k 个点落在l/4圆内
随机事件“点落入1/4圆内”的 频率为 k/n 根据概率论中的大数定律, 事件发生的频率
依概率收敛于事件发生的概率p,即有
lim
n
P{
k n
p
}
1
得圆周率π的估计值为
ˆ 4k n
且当试验次数足够大时, 其精度也随之提高.
分析:实际上概率值为
01
1 x2dx 4
恰为1/4圆 的面积
频率法: 利用随机变量落进指定区域内的频 率来计算定积分.
平均值法: 利用随机变量的平均值(数学期望) 来计算定积分.
I ab f ( x)dx
平均值法的算法如下:
(1)产生RND 随机数:r1,r2,…,rn;
(2)令 ui=a+(b-a)ri,i=1,2,…,n;
要增大100倍.
P197表8.2中列出了置信度为0.95 时, 在不同
《蒙特卡罗方法》课件
蒙特卡罗方法的优缺点
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。
蒙特卡罗模拟方法ppt课件
2,不可避免的出现重复问题 所以成为伪随机数
问题的解决:1.选取好的递推公式 2.不是本质问题
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
产生伪随机数的乘同余方法
▪ 乘同余方法是由Lehmer在1951年提出来的,它的一般形式是:对于
N
1
AaPbL2cQ2d
根据历史数据,预测未来。
1
AaPbL2cQ2d
收集P,L,Q数据,确定分布函 数 f(P),f(L),f(Q)
模拟次数N;根据分
N
布函数,产生随机数
产生 N 个 A值
N
抽取 P,L,Q一 组随机 数,带 入模型
统计分析,估计 均值,标准差
X
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
1,0 x 1 f (x) 0,其他
分布函数为:
0, x 0
F
(x)
x,0
x
1
特征:独立性、均匀性 1, x 1
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
随机数的产生方法
▪ 随机数表 ▪ 物理方法 ▪ 计算机方法
概rg2(,r率2通)…,语过,…言某,r来N种,g说试(r)N,验),的从,算将分得术相布到平应密N均的度个值N函观个数察随值f(r)机r中1,变抽r2量取,的N…值,个gr子N(r(样1)用,r1,
1 N
gN N i1 g(ri )
问题的解决:1.选取好的递推公式 2.不是本质问题
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
产生伪随机数的乘同余方法
▪ 乘同余方法是由Lehmer在1951年提出来的,它的一般形式是:对于
N
1
AaPbL2cQ2d
根据历史数据,预测未来。
1
AaPbL2cQ2d
收集P,L,Q数据,确定分布函 数 f(P),f(L),f(Q)
模拟次数N;根据分
N
布函数,产生随机数
产生 N 个 A值
N
抽取 P,L,Q一 组随机 数,带 入模型
统计分析,估计 均值,标准差
X
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
1,0 x 1 f (x) 0,其他
分布函数为:
0, x 0
F
(x)
x,0
x
1
特征:独立性、均匀性 1, x 1
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
随机数的产生方法
▪ 随机数表 ▪ 物理方法 ▪ 计算机方法
概rg2(,r率2通)…,语过,…言某,r来N种,g说试(r)N,验),的从,算将分得术相布到平应密N均的度个值N函观个数察随值f(r)机r中1,变抽r2量取,的N…值,个gr子N(r(样1)用,r1,
1 N
gN N i1 g(ri )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当xlsin
其他
sN
1 N
N
s(xi ,i )
i1
Ps(x,) f1(x) f2()dxd
d lsin dx 2l
0 0
a a
2l 2l
aP asN
一些人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850 5000
其中作为当时的代表性工作便是在第二次世界大战期间,为解 决原子弹研制工作中,裂变物质的中子随机扩散问题,美国数学 家冯.诺伊曼(Von Neumann)和乌拉姆(Ulam)等提出蒙特卡 罗模拟方法。 由于当时工作是保密的,就给这种方法起了一个代 号叫蒙特卡罗,即摩纳哥的一个赌城的名字。用赌城的名字作为 随机模拟的名称,既反映了该方法的部分内涵,又易记忆,因而 很快就得到人们的普遍接受。
Crystal ball软件对各种概率分布进行拟合以选取最合适的 分布。
抽样次数与结果精度
解的均值与方差的计算公式: E(X),Var(X)1 nx2
中x2 的是样随本机量变n很量大X的,方由差统,计而学称的V中a心r 极( X限)定为理估知计量方X差。 通常渐蒙进特正卡态罗分模布拟,
N
1
AaPbL2cQ2d
根据历史数据,预测未来。
1
AaPbL2cQ2d
收集P,L,Q数据,确定分布函 数 f(P),f(L),f(Q)
模拟次数N;根据分
N
布函数,产生随机数
产生 N 个 A值
N
抽取 P,L,Q一 组随机 数,带 入模型
统计分析,估计 均值,标准差
X
模型建立的两点说明
①建立概率统计模型
N
②收集模型中风险变量的数据 , 确定风 险因数的分布函数
⑤根据随机数在各风 险变量的概率分布中 随机抽样,代入第一 步中建立的数学模型
③根据风险分析的精度要求,确
N
定模拟次数 N
N
④建立对随机变量的抽样 方法,产生随机数。
⑥ N 个 样本值
⑦统计分析,估计均 值,标准差
例子
某投资项目每年所得盈 利额A由投资额P、劳动 生产率L、和原料及能 源Hale Waihona Puke 格Q三个因素。蒙特卡罗模拟方法
报 告 人 :杨林 吴颖 科 目 :项目风险管理 任课教师 :尹志军
蒙特卡罗模拟方法
一、蒙特卡罗方法概述 二、蒙特卡罗方法模型 三、蒙特卡罗方法的优缺点及其适用范围 四、相关案例分析及软件操作 五、问题及相关答案
Monte Carlo方法的发展历史
早在17世纪,人们就知道用事件发生的 “频率”来决定事件的“概率”。从方法 特征的角度来说可以一直追溯到18世纪后 半叶的蒲丰(Buffon)随机投针试验,即 著名的蒲丰问题。
因此,可以通俗地说,蒙特卡罗方法是用随机试 验的方法计算积分,即将所要计算的积分看作服从某
种分布密度函数f(r)的随机变量g(r)的数学期望
g0 g(r)f(r)dr
概rg2(,r率2通)…,语过,…言某,r来N种,g说试(r)N,验),的从,算将分得术相布到平应密N均的度个值N函观个数察随值f(r)机r中1,变抽r2量取,的N…值,个gr子N(r(样1)用,r1,
Monte Carlo方法在求解一个问题是,总 是需要根据问题的要求构造一个用于求
解的概率统计模型,常见的模型把问题 的解化为一个随机变量 X 的某个参数
的估计问题。
要估计的参数 通常设定为 X 的数学
期望(亦平均值,即 E(X) )。按
统计学惯例, 可用 X 的样本 (X1,X2,...Xn)
蒙特卡罗方法的基本思想
蒙特卡罗方法又称计算机随机模拟方法。 它是以概率统计理论为基础的一种方法。
由蒲丰试验可以看出,当所求问题的解是 某个事件的概率,或者是某个随机变量的 数学期望,或者是与概率、数学期望有关 的量时,通过某种试验的方法,得出该事 件发生的频率,或者该随机变量若干个具 体观察值的算术平均值,通过它得到问题 的解。这就是蒙特卡罗方法的基本思想。
gN
1 N
N i1
g(ri )
作为积分的估计值(近似值)。
计算机模拟试验过程
计算机模拟试验过程,就是将试验过 程(如投针问题)化为数学问题,在计算 机上实现。
模拟程序
l=1; d=2; m=0; n=10000 for k=1:n; x=unifrnd(0,d/2); y=unifrnd(0,pi); if x<0.5*1*sin(y) m=m+1 else end end p=m/n pi_m=1/p
例.蒲丰氏问题
设针投到地面上的位置
可以用一组参数(x,θ)来描 述,x为针中心的坐标,θ为针 与平行线的夹角,如图所示。
任意投针,就是意味着x
与θ都是任意取的,但x的范围
限于[0,a],夹角θ的范围
限于[0,π]。在此情况下,
针与平行线相交的数学条件是
xlsin
针在平行线间的位置
s(x,)10,,
的平均值来估计,即
X
1 n
n k 1
Xk
收集模型中风险变量的数据 , 确定 风险因数的分布函数
这时就必须采用主观概率,即由专家做出主观估计得到的概 率。
另一方面,在对估测目标的资料与数据不足的情况下,不可 能得知风险变量的真实分布时,根据当时或以前所收集到的 类似信息和历史资料,通过专家分析或利用德尔菲法还是能 够比较准确地估计上述各风险因素并用各种概率分布进行 描述的。
3.1596
斯密思(Smith) 1855 3204
3.1553
福克斯(Fox)
1894 1120
3.1419
拉查里尼 (Lazzarini)
1901 3408
3.1415929
20世纪四十年代,由于电子计算机的出现,利用电子计算机可以 实现大量的随机抽样的试验,使得用随机试验方法解决实际问题 才有了可能。
1707-1788
1777年,古稀之年的蒲丰在家中请来 好些客人玩投针游戏(针长是线距之半), 他事先没有给客人讲与π 有关的事。客人 们虽然不知道主人的用意,但是都参加了 游戏。他们共投针2212次,其中704次相交。 蒲丰说,2212/704=3.142,这就是π 值。 这着实让人们惊喜不已。