2018年北京市朝阳区高三一模数学试题
北京市朝阳区2018年一模数学文科试题

朝阳区高三年级第一次综合模拟数学学科测试(文史类)一、选择题:本大题共8小题,每小题5分,共40分.(1)已知集合|03}A x x =∈<<N {,1|21}x B x -=>{,则A B =I ( ).A .∅B .{}1C .{}2D .{}1,2(2)已知i 为虚数单位,复数2i1i-的值是( ). A .1i -- B .1i + C .1i -+ D .1i -(3)若,x y 满足约束条件,1,33,x y y x x y +⎧⎪+⎨⎪+⎩≤3≤≥则函数2z x y =-的最大值是( ).A .1-B .0C .3D .6(4)在索契冬奥会跳台滑雪空中技巧比赛赛前训练中,甲、乙两位队员各跳一次.设命题p 是“甲落地站稳”,q 是“乙落地站稳”,则命题“至少有一位队员落地没 有站稳”可表示为( ).A .p q ∨B .()p q ∨⌝C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝(5)执行如右图所示的程序框图,则输出S 的值是( ).A .10B .17C .26D .28(6)函数2sin ()1xf x x =+的图象大致为( ).A .B .C .D .(7) “8m <”是“方程221108xy m m -=--表示双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)如图,梯形ABCD 中,AD BC ,1AD AB ==,AD AB ⊥,45BCD ∠=o ,将ABD ∆沿对角线BD折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD .给出下面四个命题: ①A D BC '⊥;②三棱锥A BCD '-; ③CD ⊥平面A BD ';④平面A BC '⊥平面A DC '.其中正确命题的序号是( ).A .①②B .③④C .①③D .②④ 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)抛物线28y x =的准线方程是 .(10)在一次选秀比赛中,五位评委为一位表演者打分,若去掉一个最低分后平均分为90分,去掉一个最高分后平均分为86分.那么最高分比最低分高 分.(11).已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.(12)一个空间几何体的三视图如图所示,则这个几何体的体积为 ;表面积为 .(13)已知直线y x m =+与曲线224x y +=交于不同的两点,A B ,若||AB ≥则实数m 的取值范围是 .(14)将1,2,3,…………,9这9个正整数分别写在三张卡片上,要求每一张卡片上的任意两数之差都不在这张卡片上.现在第一张卡片上已经写有1和5,第二张卡片上写有2,第三张卡片上写有3,则6应该写在第 张卡片上;第三张卡片上的所有数组成的集合是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数()2sin cos 2f x x x x =. (Ⅰ)求(0)f 的值及函数()f x 的单调递增区间;俯视图 BA(Ⅱ)求函数()x f 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16)(本小题满分13分)某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力只知道从这20位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为15.(Ⅰ)求a, 的值;(Ⅱ)从运动协调能力为优秀的学生中任意抽取2位,求其中至少有一位逻辑思维能力优秀的学生的概率.(17)(本题满分14分)在四棱柱1111ABCD A B C D -中,1AA ⊥底面ABCD ,底面ABCD 为菱形,O 为11A C 与11B D 交点,已知11AA AB ==,60BAD ∠=o . (Ⅰ)求证:11AC ⊥平面11B BDD ; (Ⅱ)求证:AO ∥平面1BC D ;(Ⅲ)设点M 在1BC D ∆内(含边界),且OM ⊥11B D ,说明满足条件的点M 的轨迹,并求OM 的最 小值.(18)(本小题满分13分)设函数()ln f x x =,()1g x ax =+,a ∈R ,记()()()F x f x g x =-. (Ⅰ)求曲线()y f x =在e x =处的切线方程; (Ⅱ)求函数()F x 的单调区间;(Ⅲ)当0a >时,若函数()F x 没有零点,求a 的取值范围.(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>经过点(1,2,一个焦点为0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线(1)(0)y k x k =-≠与x 轴交于点P ,与椭圆C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点Q ,求||||AB PQ 的取值范围.(20)(本小题满分13分)已知{}n a 是公差不等于0的等差数列,{}n b 是等比数列(N )n *∈,且110a b =>.(Ⅰ)若33a b =,比较2a 与2b 的大小关系; (Ⅱ)若2244,a b a b ==.(ⅰ)判断10b 是否为数列{}n a 中的某一项,并请说明理由;(ⅱ)若m b 是数列{}n a 中的某一项,写出正整数m 的集合(不必说明理由).。
2018朝阳区高三一模数学理科答案

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)答案2018.3三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由2co s b a A =,得co s 0A >,因为s in 5A =,所以c o s 5A =.因为2co s b a A =,所以4s in 2s in c o s 2555B A A ==⨯=.故ABC ∆的面积1s in 22S a c B ==. ………………….7分(Ⅱ)因为4s in 5B =,且B 为锐角,所以3c o s 5B =.所以s in s in ()s in c o s c o s s in 25C A B A B A B =+=+=.………….13分16.(本小题满分14分)证明:(Ⅰ)由已知2A B A E ==,因为O 为B E 中点,所以A O B E '⊥. 因为平面A B E '⊥平面B C D E ,且平面A B E'平面B C D E B E =,A O '⊂平面AB E ',所以A O '⊥平面BCDE .又因为C D ⊂平面B C D E ,所以A O C D '⊥. ………….5分 (Ⅱ)设F 为线段B C 上靠近B 点的四等分点,G 为C D 中点.由已知易得O F O G ⊥.由(Ⅰ)可知,A O '⊥平面B C D E , 所以A O O F '⊥,A O O G '⊥.以O 为原点,,,O F O G O A '所在直线分别为,,x y z 轴 建立空间直角坐标系(如图). 因为2A B '=,4B C =,所以(00(110),(130),(130),(110)A B C D E ,,,,,,,,'---. 设平面A D E '的一个法向量为111(,,)x y z =m ,因为(13(020)A D D E ,,,,'=--=-,所以0, 0,A D D E ⎧'⋅=⎪⎨⋅=⎪⎩m m 即111130,20. x y y ⎧-+-=⎪⎨-=⎪⎩取11z =-,得0,1)=-m . 而A C '=(1,3,.所以直线A C '与平面A DE '所成角的正弦值s in 3θ==……….10分(Ⅲ)在线段A C '上存在点P ,使得//O P 平面A D E '. 设000(,,)P x y z ,且(01)A P A Cλλ'=≤≤',则A P AC λ''=,[0,1]λ∈.因为(00(130)A C ,,',所以000(,,(,3,)x y z λλ-=,所以000,3,xy z λλ===,所以(,3,)P λλ,(,3)O P λλ=.若//O P 平面A D E ',则O P ⊥m.即0O P ⋅=m .由(Ⅱ)可知,平面A D E '的一个法向量0,1)=-m ,0-=,解得1[0,1]2λ=∈,所以当12A P A C'='时,//O P 平面A D E '. ……….14分17.(本小题满分13分)解:(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有1018420=1401830⨯⨯人.……….3分 (Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为21=84;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为310.所以该男生和该女生的选考方案中都含有历史学科的概率为13341040⨯=.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治. 由已知得ξ的取值为1,2.2242281(1)4C C P C ξ+===,1111422228()213(2)4C C C C P C ξ++⨯+===,或3(2)1(1)4P P ξξ==-==.所以ξ的分布列为所以13712444E ξ=⨯+⨯=. …….13分18. (本小题满分13分) (Ⅰ)当2a =时,ln 1()2x f x xx-=-. 2222ln 22ln ()2x x xf x xx---'=-=.(ⅰ)可得(1)0f '=,又(1)3f =-,所以()f x 在点(1,3-)处的切线方程为3y=-.….3分 (ⅱ)在区间(0,1)上2220x ->,且ln 0x ->,则()0f x '>. 在区间(1,+∞)上2220x -<,且ln 0x -<,则()0f x '<.所以()f x 的单调递增区间为(0,1),单调递减区间为(1,+∞). ….8分(Ⅱ)由0x >,()1f x <-,等价于ln 11x a x x--<-,等价于21ln 0a x x x -+->.设2()1ln h x a x x x=-+-,只须证()h x >成立.因为2121()21a x x h x a x xx--'=--=,12a <<,由()h x '=,得2210a x x --=有异号两根.令其正根为0x ,则200210a x x --=.在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>. 则()h x 的最小值为20000()1ln h x a x x x =-+- 00011ln 2x x x +=-+-3ln 2x x -=-.又(1)220h a '=->,13()2()30222a h a '=-=-<,所以0112x <<.则0030,ln 02x x ->->.因此03ln 02x x -->,即0()h x >.所以()h x >所以()1f x <-. (13)分19. (本小题满分14分)解:(Ⅰ)由题意得222222,11 1.2c a a bc a b⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩解得a=1b =,1c =.故椭圆C 的方程为2212xy+=. ….….5分(Ⅱ)12=θθ.证明如下:由题意可设直线1l 的方程为(1)yk x =+,直线2l 的方程为ykx=-,设点11(,)A x y ,22(,)B x y ,33(,)E x y ,33(,)F x y --.要证12=θθ,即证直线A E 与直线B F 的斜率之和为零,即0A EB F k k += .因为13231323A EB F y y y y k k x x x x -++=+-+13231323(1)(1)k x k x k x k x x x x x +++-=+-+2121231323[2()2]()()k x x x x x x x x x +++=-+.由22(1),1,2y k x x y =+⎧⎪⎨+=⎪⎩ 得2222(12)4220k x k x k+++-=,所以2122412kx x k-+=+,21222212kx x k-=+.由22,1,2y k x x y =-⎧⎪⎨+=⎪⎩得22(12)2k x+=,所以232212x k=+.所以2221212322244442()20121212kkx x x x x kkk--+++=++=+++.2121231323[2()2]()()A EB F k x x x x x k k x x x x ++++==-+.所以12=θθ. ….….14分20. (本小题满分13分)解:(Ⅰ)(ⅰ)方程2i j x x -=的解有:(,)(2007,2005),(2013,2011)i j x x =.……2分 (ii )以下规定两数的差均为正,则:列出集合X 的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1; 中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6; 中间相隔三数的两数差:10,11,11,10; 中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15; 中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k 的可能取值有4,6.…………………………………………………………6分 (Ⅱ)证明:不妨设12820012017x x x ≤<<<≤,记1(1,2,,7)i i i a x x i +=-=,2(1,2,,6)i i i b x x i +=-=,共13个差数.假设不存在满足条件的k ,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而 127126()()2(126)749a a a b b b +++++++≥++++=. …………①又127126818721()()()()a a a b b b x x x x x x +++++++=-++--81722()()2161446x x x x =-+-≤⨯+=,这与①矛盾!所以结论成立.……………………………………………………………………13分。
北京市朝阳区2018届高三3月综合练习(一模)数学(理)试题(解析版)

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集为实数集,集合,,则A. B. C. D.【答案】C【解析】【详解】根据题中条件可求得,所以,故选C.2.复数满足,则在复平面内复数所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】由得,在复平面内对应的点为,在第一象限,故选.3.直线的参数方程为(为参数),则直线的倾斜角大小为()A. B. C. D.【答案】C【解析】将直线的参数方程化成普通方程可得,所以直线的斜率,从而得到其倾斜角为,故选C.4.已知,为非零向量,则“”是“与夹角为锐角”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】根据向量数量积的定义式可知,若,则与夹角为锐角或零角,若与夹角为锐角,则一定有,所以“”是“与夹角为锐角”的必要不充分条件,故选B.5.某单位安排甲、乙、丙、丁名工作人员从周一到周五值班,每天有且只有人值班每人至少安排一天且甲连续两天值班,则不同的安排方法种数为( )A. B. C. D.【答案】B【解析】甲连续天上班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情况,剩下三个人进行全排列,有种排法因此共有种排法,故选.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A. B. C. D.【答案】D【解析】在长方体中抠点,1.由正视图可知:上没有点;2.由侧视图可知:上没有点;3.由俯视图可知:上没有点;4.由正(俯)视图可知:处有点,由虚线可知处有点,点排除.由上述可还原出四棱锥,如右图所示,,,故选.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )A. 甲B. 乙C. 丙D. 丁【答案】A【解析】由四人的预测可得下表:1.若甲中奖,仅有甲预测正确,符合题意;2.若乙中奖,甲、丙、丁预测正确,不符合题意;3.若丙中奖,丙、丁预测正确,不符合题意;4.若丁中奖,乙、丁预测正确,不符合题意;故只有当甲中奖时,仅有甲一人预测正确,选.8.在平面直角坐标系中,已知点,,动点满足,其中,则所有点构成的图形面积为( )A. B. C. D.【答案】C【解析】设,则,,,所有点构成图形如图所示(阴影部分),,故选.【方法点睛】本题主要考查平面向量基本定理以及线性规划的应用及数学的转化与划归思想.属于难题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,把向量问题转化为线性规划问题解答是解题的关键.第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.执行如图所示的程序框图,若输入,则输出的值为________.【答案】【解析】第四次时,,所以输出.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为__________.【答案】【解析】由于双曲线关于原点对称,故在双曲线上,代入方程解得,又因为,所以渐近线方程为.11.函数()的部分图象如图所示,则__________;函数在区间上的零点为_________.【答案】(1). 2(2).【解析】从图中可以发现,相邻的两个最高点和最低点的横坐标分别为,从而求得函数的周期为,根据可求得,在结合题中的条件可以求得函数的解析式为,令,解得,结合所给的区间,整理得出.方法点睛:该题属于利用所给的函数图像,抓住其中的关键点,确定出函数的解析式,利用最高点和最低点的纵坐标求得A,利用相邻的两个最高点和最低点的横坐标的差求得其周期,从而求得的值,再利用最高点求得,最后确定出函数的解析式,最后利用函数的性质,求得其满足条件的零点.12.已知点若点是圆上的动点,则面积的最小值为__________.【答案】【解析】将圆化简成标准方程,圆心,半径,因为,所以,要求面积最小值,即要使圆上的动点到直线的距离最小,而圆心到直线的距离为,所以的最小值为,故答案为 . 13.等比数列满足如下条件:①②数列的前项和.试写出满足上述所有条件的一个数列的通项公式__________.【答案】【解析】例如,则,故答案为.14.已知,函数当时,函数的最大值是_____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是______.【答案】(1). (2).【解析】当时,,因为,所以,所以,当且仅当,即时取等号,而当时,,此时,分母取最小值,分子取最大值,从而得到该式子取得最大值,故最大值为;函数的图像上有且仅有两对点关于轴对称,等价于作轴左边的图像关于轴的对称图形,与轴右侧的图像有两个不同的交点,即方程有两个正根,即函数有两个零点,利用导数研究函数图像的走向,从而确定出所求的参数的取值范围是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,,(Ⅰ)若ac=5,求的面积;(Ⅱ)若为锐角,求的值.【答案】(Ⅰ)2;(Ⅱ).【解析】试题分析:第一问该题是有关解三角形问题,第一问根据题中的条件,结合同角正余弦平方和等于,从而求得,利用正弦定理,结合题中的条件,求得,利用三角形的面积公式求得结果;第二问由第一问中的结果,结合题中的条件为锐角,利用同角正余弦平方和等于,可得,最后根据三角形内角和为,利用诱导公式转化,利用和角公式求得结果.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.(Ⅱ)因为,且为锐角,所以.所以.方法点睛:该题考查的是有关解三角形问题,在解题的过程中,一定要抓住题的条件,死咬同角的正余弦平方和等于1,以及灵活应用正弦定理,熟练应用诱导公式以及正弦和角公式,从而能够正确得出结果. 16.如图,在矩形中,,为的中点,为的中点.将沿折起到,使得平面平面(如图).图1 图2(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】试题分析:(Ⅰ)根据等腰三角形的性质可得,由平面平面可得平面,从而可得;(Ⅱ)取中点为,连结,由矩形性质,,可知,由(Ⅰ)可知,,以为原点,为轴,为轴,为轴建立坐标系,求出平面的一个法向量及直线的方向向量,利用空间向量夹角余弦公式可得结果;(Ⅲ)假设在线段上存在点,满足平面,设,利用直线与平面的法向量垂直,数量积为零,列方程求解即可..试题解析:(Ⅰ)如图,在矩形中, ,为中点,,为的中点,由题意可知,, 平面平面图1 图2平面平面,平面,平面,平面,,(Ⅱ)取中点为,连结,由矩形性质,,可知,由(Ⅰ)可知,,以为原点,为轴,为轴,为轴建立坐标系,在中,由,则,所以,,设平面的一个法向量为,则,令,则,所以,设直线与平面所成角为,,所以直线与平面所成角的正弦值为. (Ⅲ)假设在线段上存在点,满足平面设,由,,所以,,,若平面,则,所以,解得,所以.【方法点晴】本题主要考查面面垂直的性质以及利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 17.某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.【答案】(Ⅰ)140人.(Ⅱ).(Ⅲ)见解析.【解析】试题分析:第一问根据题中所给的统计表,可以得出选考方案确定的有18人,这18人中,选考生物的有10人,所占比例是,在这30人中,选考方案确定的人所占比例是,该校高一年级共420人,所以可以得出学校高一年级选考方案确定的学生中选考生物的学生有人;第二问从表中可以得出所选男生选考方案含有历史学科的概率为,所选女生选考方案含有历史学科的概率为,根据相互独立事件同时发生的概率公式求得结果;第三问根据统计表写出所选的两名男生所选的科目,找出对应的的取值为,分析取每个值时对应的概率,从而得出分布列,利用离散型随机变量的分布列的期望公式求得结果. (Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为所以.18.已知函数.(Ⅰ)当时,(i)求曲线在点处的切线方程;(ii)求函数的单调区间;(Ⅱ)若,求证:.【答案】(Ⅰ)(i),(ii)递增区间是,递减区间是;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)(i)求出,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(ii)分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)先利用导数证明,则,再利用二次函数的性质证明,则,从而可得结论.试题解析:(Ⅰ)当时,,定义域为(i)所以切点坐标为,切线斜率为所以切线方程为(ii)令,所以在上单调递减,且所以当时,即所以当时,即综上所述,的单调递增区间是,单调递减区间是. (Ⅱ)方法一:,即设设所以在小于零恒成立即在上单调递减因为所以,所以在上必存在一个使得即所以当时,,单调递增当时,,单调递减所以因为所以令得因为,所以,因为,所以恒成立即恒成立综上所述,当时,方法二:定义域为了证明,即只需证明,即令则令,得令,得所以在上单调递增,在上单调递减所以即,则令因为,所以所以恒成立即所以综上所述,即当时,.【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性与极值,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.19.已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与的大小关系并加以证明.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)根据椭圆的离心率为,且过点,结合性质,列出关于、、的方程组,求出、、,即可得椭圆的方程;(Ⅱ)与的大小关系只需看两直线斜率之间的关系,设设,联立,消去得,利用斜率公式以及韦达定理,化简可得,直线的倾斜角互补,可得.试题解析:(Ⅰ)由题可得,解得.所以椭圆的方程为.(Ⅱ)结论:,理由如下:由题知直线斜率存在,设.联立,消去得,由题易知恒成立,由韦达定理得,因为与斜率相反且过原点,设,,联立消去得,由题易知恒成立,由韦达定理得,因为两点不与重合,所以直线存在斜率,则所以直线的倾斜角互补,所以.20.已知集合是集合的一个含有个元素的子集. (Ⅰ)当时,设(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值.(Ⅱ)证明:对任意一个,存在正整数使得方程至少有三组不同的解.【答案】(Ⅰ)(),();(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)()利用列举法可得方程的解有:;()列出集合的从小到大个数中相邻两数的差,中间隔一数的两数差,中间相隔二数的两数差,…中间隔一数的两数差,可发现只有出现次,出现次,其余都不超过次,从而可得结果;(Ⅱ)不妨设记,,共个差数,假设不存在满足条件的,根据的取值范围可推出矛盾,假设不成立,从而可得结论.假设不存在满足条件的,则这个数中至多两个、两个、两个、两个、两个、两个,.试题解析:(Ⅰ)()方程的解有:()以下规定两数的差均为正,则:列出集合的从小到大个数中相邻两数的差:;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:;中间相隔三数的两数差:;中间相隔四数的两数差:;中间相隔五数的两数差:;中间隔一数的两数差:.这个差数中,只有出现次,出现次,其余都不超过次,所以的可能取值有.(Ⅱ)证明:不妨设记,,共个差数.假设不存在满足条件的,则这个数中至多两个、两个、两个、两个、两个、两个,从而又这与矛盾,所以结论成立.。
2018年高三北京市朝阳区2018届高三(一模)数学

理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。
)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.B.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.B.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。
)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:.……2分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。
2018年北京市朝阳区高考一模数学试卷(文科)【解析版】

2018年北京市朝阳区高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集为实数集R,集合A={x|x2﹣3x<0},B={x|log2x>0},则(∁R A)∩B=()A.(﹣∞,0]∪(1,+∞)B.(0,1]C.[3,+∞)D.∅2.(5分)在复平面内,复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知平面向量=(x,1),=(2,x﹣1),且∥,则实数x的值是()A.﹣1B.1C.2D.﹣1或2 4.(5分)已知直线m⊥平面α,则“直线n⊥m”是“n∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知F为抛物线C:y2=4x的焦点,过点F的直线l交抛物线C于A,B两点,若|AB|=8,则线段AB的中点M到直线x+1=0的距离为()A.2B.4C.8D.166.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.7.(5分)函数的零点个数为()A.0B.1C.2D.48.(5分)某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是()A.甲B.乙C.丙D.丁二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,若输入m=5,则输出k的值为.10.(5分)双曲线的焦距为;渐近线方程为.11.(5分)已知圆C:x2+y2﹣2x﹣4y+1=0内有一点P(2,1),经过点P的直线l与圆C交于A,B两点,当弦AB恰被点P平分时,直线l的方程为.12.(5分)已知实数x,y满足,若z=mx+y(m>0)取得最小值的最优解有无数多个,则m的值为.13.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则φ=;ω=.14.(5分)许多建筑物的地板是用正多边形的砖板铺成的(可以是多种正多边形).如果要求用这些正多边形的砖板铺满地面,在地面某一点(不在边界上)有k块砖板拼在一起,则k的所有可能取值为.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知数列{a n}的前n项和S n满足S n=2a n﹣1(n∈N*).(Ⅰ)求a1,a2,a3的值;(Ⅱ)若数列{b n}满足b1=2,b n+1=a n+b n,求数列{b n}的通项公式.16.(13分)在△ABC中,已知,b=2a cos A.(Ⅰ)若ac=5,求△ABC的面积;(Ⅱ)若B为锐角,求sin C的值.17.(13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如表:(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.18.(14分)如图1,在梯形ABCD中,BC∥AD,BC=1,AD=3,BE⊥AD于E,BE=AE=1.将△ABE沿BE折起至△A'BE,使得平面A'BE⊥平面BCDE (如图2),M为线段A'D上一点.(Ⅰ)求证:A'E⊥CD;(Ⅱ)若M为线段A'D中点,求多面体A'BCME与多面体MCDE的体积之比;(Ⅲ)是否存在一点M,使得A'B∥平面MCE?若存在,求A'M的长.若不存在,请说明理由.19.(14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左焦点的直线l1与椭圆C交于A,B两点,直线l2过坐标原点且直线l1与l2的斜率互为相反数,直线l2与椭圆交于E,F两点且均不与点A,B重合,设直线AE的斜率为k1,直线BF的斜率为k2,证明:k1+k2为定值.20.(13分)已知函数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若a<﹣1,求函数f(x)的单调区间;(Ⅲ)若1<a<2,求证:f(x)<﹣1.2018年北京市朝阳区高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集为实数集R,集合A={x|x2﹣3x<0},B={x|log2x>0},则(∁R A)∩B=()A.(﹣∞,0]∪(1,+∞)B.(0,1]C.[3,+∞)D.∅【解答】解:A={x|x2﹣3x<0}={x|x(x﹣3)<0}={x|0<x<3},B={x|log2x>0}={x|log2x>log21}={x|x>1};∴∁R A={x|x≤0,或x≥3};∴(∁R A)∩B={x|x≥3}=[3,+∞).故选:C.2.(5分)在复平面内,复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵复数===,∴复数对应的点的坐标是(,)∴复数在复平面内对应的点位于第一象限,故选:A.3.(5分)已知平面向量=(x,1),=(2,x﹣1),且∥,则实数x的值是()A.﹣1B.1C.2D.﹣1或2【解答】解:根据题意,向量=(x,1),=(2,x﹣1),若∥,则有x(x﹣1)=2,即x2﹣x﹣2=0,所以x=﹣1或x=2,故选:D.4.(5分)已知直线m⊥平面α,则“直线n⊥m”是“n∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:当m⊥α时,若m⊥n,则n∥α或n⊂平面α,则充分性不成立,若n∥α,则m⊥n成立,即必要性成立,则“m⊥n”是“n∥α”的必要不充分条件,故选:B.5.(5分)已知F为抛物线C:y2=4x的焦点,过点F的直线l交抛物线C于A,B两点,若|AB|=8,则线段AB的中点M到直线x+1=0的距离为()A.2B.4C.8D.16【解答】解:如图,抛物线y2=4x的焦点为F(1,0),准线为x=﹣1,即x+1=0.分别过A,B作准线的垂线,垂足为C,D,则有|AB|=|AF|+|BF|=|AC|+|BD|=8.过AB的中点M作准线的垂线,垂足为N,则MN为直角梯形ABDC中位线,则,即M到准线x=﹣1的距离为4.故选:B.6.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.【解答】解:抠点法:在长方体ABCD﹣A1B1C1D1中抠点,1)由正视图可知:C1D1上没有点;2)由侧视图可知:B1C1上没有点;3)由俯视图可知:CC1上没有点;4)由正(俯)视图可知:D,E处有点,由虚线可知B,F处有点,A点排除.由上述可还原出四棱锥A1﹣BEDF,=1×1=1,.如右图所示,S四边形BEDF故选:D.7.(5分)函数的零点个数为()A.0B.1C.2D.4【解答】解:,定义域为(﹣∞,0)∪(0,+∞),令f(x)=0可得2x sin x=x2+1,设,,画出f1(x),f2(x)在(0,+∞)上的大致图象如下:显然f1(1)=f2(1)=2,即f1(x)与f2(x)交于点A(1,2),又∵,f'2(x)=2x,∴f'1(1)=f'2(1)=2,即点A为公切点,∴点A为(0,+∞)内唯一交点,又∵f1(x),f2(x)均为偶函数,∴点B(﹣1,2)也为公切点,∴f1(x),f2(x)有两个公共点,即f(x)有两个零点.故选:C.8.(5分)某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是()A.甲B.乙C.丙D.丁【解答】解:(1)若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;(2)若乙获得一等奖,则只有小张的预测正确,与题意不符;(3)若丙获得一等奖,则四人的预测都错误,与题意不符;(4)若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意.故选:D.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,若输入m=5,则输出k的值为4.【解答】解:模拟程序的运行,可得:第四次时,65>50,满足判断框内的条件,退出循环,输出k的值为4.故答案为:4.10.(5分)双曲线的焦距为;渐近线方程为y=.【解答】解:由题知,a2=4,b2=1,故c2=a2+b2=5,∴双曲线的焦距为:,渐近线方程为:.故答案为:;.11.(5分)已知圆C:x2+y2﹣2x﹣4y+1=0内有一点P(2,1),经过点P的直线l与圆C交于A,B两点,当弦AB恰被点P平分时,直线l的方程为y =x﹣1.【解答】解:根据直线与圆的位置关系.圆C:(x﹣1)2+(y﹣2)2=4,弦AB被P平分,故PC⊥AB,由P(2,1),C(1,2)得k pc•k l=﹣1,即:k l=1,所以直线方程为y=x﹣1.故答案为:y=x﹣1.12.(5分)已知实数x,y满足,若z=mx+y(m>0)取得最小值的最优解有无数多个,则m的值为1.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=mx+y(m>0)得y=﹣mx+z,∵m>0,∴目标函数的斜率k=﹣m<0.平移直线y=﹣mx+z,由图象可知当直线y=﹣mx+z和直线x+y+1=0平行时,此时目标函数取得最小值时最优解有无数多个,∴m=1,故答案为:1.13.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则φ=﹣;ω=.【解答】解:由图可知,A=2,根据f(x)的图象经过点(0,﹣1),可得2sinφ=﹣1,sinφ=﹣,∴φ=﹣.根据五点法作图可得ω×+(﹣)=,∴ω=,故答案为:﹣;.14.(5分)许多建筑物的地板是用正多边形的砖板铺成的(可以是多种正多边形).如果要求用这些正多边形的砖板铺满地面,在地面某一点(不在边界上)有k块砖板拼在一起,则k的所有可能取值为3,4,5,6.【解答】解:由题意知只需这k块砖板的角度之和为360°即可.显然k≥3,因为任意正多边形内角小于180°;且k≤6,因为角度最小的正多边形为正三角形,.当k=3时,3个正六边形满足题意;当k=4时,4个正方形满足题意;当k=5时,3个正三角形与2个正方形满足题意;当k=6时,6个正三角形满足题意.综上,所以k可能为3,4,5,6.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知数列{a n}的前n项和S n满足S n=2a n﹣1(n∈N*).(Ⅰ)求a1,a2,a3的值;(Ⅱ)若数列{b n }满足b 1=2,b n +1=a n +b n ,求数列{b n }的通项公式. 【解答】解:(Ⅰ)由题知S 1=a 1=2a 1﹣1,得a 1=1, S 2=2a 2﹣1=a 1+a 2, 得a 2=a 1+1=2, S 3=2a 3﹣1=a 1+a 2+a 3, 得a 3=a 1+a 2+1=4,(Ⅱ)当n ≥2时,S n ﹣1=2a n ﹣1﹣1,S n =2a n ﹣1, 所以a n =S n ﹣S n ﹣1=2a n ﹣1﹣(2a n ﹣1﹣1), 得a n =2a n ﹣2a n ﹣1, 即a n =2a n ﹣1,{a n }是以a 1=1为首项,2为公比的等比数列, 则.当n ≥2时,b n =b 1+(b 2﹣b 1)+…+(b n ﹣b n ﹣1), =2+a 1+a 2+…+a n ﹣1, =,经验证:,综上:.16.(13分)在△ABC 中,已知,b =2a cos A .(Ⅰ)若ac =5,求△ABC 的面积; (Ⅱ)若B 为锐角,求sin C 的值.【解答】解:(Ⅰ)根据题意,若b =2a cos A ,由正弦定理得,则sin B=2sin A cos A ,, 因为,所以,所以,所以.(Ⅱ)由(Ⅰ)知,因为B为锐角,所以.所以sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B==17.(13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如表:(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.【解答】解:(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为x,因为在选考方案确定的学生的人中,选生物的频率为,所以选择生物的概率约为,所以选择生物的人数约为人.(Ⅱ)2人.(Ⅲ)设选择物理、生物、化学的学生分别为A1,A2,A3,选择物理、化学、历史的学生为B1,选择物理、化学、地理的学生分别为C1,C2,所以任取2名男生的基本事件有:(A1,A2),(A2,A3),(A3,B1),(B1,C1),(C1,C2)(A1,A3),(A2,B1),(A3,C2),(B1,C2)(A1,B1),(A2,C1),(A3,C1)(A1,C1),(A2,C2)(A1,C2)所以两名男生所学科目相同的基本事件共有四个,分别为(A1,A2),(A2,A3),(C1,C2),(A1,A3),∴这2名学生选考科目完全相同的概率为p=.18.(14分)如图1,在梯形ABCD中,BC∥AD,BC=1,AD=3,BE⊥AD于E,BE=AE=1.将△ABE沿BE折起至△A'BE,使得平面A'BE⊥平面BCDE (如图2),M为线段A'D上一点.(Ⅰ)求证:A'E⊥CD;(Ⅱ)若M为线段A'D中点,求多面体A'BCME与多面体MCDE的体积之比;(Ⅲ)是否存在一点M,使得A'B∥平面MCE?若存在,求A'M的长.若不存在,请说明理由.【解答】证明:(Ⅰ)在梯形ABCD中,∵BE⊥AE,∴A'E⊥BE,∵平面A'BE⊥平面BCDE,BE=平面A'BE∩平面BCDE,A'E⊂平面A'BE,∴A'E⊥平面BCDE,∵CD⊂平面BCDE,∴A'E⊥CD.解:(Ⅱ)∵M为A'D中点,∴M到底面BCDE的距离为,在梯形ABCD中,,,.∵A'E⊥DE,∴在Rt△A'DE中,,∵A'E⊥平面BCDE,A'E⊂平面A'DE,∴平面A'DE⊥平面BCDE,∵BE⊥ED,平面A'DE∩平面BCDE=ED,∵BC∥AD,∴C到平面A'DE的距离为BE=1.∴,.∴V多面体A'BCME :V多面体MCDE=2:1.(Ⅲ)连结BD交CE于O,连结OM,在四边形BCDE中,∵BC∥DE,∴△BOC∽△DOE,∴,∵A'B∥平面CME,平面A'BD∩平面CEM=OM,∴A'B∥OM,在△A'BD中,OM∥A'B,∴,∵A'E=1,DE=2,A'E⊥ED,∴在Rt△A'ED中,,∴.19.(14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左焦点的直线l1与椭圆C交于A,B两点,直线l2过坐标原点且直线l1与l2的斜率互为相反数,直线l2与椭圆交于E,F两点且均不与点A,B重合,设直线AE的斜率为k1,直线BF的斜率为k2,证明:k1+k2为定值.【解答】解:(Ⅰ)由题可得,解得.所以椭圆C的方程为.(Ⅱ)由题知直线l1斜率存在,设l1:y=k(x+1),A(x1,y1),B(x2,y2).联立,消去y得(1+2k2)x2+4k2x+2k2﹣2=0,由题易知△>0恒成立,由韦达定理得,因为l2与l1斜率相反且过原点,设l2:y=﹣kx,E(x3,y3),F(﹣x3,﹣y3),联立,消去y得(1+2k2)x2﹣2=0,由题易知△>0恒成立,由韦达定理得,则=====0所以k1+k2为定值0.20.(13分)已知函数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若a<﹣1,求函数f(x)的单调区间;(Ⅲ)若1<a<2,求证:f(x)<﹣1.【解答】解:(Ⅰ)函数,若a=0,f(x)=,则f(1)=﹣1,切点坐标为(1,﹣1),,切线斜率k=2,所以f(x)在点(1,﹣1)处的切线方程为2x﹣y﹣3=0.(Ⅱ)根据题意,f(x)=﹣ax,则f′(x)=﹣a=,(x>0)令g(x)=2﹣ax2﹣lnx,则.令g'(x)=0,得(依题意)由g'(x)>0,得;由g'(x)<0,得.所以,g(x)在区间上单调递减,在区间上单调递增所以,.因为a<﹣1,所以.所以g(x)>0,即f'(x)>0.所以函数f(x)的单调递增区间为(0,+∞).(Ⅲ)证明:由x>0,f(x)<﹣1,即,等价于ax2﹣x+1﹣lnx >0.设h(x)=ax2﹣x+1﹣lnx,只须证h(x)>0成立.因为,由h'(x)=0,得2ax2﹣x﹣1=0有异号两根.令其正根为x0,则.在(0,x0)上h'(x)<0,在(x0,+∞)上h'(x)>0则h(x)的最小值为h(x0),且=﹣x0+1﹣lnx0=﹣lnx0,又,所以.则.因此,即h(x0)>0.所以h(x)>0.所以f(x)<﹣1.。
2018年高三北京市朝阳区2018届高三(一模)数学

理科数学 2018年高三北京市朝阳区2018届高三(一模)数学(理)试题解析单选题略略略略略略略略填空题略略略略略略略略略略略略单选题(本大题共8小题,每小题____分,共____分。
)1.已知全集为实数集,集合,,则A.B.C.D.2.复数满足,则在复平面内复数所对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.直线的参数方程为(为参数),则的倾斜角大小为A.C.D.4.已知为非零向量,则“”是“与夹角为锐角”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为A.B.C.D.6.某四棱锥的三视图如图所示,则该四棱锥的体积等于A.C.D.7.庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是A. 甲B. 乙C. 丙D. 丁8.在平面直角坐标系xOy中,已知点,,动点满足,其中,则所有点构成的图形面积为A.B.C.D.填空题(本大题共12小题,每小题____分,共____分。
)9.执行如图所示的程序框图,若输入,则输出的值为________.10.若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________.11.函数()的部分图象如图所示,则____;函数在区间上的零点为____.12.已知点,若点是圆上的动点,则面积的最小值为____.13.等比数列满足如下条件:①;②数列的前项和.试写出满足上述所有条件的一个数列的通项公式____.14.已知,函数当时,函数的最大值是____;若函数的图象上有且只有两对点关于轴对称,则的取值范围是____.15. (本小题满分13分)在中,已知,.(Ⅰ)若,求的面积;(Ⅱ)若为锐角,求的值.16.(本小题满分14分)如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在线段上是否存在点,使得平面若存在,求出的值;若不存在,请说明理由.17.(本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量求的分布列及数学期望.18. (本小题满分13分)已知函数.(Ⅰ)当时,(ⅰ)求曲线在点处的切线方程;(ⅱ)求函数的单调区间;(Ⅱ)若,求证:.19. (本小题满分14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明.20. (本小题满分13分)已知集合是集合的一个含有8个元素的子集.(Ⅰ)当时,设,(i)写出方程的解;(ii)若方程至少有三组不同的解,写出的所有可能取值;(Ⅱ)证明:对任意一个,存在正整数,使得方程至少有三组不同的解.答案单选题1. C2. A3. C4. B5. B6. D7. A8. C 填空题9.410.11.12.213.14.15.(Ⅰ)由,得,因为,所以.因为,所以.故的面积.………………….7分(Ⅱ)因为,且为锐角,所以.所以.………….13分16.(Ⅰ)由已知,因为为中点,所以.因为平面平面,且平面平面,平面,所以平面.又因为平面,所以.………….5分(Ⅱ)设为线段上靠近点的四等分点,为中点.由已知易得.由(Ⅰ)可知,平面,所以,.以为原点,所在直线分别为轴建立空间直角坐标系(如图).因为,,所以.设平面的一个法向量为,因为,所以即取,得.而.所以直线与平面所成角的正弦值……….10分(Ⅲ)在线段上存在点,使得平面.设,且,则,.因为,所以,所以,所以,.若平面,则.即.由(Ⅱ)可知,平面的一个法向量,即,解得,所以当时,平面.……….14分17.(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人,该学校高一年级选考方案确定的学生中选考生物的学生有人.……….3分(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人选考方案中含有历史学科的概率为.所以该男生和该女生的选考方案中都含有历史学科的概率为.…….8分(Ⅲ)由数据可知,选考方案确定的男生中有4人选择物理、化学和生物;有2人选择物理、化学和历史;有1人选择物理、化学和地理;有1人选择物理、化学和政治.由已知得的取值为.,,或.所以的分布列为12所以.…….13分18.当时,..(ⅰ)可得,又,所以在点()处的切线方程为. ….3分(ⅱ)在区间()上,且,则.在区间()上,且,则.所以的单调递增区间为(),单调递减区间为(). ….8分(Ⅱ)由,,等价于,等价于. 设,只须证成立.因为,,由,得有异号两根.令其正根为,则.在上,在上.则的最小值为.又,,所以.则.因此,即.所以所以.….….13分19.Ⅰ)由题意得解得,,.故椭圆的方程为.….….5分(Ⅱ).证明如下:由题意可设直线的方程为,直线的方程为,设点,,,.要证,即证直线与直线的斜率之和为零,即.因为.由得,所以,.由得,所以.所以..所以.….….14分20.(Ⅰ)(ⅰ)方程的解有:. (2)分(ii)以下规定两数的差均为正,则:列出集合的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以的可能取值有4,6.…………………………………………………………6分(Ⅱ)证明:不妨设,记,,共13个差数.假设不存在满足条件的,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而. …………①又,这与①矛盾!所以结论成立.……………………………………………………………………13分解析单选题略略略略略略略略填空题略略略略略略略略略略略略。
2018年北京市朝阳区高考一模数学试卷(理科)【解析版】
2018年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集为实数集R,集合A={x|x2﹣3x<0},B={x|2x>1},则(∁R A)∩B=()A.(﹣∞,0]∪[3,+∞)B.(0,1]C.[3,+∞)D.[1,+∞)2.(5分)复数z满足(1+i)z=i,则在复平面内复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.4.(5分)设,是单位向量,则“•>0”是“和的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A.18B.24C.48D.966.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.7.(5分)庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是()A.甲B.乙C.丙D.丁8.(5分)在平面直角坐标系xOy中,已知点A(,0),B(1,2).动点P 满足=+,其中λ,μ∈[0,1],λ+μ∈[1,2],则所有点P构成的图形面积为()A.1B.2C.D.2二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,若输入m=5,则输出k的值为.10.(5分)若三个点(﹣2,1),(﹣2,3),(2,﹣1)中恰有两个点在双曲线上,则双曲线C的渐近线方程为.11.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则ω=;函数f(x)在区间上的零点为.12.(5分)已知两点A(﹣2,0),B(0,2),点C是圆x2+y2﹣2x+2y=0上任意点,则△ABC面积的最小值是.13.(5分)等比数列{a n}满足如下条件:①a1>0;②数列{a n}的前n项和S n<1.试写出满足上述所有条件的一个数列的通项公式.14.(5分)已知a∈R,函数当x>0时,函数f(x)的最大值是;若函数f(x)的图象上有且只有两对点关于y轴对称,则a的取值范围是.三、解答题(共6小题,共80分,解答应写出文字说明,演算步骤或证明过程)15.(13分)在△ABC中,已知,b=2a cos A.(Ⅰ)若ac=5,求△ABC的面积;(Ⅱ)若B为锐角,求sin C的值.16.(14分)如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE的中点.将△ABE沿BE折起到A'BE,使得平面A'BE⊥平面BCDE(如图2)(Ⅰ)求证:A'O⊥CD;(Ⅱ)求直线A'C与平面A'DE所成角的正弦值;(Ⅲ)在线段A'C上是否存在点P,使得OP∥平面A'DE?若存在,求出的值;若不存在,请说明理由.17.(13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量求ξ的分布列及数学期望Eξ.18.(13分)已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.19.(14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左焦点的直线l1与椭圆C交于A,B两点,直线l2过坐标原点且与直线l1的斜率互为相反数.若直线l2与椭圆交于E,F两点且均不与点A,B重合,设直线AE与x轴所成的锐角为θ1,直线BF与x轴所成的锐角为θ2,判断θ1与θ2的大小关系并加以证明.20.(13分)已知集合X={x1,x2,…,x8}是集合S={2001,2002,2003,…,2016,2017}的一个含有8个元素的子集.(Ⅰ)当X={2001,2002,2005,2007,2011,2013,2016,2017}时,设x i,x j∈X(1≤i,j≤8),(i)写出方程x i﹣x j=2的解(x i,x j);(ii)若方程x i﹣x j=k(k>0)至少有三组不同的解,写出k的所有可能取值.(Ⅱ)证明:对任意一个X,存在正整数k,使得方程x i﹣x j=k(1≤i,j≤8)至少有三组不同的解.2018年北京市朝阳区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知全集为实数集R,集合A={x|x2﹣3x<0},B={x|2x>1},则(∁R A)∩B=()A.(﹣∞,0]∪[3,+∞)B.(0,1]C.[3,+∞)D.[1,+∞)【解答】解:集合A={x|x2﹣3x<0}={x|x(x﹣3)<0}={x|0<x<3},集合B={x|2x>1}={x|2x>20}={x|x>0};所以∁R A={x|x≤0或x≥3},所以(∁R A)∩B={x|x≥3}=[3,+∞).故选:C.2.(5分)复数z满足(1+i)z=i,则在复平面内复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由(1+i)z=i,得,∴z在复平面内对应的点为,在第一象限,故选:A.3.(5分)直线l的参数方程为(t为参数),则l的倾斜角大小为()A.B.C.D.【解答】解:根据题意,直线l的参数方程为(t为参数),则到直线的方程为,所以直线的斜率为,倾斜角为,故选:C.4.(5分)设,是单位向量,则“•>0”是“和的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:设与的夹角是θ,因为,是单位向量,所以•>0等价于cosθ>0,由0≤θ≤π得,0≤θ<,所以“•>0”推不出“和的夹角为锐角”;反之,和的夹角为锐角得cosθ>0,即得•>0,所以“和的夹角为锐角”推出“•>0”,综上可得,“•>0”是“和的夹角为锐角”的必要不充分条件,故选:B.5.(5分)某单位安排甲、乙、丙、丁4名工作人员从周一到周五值班,每天有且只有1人值班,每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A.18B.24C.48D.96【解答】解:根据题意,分2步进行分析:①,甲连续2天上班,共有(周一,周二),(周二,周三),(周三,周四),(周四,周五)四种情况,②,剩下三个人进行全排列,有种排法,因此共有4×6=24种排法,故选:B.6.(5分)某四棱锥的三视图如图所示,则该四棱锥的体积等于()A.B.C.D.【解答】解:抠点法:在长方体ABCD﹣A1B1C1D1中抠点,1)由正视图可知:C1D1上没有点;2)由侧视图可知:B1C1上没有点;3)由俯视图可知:CC1上没有点;4)由正(俯)视图可知:D,E处有点,由虚线可知B,F处有点,A点排除.由上述可还原出四棱锥A1﹣BEDF,=1×1=1,.如右图所示,S四边形BEDF故选:D.7.(5分)庙会是我国古老的传统民俗文化活动,又称“庙市”或“节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:甲说:“我或乙能中奖”;乙说:“丁能中奖”;丙说:“我或乙能中奖”;丁说:“甲不能中奖”.游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是()A.甲B.乙C.丙D.丁【解答】解:由四人的预测可得下表:1)若甲中奖,仅有甲预测正确,符合题意2)若乙中奖,甲、丙、丁预测正确,不符合题意3)若丙中奖,丙、丁预测正确,不符合题意4)若丁中奖,乙、丁预测正确,不符合题意故只有当甲中奖时,仅有甲一人预测正确.故选:A.8.(5分)在平面直角坐标系xOy中,已知点A(,0),B(1,2).动点P 满足=+,其中λ,μ∈[0,1],λ+μ∈[1,2],则所有点P构成的图形面积为()A.1B.2C.D.2【解答】解:以OA,OB为邻边作平行四边形OACB,∵=+,且λ,μ∈[0,1],λ+μ∈[1,2],∴P点位于△ABC内部(包含边界).==.∴所有点P构成的图形面积为S△ABC故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,若输入m=5,则输出k的值为4.【解答】解:模拟程序的运行,可得:第四次时,65>50,满足判断框内的条件,退出循环,输出k的值为4.故答案为:4.10.(5分)若三个点(﹣2,1),(﹣2,3),(2,﹣1)中恰有两个点在双曲线上,则双曲线C的渐近线方程为.【解答】解:根据题意,若三个点(﹣2,1),(﹣2,3),(2,﹣1)中恰有两个点在双曲线上,又由双曲线的图象关于原点对称,故(﹣2,1),(2,﹣1)在双曲线上,则有,解可得a=,则双曲线的方程为﹣y2=1,所以渐近线方程为;故答案为:11.(5分)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则ω=2;函数f(x)在区间上的零点为.【解答】解:由函数f(x)=A sin(ωx+φ)的部分图象得,即最小正周期T=π;又因为,且ω>0,解得ω=2;由图得时,,又因为,所以;函数f(x)的零点即的图象与x轴交点的横坐标,令,解得;因为,得,所以函数的零点为.故答案为:.12.(5分)已知两点A(﹣2,0),B(0,2),点C是圆x2+y2﹣2x+2y=0上任意点,则△ABC面积的最小值是2.【解答】解:圆x2+y2﹣2x+2y=0化为(x2﹣2x+1)+(y2+2y+1)=2,即(x﹣1)2+(y+1)2=2,由题意即为在圆上找一点到线段AB的距离最小即可,直线,y﹣2=x,∴线段AB:y=x+2(﹣2≤x≤0),圆心(1,﹣1)到其距离,∴圆上某点到线段AB的距离最小值为,=2.故答案为:2.13.(5分)等比数列{a n}满足如下条件:①a1>0;②数列{a n}的前n项和S n<1.试写出满足上述所有条件的一个数列的通项公式(答案不唯一).【解答】解:根据题意,等比数列{a n}满足如下条件:①a1>0;②数列{a n}的前n项和S n<1,则有0<a1<1,0<q<1,据此满足条件的一个数列的通项公式为(答案不唯一);故答案为:(答案不唯一)14.(5分)已知a∈R,函数当x>0时,函数f(x)的最大值是;若函数f(x)的图象上有且只有两对点关于y轴对称,则a的取值范围是(﹣1,).【解答】解:(1)当x>0时,,令,当,即x=1时取等号,即当x=1时,f1(x)min=2,令,又因为,则;(2)f(x)图象仅有两对点关于y轴对称,即f(x)(x<0)的图象关于y轴对称的函数图象与f(x)(x>0)仅有两个交点,当x<0时,f(x)=(x+1)2+a.设其关于y轴对称的函数为g(x),∴g(x)=f(﹣x)=(x﹣1)2+a(x>0)∵,由(1)可知近似图象如图所示:当g(x)与f(x)仅有两个交点时,,综上,a的取值范围是(﹣1,),故答案为:,(﹣1,).三、解答题(共6小题,共80分,解答应写出文字说明,演算步骤或证明过程)15.(13分)在△ABC中,已知,b=2a cos A.(Ⅰ)若ac=5,求△ABC的面积;(Ⅱ)若B为锐角,求sin C的值.【解答】解:(Ⅰ)根据题意,若b=2a cos A,由正弦定理得,则sin B =2sin A cos A,,因为,所以,所以,所以.(Ⅱ)由(Ⅰ)知,因为B为锐角,所以.所以sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B==16.(14分)如图1,在矩形ABCD中,AB=2,BC=4,E为AD的中点,O为BE的中点.将△ABE沿BE折起到A'BE,使得平面A'BE⊥平面BCDE(如图2)(Ⅰ)求证:A'O⊥CD;(Ⅱ)求直线A'C与平面A'DE所成角的正弦值;(Ⅲ)在线段A'C上是否存在点P,使得OP∥平面A'DE?若存在,求出的值;若不存在,请说明理由.【解答】证明:(Ⅰ)如图,在矩形ABCD中,∵AB=2,BC=4,E为AD中点,∴AB=AE=2,∵O为BE的中点,∴AO⊥BE,由题意可知,A'O⊥BE,∵平面A'BE⊥平面BCDE,平面A'BE∩平面BCDE=BE,A'O⊂平面A'BE,∴A'O⊥平面BCDE,∵CD⊂平面BCDE,∴A'O⊥CD.解:(Ⅱ)取BC中点为F,连结OF,由矩形ABCD性质,AB=2,BC=4,可知OF⊥BE,由(Ⅰ)可知,A'O⊥BE,A'O⊥OF,以O为原点,OA'为z轴,OF为x轴,OE为y轴建立坐标系,在Rt△BAE中,由AB=2,AE=2,则,∴,,,,,设平面A'DE的一个法向量为则,,令y=z=1,则x=﹣1,∴,设直线A'C与平面A'DE所成角为θ,,∴直线A'C与平面A'DE所成角的正弦值为.(Ⅲ)假设在线段A'C上存在点P,满足OP∥平面A'DE,设由,∴,,若OP∥平面A'DE,则,∴,解得,所以.17.(13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目,若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史科目的概率;(Ⅲ)从选考方案确定的8名男生随机选出2名,设随机变量求ξ的分布列及数学期望Eξ.【解答】解:(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为x,则(人),所以该学校选考方案确定的学生中选考生物的学生为140人;(Ⅱ)该男生和该女生的选考方案中都含有历史科目的概率为P=;(Ⅲ)由题意知ξ的所有可能取值为1,2,,P(ξ=2)===;所以ξ的分布列为:ξ的数学期望为.18.(13分)已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.【解答】解:(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.19.(14分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的左焦点的直线l1与椭圆C交于A,B两点,直线l2过坐标原点且与直线l1的斜率互为相反数.若直线l2与椭圆交于E,F两点且均不与点A,B重合,设直线AE与x轴所成的锐角为θ1,直线BF与x轴所成的锐角为θ2,判断θ1与θ2的大小关系并加以证明.【解答】解:(Ⅰ)由题可得,解得.所以椭圆C的方程为.(Ⅱ)结论:θ1=θ2,理由如下:由题知直线l1斜率存在,设l1:y=k(x+1),A(x1,y1),B(x2,y2).联立,消去y得(1+2k2)x2+4k2x+2k2﹣2=0,由题易知△>0恒成立,由韦达定理得,因为l2与l1斜率相反且过原点,设l2:y=﹣kx,E(x3,y3),F(x4,y4),联立消去y得(1+2k2)x2﹣2=0,由题易知△>0恒成立,由韦达定理得,因为E,F两点不与A,B重合,所以直线AE,BF存在斜率k AE,k BF,则=====0所以直线AE,BF的倾斜角互补,所以θ1=θ2.20.(13分)已知集合X={x1,x2,…,x8}是集合S={2001,2002,2003,…,2016,2017}的一个含有8个元素的子集.(Ⅰ)当X={2001,2002,2005,2007,2011,2013,2016,2017}时,设x i,x j∈X(1≤i,j≤8),(i)写出方程x i﹣x j=2的解(x i,x j);(ii)若方程x i﹣x j=k(k>0)至少有三组不同的解,写出k的所有可能取值.(Ⅱ)证明:对任意一个X,存在正整数k,使得方程x i﹣x j=k(1≤i,j≤8)至少有三组不同的解.【解答】解:(Ⅰ)(i)方程x i﹣x j=2的解有:(x i,x j)=(2007,2005),(2013,2011)(ii)以下规定两数的差均为正,则:列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次,6出现4次,其余都不超过2次,所以k的可能取值有4,6(Ⅱ)证明:不妨设2001≤x1<x2<…<x8≤2017记a i=x i+1﹣x i(i=1,2,…,7),b i=x i+1﹣x i(i=1,2,…,6),共13个差数.假设不存在满足条件的k,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而(a1+a2+…+a7)+(b1+b2+…+b6)≥2(1+2+…+6)+7=49①这与①矛盾,所以结论成立.。
北京市朝阳区2018届高三3月综合练习一模数学理考试 含解析 精品
2018年北京市朝阳区高三一模数学(理)考试解析 第I 卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集为实数集错误!未找到引用源。
,集合错误!未找到引用源。
,则错误!未找到引用源。
(A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )错误!未找到引用源。
(D )错误!未找到引用源。
【答案】错误!未找到引用源。
【解析】本题考查集合的运算. 集合错误!未找到引用源。
,集合错误!未找到引用源。
.所以错误!未找到引用源。
或错误!未找到引用源。
,所以错误!未找到引用源。
,故选错误!未找到引用源。
.2. 复数错误!未找到引用源。
满足错误!未找到引用源。
,则在复平面内复数错误!未找到引用源。
所对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限【答案】错误!未找到引用源。
【解析】本题考查复数的运算与坐标表示.由错误!未找到引用源。
得错误!未找到引用源。
,在复平面内对应的点为错误!未找到引用源。
,在第一象限,故选错误!未找到引用源。
.3. 直线错误!未找到引用源。
的参数方程为错误!未找到引用源。
(错误!未找到引用源。
为参数),则错误!未找到引用源。
的倾斜角大小为 (A )错误!未找到引用源。
(B )错误!未找到引用源。
(C )错误!未找到引用源。
(D )错误!未找到引用源。
【答案】错误!未找到引用源。
【解析】本题考查直线的参数方程及倾斜角. 由错误!未找到引用源。
可以得到直线的方程为错误!未找到引用源。
.所以直线的斜率为错误!未找到引用源。
,倾斜角为错误!未找到引用源。
,故选错误!未找到引用源。
.4. 已知错误!未找到引用源。
为非零向量,则“错误!未找到引用源。
”是“错误!未找到引用源。
与错误!未找到引用源。
夹角为锐角”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】错误!未找到引用源。
北京市朝阳区2018届高三3月综合练习(一模)数学(文)试卷(含答案)
2018年北京市朝阳区高三一模数学(文)考试第I 卷 (选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集为实数集R ,集合22{|30},{|log 0}A x x x B x x =-<=>, 则()A B =R I ð(A )(,0](1,)-∞+∞U(B )(0,1] (C )[3,)+∞(D )∅ 【答案】C【解析】本题考查集合的运算.集合2{|30}{|(3)0}{|03}A x x x x x x x x =-<=-<=<<,集合222{|log 0}{|log log 1}{|1}B x x x x x x =>=>=>.所以{|0A x x =≤R ð或3}x ≥,所以(){|3}A B x x =≥R I ð,故选C .2. 在复平面内,复数i 1i z =+所对应的点位于 (A )第一象限(B )第二象限 (C )第三象限(D )第四象限【答案】A【解析】本题考查复数的运算与坐标表示.i i(1i)1i 1i (1i)(1i)2z -+===++-,在复平面内对应的点为11(,)22,在第一象限,故选A .3. 已知平面向量(,1),(2,1)x x ==-a b ,且//a b ,则实数x 的值是(A )1-(B )1 (C )2 (D )1-或2【答案】D【解析】本题考查平面向量的平行的坐标运算.由(,1),(2,1)x x ==-a b ,且//a b ,可以得到(1)2x x -=,即22(2)(1)0x x x x --=-+=,所以1x =-或2x =,故选D .4. 已知直线m ⊥平面α,则“直线n m ⊥”是“//n α”的(A )充分但不必要条件(B )必要但不充分条件 (C )充要条件(D )既不充分又不必要条件 【答案】B【解析】本题考查线面位置关系的判定、性质与充分必要条件.(充分性)当m α⊥且n m ⊥时,我们可以得到//n α或n α⊂(因为直线n 与平面α的位置关系不确定),所以充分性不成立;(必要性)当//n α时,过直线n 可做平面β与平面α交于直线a ,则有//n a .又有m α⊥,则有m a ⊥,即m n ⊥.所以必要性成立,故选B .5. 已知F 为抛物线2:4C y x =的焦点,过点F 的直线l 交抛物线C 于,A B 两点,若||8AB =,则线段AB 的中点M 到直线10x +=的距离为(A )2(B )4 (C )8 (D )16【答案】B 【解析】本题考查抛物线的定义.如图,抛物线24y x =的焦点为(1,0)F ,准线为1x =-,即10x +=.分别过,A B 作准线的垂线,垂足为,C D ,则有||||||||||8AB AF BF AC BD =+=+=.过AB 的中点M 作准线的垂线,垂足为N ,则MN 为直角梯形ABDC 中位线, 则1||(||||)42MN AC BD =+=,即M 到准线1x =-的距离为4.故选B .6. 某四棱锥的三视图如图所示,则该四棱锥的体积等于(A )13(B )23(C )12(D )34【答案】A【解析】本题考查三视图还原和锥体体积的计算抠点法:在长方体1111ABCD A B C D -中抠点,1.由正视图可知:11C D 上没有点;2.由侧视图可知:11B C 上没有点;3.由俯视图可知:1CC 上没有点;4.由正(俯)视图可知:,D E 处有点,由虚线可知,B F 处有点,A 点排除. 由上述可还原出四棱锥1A BEDF -,如右图所示,111BEDFS =⨯=四边形,1111133A BEDF V -=⨯⨯=. 故选A . 7. 函数2πsin 12()12x f x x x=-+的零点个数为 (A )0(B )1 (C )2 (D )4【答案】C【解析】本题考查函数零点. 2πsin 12(),12x f x x x=-+定义域为(,0)(0,)-∞+∞U , 通分得:()22π2sin 122(1)x x x f x x x --=+, 设()1π2sin 2f x x x =,()221f x x =+, ()()12f x f x =时,()0f x =,画出大致图象如下.易发现()()12112f f ==,即()1f x 与()2f x 交于点()1,2A ,又()1πππcos 2sin 22f x x x x '=⋅+Q ,()22f x x '=, ()()12112f f ''∴==即点A 为公切点,∴点A 为()0,+∞内唯一交点,又()()12,f x f x Q 均为偶函数,∴点()1,2B -也为公切点,∴,A B 为交点,()f x 有两个零点.故选C8. 某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是(A )甲 (B )乙 (C )丙 (D )丁【答案】D【解析】本题考查学生的逻辑推理能力.1.若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;2.若乙获得一等奖,则只有小张的预测正确,与题意不符;3.若丙获得一等奖,则四人的预测都错误,与题意不符;4.若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意.故选D.第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.m 则输出k的值为______.9. 执行如图所示的程序框图,若输入5,【答案】4【解析】本题考查程序框图.m k初始 5 0第一次9 1第二次17 2第三次33 3第四次65 4第四次时,6550>,所以4k =.10. 双曲线2214x y -=的焦距为______;渐近线方程为. 【答案】125,2y x =± 【解析】本题考查双曲线的基本量.由题知224,1,a b ==故2225c a b =+=,焦距:225c =,渐近线:12b y x x a =±=±. 11. 已知圆22:2410C x y x y +--+=内有一点(2,1),P 经过点P 的直线l 与圆C 交于,A B 两点,当弦AB 恰被点P 平分时,直线l 的方程为______.【答案】1y x =-【解析】本题考查直线与圆的位置关系.圆22:(1)(2)4C x y -+-=,弦AB 被P 平分,故PC AB ⊥,由(2,1),(1,2)P C 得1pc l k k ⋅=-即1l k =,所以直线方程为1y x =-.12. 已知实数,x y 满足1010,1x y x y y +-≥⎧⎪--≤⎨⎪≤⎩若(0)z mx y m =+>取得最小值的最优解有无数多个,则m 的值为______.【答案】1【解析】本题考查线性规划.:l y mx z =-+,0m -<Q ,z 取得最小值,则直线l 的截距最小,最优解有无数个,即l 与边界重合,故1m =.13. 函数()sin()f x A x ωϕ=+π(0,0,)2A ωϕ>><的部分图象如图所示,则______;ϕ=______.ω=【答案】4;63π- 【解析】本题考查三角函数的图象与性质.由图可知,0,6,22x x x x πωϕππωϕ⎧=+=-⎪⎪⎨⎪=+=⎪⎩解得4,63πϕω=-=. 14. 许多建筑物的地板是用正多边形的砖板铺成的(可以是多种正多边形).如果要求用这些正多边形的砖板铺满地面,在地面某一点(不在边界上)有k 块砖板拼在一起,则k 的所有可能取值为______.【答案】3,4,5,6【解析】本题考查逻辑推理与多边形的性质.由题意知只需这k 块砖板的角度之和为360︒即可.显然3k ≥,因为任意正多边形内角小于180︒;且6k ≤,因为角度最小的正多边形为正三角形,360660︒︒=. 当3k =时,3个正六边形满足题意;当4k =时,4个正方形满足题意;当5k =时,3个正三角形与2个正方形满足题意;当6k =时,6个正三角形满足题意.综上,所以k 可能为3,4,5,6.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分13分)已知数列{}n a 的前n 项和n S 满足21n n S a =-*()n ∈N .(Ⅰ)求123,,a a a 的值;(Ⅱ)若数列{}n b 满足112,n n n b b a b +==+,求数列{}n b 的通项公式.【解析】(Ⅰ)由题知11121,S a a ==-得11a =,221221,S a a a =-=+得2112,a a =+=3312321,S a a a a =-=++得31214a a a =++=,(Ⅱ)当2n ≥时,1121,21,n n n n S a S a --=-=-所以1121(21)n n n n n a S S a a --=-=---,得122n n n a a a -=-,即12n n a a -=,{}n a 是以11a =为首项,2为公比的等比数列,则12n n a -=.当2n ≥时,1211()()n n n b b b b b b -=+-++-L 1212n a a a -=++++L ,111(12)22112n n a ---=+=+-, 经验证:111221b -==+, 综上:121n n b -=+.16. (本小题满分13分)在ABC !中,已知sin 5A =,2cos b a A =. (Ⅰ)若5ac =,求ABC !的面积; (Ⅱ)若B 为锐角,求sinC 的值. 解:(Ⅰ)由正弦定理得sin sin A a B b=,因为2cos b a A =, 所以sin 2sin cos B A A =,cos =02b A a >,因为sin 5A =,所以cos 5A =,所以4sin 2555B =⨯⨯=, 114sin 52225ABC S ac B ==⨯⨯=!. (Ⅱ)由(Ⅰ)知4sin 5B =,因为B为锐角,所以3 cos5B=.sin=sin(π)sin()C A B A B--=+sin cos cos sinA B A B=+345555=⨯+⨯=2517. (本小题满分13分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.【解析】(Ⅰ)设该学校选考方案确定的学生中选考生物的学生为,x 因为在选考方案确定的学生的人中, 选生物的频率为3+63=,8+6+10+610所以选择生物的概率约为3,10所以选择生物的人数约为3420=12610x =⨯人. (Ⅱ)2人.(Ⅲ)设选择物理、生物、化学的学生分别为123,,,A A A 选择物理、化学、历史的学生为1B , 选择物理、化学、地理的学生分别为12,,C C所以任取2名男生的基本事件有1223311112(,),(,),(,),(,),(,)A A A A A B B C C C 13213212(,),(,),(,),(,)A A A B A C B C 112131(,),(,),(,)A B A C A C 1122(,),(,)A C A C 12(,)A C所以两名男生所目相同的基本事件共有四个,分别为12231213(,),(,),(,),(,),A A A A C C A A 概率为4.1518. (本小题满分14分)如图1,在梯形ABCD 中,//,1,3,BC AD BC AD BE AD ==⊥于E ,1BE AE ==.将ABE !沿BE 折起至A BE '!,使得平面A BE '⊥平面 BCDE (如图2),M 为线段A D '上一点. (Ⅰ)求证:A E CD '⊥;(Ⅱ)若M 为线段A D '中点,求多面体A BCME '与多面体MCDE 的体积之比; (Ⅲ)是否存在一点M ,使得//A B '平面MCE ?若存在,求A M '的长.若不存在,请说明理由.【解析】(Ⅰ)在梯形ABCD 中,因为BE AE ⊥,所以'A E BE ⊥,Q 平面'A BE ⊥平面BCDE ,BE =平面'A BE I 平面BCDE ,'A E ⊂Q 平面'A BE , 'A E ∴⊥平面BCDE , CD ⊂Q 平面BCDE , 'A E CD ∴⊥.(Ⅱ)M Q 为'A D 中点,M∴到底面BCDE 的距离为1'2A E , 在梯形ABCD 中,1121122DCE S DE BE =⋅=⨯⨯=!,111'326M DCE DCE V A E S -=⋅⋅=!,'11'36A BCEBCE V A E S -=⋅⋅=!.'A E DE ⊥Q ,∴在'Rt A DE !中,'12A EM S =!, 'A E ⊥Q 平面BCDE ,'A E ⊂平面'A DE ,∴平面'A DE ⊥平面BCDE ,,BE ED ⊥Q 平面'A DE I 平面BCDE ED =, //BC AD Q ,C ∴到平面'A DE 的距离为1BE =.''1136C A EMA EM V BE S -∴=⋅⋅=!,'''13A BCME CA EM A BCE V V V =+=多面体多面体多面体. ':2:1A BCME MCDE V V ∴=多面体多面体. (Ⅲ)连结BD 交CE 于O ,连结OM , 在四边形BCDE 中,//BC DE Q ,BOC DOE ∴!!∽,23OD BD ∴=, '//A B Q 平面CME ,平面'A BD I 平面CEM OM =, '//A B OM ∴,在'A BD !中,//'OM A B ,'1'3A M BO A D BD ∴==, '1,2,'A E DE A E ED ==⊥Q ,∴在'Rt A ED !中,'A D ='3A M ∴=. 19. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点(1,2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆C 的左焦点的直线1l 与椭圆C 交于,A B 两点,直线2l 过坐标原点且直线1l 与2l 的斜率互为相反数,直线2l 与椭圆交于,E F 两点且均不与点,A B 重合,设直线AE 的斜率为1k ,直线BF 的斜率为2k ,证明:12k k +为定值.【解析】(Ⅰ)由题可得2222222121c aa b a b c ⎧=⎪⎪⎪⎪⎨+=⎪⎪⎪⎪=+⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆C 的方程为2212x y +=.(Ⅱ)由题知直线1l 斜率存在, 设11122:(1),(,),(,)l y k x A x y B x y =+.联立22(1)22y k x x y =+⎧⎨+=⎩, 消去y 得2222(12)4220k x k x k +++-=, 由题易知0∆>恒成立,由韦达定理得22121222422,1212k k x x x x k k -+=-=++, 因为2l 与1l 斜率相反且过原点, 设2:l y kx =-,3333(,),(,)E x y F x y --,联立2222y kxx y =-⎧⎨+=⎩, 消去y 得22(12)20k x +-=, 由题易知0∆>恒成立,由韦达定理得232212x k--=+,则1323121323y y y y k k x x x x -++=+-+ 13231323(1)(1)k x kx k x kx x x x x +++-=+-+ 132323131323(1)()(1)()()()x x x x x x x x k x x x x ++++-+-=⋅-+ 212312132322()()x x x x x k x x x x +++=⋅-+ 2222213232(22)224121212()()k k k k k k x x x x -⨯-+++++=⋅-+0=所以12k k +为定值0. 20. (本小题满分13分)已知函数ln 1()()x f x ax a x-=-∈R . (Ⅰ)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)若1a <-,求函数()f x 的单调区间; (Ⅲ)若12a <<,求证:()1f x <-. 解:(Ⅰ)若0a =,则(1)1f =-,22ln (),(1)2xf x f x-''==, 所以()f x 在点(1,1)-处的切线方程为230x y --=.(Ⅱ)222ln (0,),().ax xx f x x--'∈+∞= 令2()2ln g x ax x =--,则221()ax g x x--'=.令()0g x '=,得x =依题意102a->)由()0g x '>,得x >由()0g x '<,得0x <<.所以,()g x 在区间上单调递减,在区间)+∞上单调递增所以,min 5()2g x g ==-因为1a <-,所以110,ln 022a <-<<. 所以()0g x >,即()0f x '>.所以函数()f x 的单调递增区间为(0,)+∞. (Ⅲ)由0,()1x f x ><-,等价于ln 11x ax x--<-, 等价于21ln 0ax x x -+->.设2()1ln h x ax x x =-+-,只须证()0h x >成立.因为2121()21,12,ax x h x ax a x x --'=--=<< 由()0h x '=,得2210ax x --=有异号两根.令其正根为0x ,则200210ax x --=.在0(0,)x 上()0h x '<,在0(,)x +∞上()0h x '>则()h x 的最小值为20000()1ln h x ax x x =-+-000011ln 23ln .2x x x x x +=-+--=- 又13(1)220,()2()30,222a h a h a ''=->=-=-<所以011.2x <<则0030,ln 0.2x x ->-> 因此03ln 0,2x x -->即0()0.h x >所以()0h x >. 所以()1f x <-.。
北京市朝阳区2018届高三3月综合练习一模数学理
i z 由 (1 i) z i 得 1 i 第一象限 ,故选 A .
i(1 i) (1 i)(1 i)
1i 2 ,在复平面内对应的点为
11 (,) 2 2 ,在
·1·
x 3t, 3. 直线 l 的参数方程为 y 1 3t (t 为参数 ),则 l 的倾斜角大小为
π (A) 6
π ( B) 3
2π (C) 3
则 (eR A) B
( A ) ( ,0] [3, )
(0,1]
(B)
( C) [3, )
( D ) [1, )
【答案】 C 【解析】本题考查集合的运算 . 集合 A { x | x2 3x 0} { x | x(x 3) 0} { x | 0 x 3} , 集合 B { x | 2x 1} { x | 2x 20} { x | x 0} .
5π ( D) 6斜角 .
x 3t,
由 y 1 3t, 可以得到直线的方程为 y 1
3x
.
所以直线的斜率为
2π 3 ,倾斜角为 3 ,故选 C .
4. 已知 a,b 为非零向量 ,则“a b 0 ”是 “a 与 b 夹角为锐角 ”的
( A )充分而不必要条件
( B )必要而不充分条件
( C)充分必要条件
( D)既不充分也不必要条件
【答案】 B
【解析】本题考查平面向量数量积与夹角的关系 .
∵ a,b 为非零向量
a b 0 cos a,b 0 ∴
a, b [0, π) 2
a,b 夹角为锐角
a, b (0, π) 2
(0, π) ü[0, π)
∵2
2
故选 B .
5. 某单位安排甲、乙、丙、丁 4 名工作人员从周一到周五值班 ,每天有且只 有1 人值班 ,每人至少安排一天且甲连续两天值班 ,则不同的安排方法种数为