高中数学 课下能力提升(六)新人教A版选修22
人教A版高中同步学案数学选择性必修第二册精品课件 第四章 数列 第1课时 数列的概念与简单表示

函数类似,即数列的事实—数列概念的定义、表示—性质—等差数列与等
比数列,也特别注重函数思想和方法的应用,在此过程中,进一步提升学生
的数学抽象、数学运算、逻辑推理和数学建模素养.
本学习单元的内容是整个大单元的基础.在研究数列产生的现实背景、
数学本质和价值的基础上,帮助学生初步认识数列;学习数列的一般概念,
减、摆动还是常数列要从项的变化趋势来分析;而是有穷还是无穷数列则
看项的个数是有限个还是无限个.
探究点二
根据数列的前几项求通项公式
问题3类比函数的表示,思考数列的表示方式有哪些?
问题4类比函数的表示,数列的通项公式与函数的哪种表示方式最相似?
问题5如何猜想归纳数列的通项公式?如何发现数列中蕴含的特征?
用的方法有作差法、作商法.作差法判断数列单调性的步骤为先作差,再变
形、定号,最后下结论.作商法适用于各项都是同号的数列,且应比较比值
与1的大小关系.
角度2.利用数列单调性求数列最大(小)项
问题8类比函数单调性性质的研究,数列单调性有哪些性质?如何利用这些
性质运算?
【例5】已知数列{an}的通项公式an=(n+1)
10
11
(n∈N*),试问数列{an}有
没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.
分析 数列{an}的通项公式
计算 an+1-an
求解最大项
解 设ak(k>1)是数列{an}的最大项,
( + 1)
≥ -1 ,
则
即
≥ +1 ,
( + 1)
10
11
10
解 这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项
人教A版高中数学选修2

人教A 版高中数学选修2-3第一章 计数原理知识点:一、两个计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。
3、两个计数原理的区别二、排列与组合1、排列:一般地,从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式:其中 4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: m n A ()()()()!!121m n n m n n n n A m n -=+---= .,,*n m N m n ≤∈并且m nC ()()()()!!!!121m n m n m m n n n n C mn -=+---= .,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 11+-=+m n C三、二项式定理二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222……通项公式展开式的通项公式:,……T C a b r n r n r n r r+-==101()如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:注意事项:相邻问题,常用“捆绑法” ;不相邻问题,常用 “插空法”例题:★★1.我省高中学校自实施素质教育以来,学生社团得到迅猛发展。
高中数学第一章导数及其应用1.2.2基本初等函数的导数公式及导数的运算法则(二)练习新人教A版选修2_2

1.2.2 基本初等函数的导数公式及导数的运算法则(二)[A 基础达标]1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4解析:选D.y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)(x -1)+(x +1)2=3x 2+2x -1, 所以y ′|x =1=4.2.函数y =cos(-x )的导数是( ) A .cos x B .-cos x C .-sin xD .sin x解析:选C.法一:[cos(-x )]′=-sin(-x )·(-x )′=sin(-x )=-sin x . 法二:y =cos(-x )=cos x ,所以[cos(-x )]′=(cos x )′=-sin x .3.(2018·郑州高二检测)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞)D .(-1,0)解析:选C.因为f ′(x )=2x -2-4x =2(x -2)(x +1)x,又x >0,所以f ′(x )>0即x-2>0,解得x >2.4.对于函数f (x )=e xx 2+ln x -2kx,若f ′(1)=1,则k 等于( )A.e 2B.e 3 C .-e 2D .-e 3解析:选A.因为f ′(x )=e x(x -2)x 3+1x +2kx2,所以f ′(1)=-e +1+2k =1,解得k =e2,故选A. 5.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2e xf ′(1)+3ln x ,则f ′(1)=( )A .-3B .2eC.21-2eD.31-2e解析:选D.因为f ′(1)为常数, 所以f ′(x )=2e xf ′(1)+3x,所以f ′(1)=2e f ′(1)+3, 所以f ′(1)=31-2e.6.若f (x )=log 3(2x -1),则f ′(2)=________. 解析:因为f ′(x )=[log 3(2x -1)] ′= 1(2x -1)ln 3(2x -1)′=2(2x -1)ln 3,所以f ′(2)=23ln 3.答案:23ln 37.已知函数f (x )=ax 4+bx 2+c ,若f ′(1)=2,则f ′(-1)=________. 解析:法一:由f (x )=ax 4+bx 2+c ,得f ′(x )=4ax 3+2bx .因为f ′(1)=2, 所以4a +2b =2, 即2a +b =1.则f ′(-1)=-4a -2b =-2(2a +b )=-2. 法二:因为f (x )是偶函数, 所以f ′(x )是奇函数, 所以f ′(-1)=-f ′(1)=-2. 答案:-28.已知f (x )=exx,若f ′(x 0)+f (x 0)=0,则x 0的值为________.解析:因为f ′(x )=(e x )′x -e x x ′x 2=e x(x -1)x2(x ≠0). 所以由f ′(x 0)+f (x 0)=0, 得e x0(x 0-1)x 20+e x0x 0=0. 解得x 0=12.答案:129.求下列函数的导数: (1)y =cos(1+x 2); (2)y =sin 2⎝ ⎛⎭⎪⎫2x +π3; (3)y =ln(2x 2+x ); (4)y =x ·2x -1.解:(1)设u =1+x 2,y =cos u ,所以y ′x =y ′u ·u ′x =(cos u )′·(1+x 2)′ =-sin u ·2x =-2x sin(1+x 2). (2)设y =u 2,u =sin v ,v =2x +π3,则y ′x =y ′u ·u ′v ·v ′x =2u ·cos v ·2 =4sin v ·cos v=2sin 2v =2sin ⎝ ⎛⎭⎪⎫4x +2π3. (3)设u =2x 2+x ,则y ′x =y ′u ·u ′x =(ln u )′·(2x 2+x )′ =1u ·(4x +1)=4x +12x 2+x. (4)y ′=x ′·2x -1+x ·(2x -1)′. 先求t =2x -1的导数. 设u =2x -1,则t =u 12,t ′x =t ′u ·u ′x =12·u -12·(2x -1)′=12×12x -1×2=12x -1 . 所以y ′=2x -1+x 2x -1=3x -12x -1. 10.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.解:因为曲线y =ax 2+bx +c 过点P (1,1), 所以a +b +c =1.① 因为y ′=2ax +b ,所以4a +b =1.②又因为曲线过点Q (2,-1), 所以4a +2b +c =-1.③ 联立①②③,解得a =3,b =-11,c =9.[B 能力提升]11.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选 C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.12.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″ (x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,π2上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x解析:选D.若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )<0;若f (x )=-xe-x,则f ″(x )=2e-x-x e-x=(2-x )e -x,在x ∈⎝⎛⎭⎪⎫0,π2上,恒有f ″(x )>0,不是凸函数.13.已知曲线y =e 2x·cos 3x 在点(0,1)处的切线与直线l 的距离为5,求直线l 的方程.解:因为y ′=(e 2x)′·cos 3x +e 2x·(cos 3x )′=2e 2x·cos 3x -3e 2x·sin 3x , 所以y ′|x =0=2,所以经过点(0,1)的切线方程为y -1=2(x -0), 即y =2x +1.设符合题意的直线方程为y =2x +b ,根据题意,得5=|b -1|5,解得b =6或-4. 所以符合题意的直线方程为y =2x +6或y =2x -4. 14.(选做题)已知函数f (x )=ax 2+ln x 的导数为f ′(x ). (1)求f (1)+f ′(1);(2)若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围. 解:(1)由题意,函数的定义域为(0,+∞), 由f (x )=ax 2+ln x , 得f ′(x )=2ax +1x,所以f (1)+f ′(1)=3a +1.(2)因为曲线y =f (x )存在垂直于y 轴的切线,故此时切线斜率为0,问题转化为在x ∈(0,+∞)内导函数f ′(x )=2ax +1x存在零点,即f ′(x )=0⇒2ax +1x=0有正实数解,即2ax 2=-1有正实数解,故有a <0,所以实数a 的取值范围是(-∞,0).。
高中数学人教A版选修2-2课件 1-7 定积分的简单应用 第13课时《定积分的简单应用》

解析:(1)由v(t)=8t-2t2≥0,得0≤t≤4,
即当0≤t≤4时,P点向x轴正方向运动,
当t>4时,P点向x轴负方向运动.
故t=6时,点P离开原点的路程为
s1=4(8t-2t2)dt-6(8t-2t2)dt
0
4
=4t2-23t3|40-4t2-23t3|64=1328.
a
成的曲边梯形的面积.
【练习1】 曲线y=cosx0≤x≤32π与坐标轴所围成的图形面积是
() A.2
B.3
5 C.2
D.4
3
3
解析:S= 2 a
cosxdx+|
2
cosxdx|=
2
0
cosxdx-
2
cosxdx=sinx|
2 0
-
(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度 在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间, 然后分别计算,否则会出现计算失误.
变式探究2 (1)一物体沿直线以v=3t+2(t单位:s,v单位:m/s)
的速度运动,则该物体在3 s~6 s间的运动路程为( )
A.46 m
3
(3t2-2t+4)dt=()-(8
2
-4+8)=18.
答案:(1)B (2)D
考点三 利用定积分计算变力做功 例3 设有一长25 cm的弹簧,若加以100 N的力,由弹簧伸长到
30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使 弹簧由25 cm伸长到40 cm所做的功.
∴W=∫00.1250xdx=25x2|00.12=0.36(J). 答案:0.36 J
人教版新课标高中数学A版选修2-3答案

人教版新课标高中数学A版选修2-3答案人教版新课标高中数学A版选修2-3是高中数学课程中的一个重要部分,它涵盖了概率论与统计、数列、极限与导数等重要数学概念。
这些内容对于培养学生的逻辑思维能力、抽象思维能力和解决问题的能力都具有重要意义。
以下是该课程部分习题的答案解析,供同学们参考。
1. 概率论与统计在概率论与统计部分,学生需要掌握随机事件的概率计算、条件概率、独立事件以及随机变量的分布等基本概念。
例如,计算两个独立事件同时发生的概率,可以通过以下公式进行:\[ P(A \cap B) = P(A) \times P(B) \]其中,\( P(A \cap B) \) 表示两个事件同时发生的概率,\( P(A) \) 和 \( P(B) \) 分别表示事件A和事件B发生的概率。
2. 数列数列是高中数学中的一个基础概念,它涉及到等差数列、等比数列以及数列的求和等。
例如,等差数列的通项公式为:\[ a_n = a_1 + (n-1)d \]其中,\( a_n \) 表示第n项,\( a_1 \) 表示首项,\( d \) 表示公差。
3. 极限与导数极限是微积分的基础,它描述了函数在某一点附近的行为。
例如,函数 \( f(x) \) 在 \( x = a \) 处的极限可以表示为:\[ \lim_{x \to a} f(x) = L \]导数则是描述函数在某一点处变化率的工具。
函数 \( f(x) \) 在\( x = a \) 处的导数表示为:\[ f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]这些答案仅是课程内容的一小部分,具体的习题答案需要根据具体的题目来确定。
在学习过程中,理解概念和原理比单纯记忆答案更为重要。
通过不断的练习和思考,学生可以更好地掌握这些数学知识,并在实际问题中应用它们。
人教版高中数学选修2-2第二章推理与证明复习小结优质课件

现命题等,著名哲学家康德说:“每当理智缺乏可靠论证思
路时,类比法往往能指明前进的方向.”
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
特别提醒: (1) 归纳推理是由部分到整体,个体到一般
的推理,其结论正确与否,有待于严格证明.
(2) 进行类比推理时,要合理确定类比对象,不能乱 比,要对两类对象的共同特点进行对比.
[ 思维点击 ] 归纳猜想 ――→ fn推理与证明
栏目导引
1 [规范解答] 因为 an= 2, n+1 f(n)=(1-a1)(1-a2)„(1-an) 1 3 所以 f(1)=1-a1=1-4=4,
1 1- f(2)=(1-a1)(1-a2)=f(1)· 9
推理与证明章末小结
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
一、合情推理和演绎推理
1.归纳和类比是常用的合情推理,都是根据已有的事
实,经过观察、分析、比较、联想,再进行归纳类比,然后 提出猜想的推理.从推理形式上看,归纳是由部分到整体, 个别到一般的推理,类比是由特殊到特殊的推理,演绎推理 是由一般到特殊的推理.
推出结论的线索不够清晰; (2) 如果从正面证明,需要分成多种情形进行分类讨 论,而从反面进行证明,只要研究一种或很少的几种情形.
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
三、数学归纳法
数学归纳法是推理逻辑,它的第一步称为归纳奠基,是
论证的基础保证,即通过验证落实传递的起点,这个基础必 须真实可靠;它的第二步称为归纳递推,是命题具有后继传 递性的保证,两步合在一起为完全归纳步骤,这两步缺一不 可,第二步中证明“当n =k +1 时结论正确”的过程中,必
高中数学人教A版选修2-2(课时训练):1.6 微积分基本定理 Word版含答案
1.6 微积分基本定理[学习目标]1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的定积分. [知识链接]1.导数与定积分有怎样的联系?答 导数与定积分都是微积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知: 图(1)中S =⎠⎛ab f (x )d x ,图(2)中S =-⎠⎛ab f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .[预习导引] 1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).2.函数f (x )与其一个原函数的关系 (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln_x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos_x ; (7)若f (x )=cos x ,则F (x )=sin_x .要点一 求简单函数的定积分 例1 计算下列定积分 (1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ;(3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以⎠⎛02(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10.(3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以⎠⎛3-1(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203. (4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛21(x -1)5d x=16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6 =16. 规律方法 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c .跟踪演练1 求下列定积分: (1)∫π20(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎫e x -1x d x . 解 (1)∵⎝⎛⎭⎫32x 2-cos x ′=3x +sin x , ∴∫π20(3x +sin x )d x =⎝⎛⎭⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎡⎦⎤32×⎝⎛⎭⎫π22-cos π2-⎝⎛⎭⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x -1x,∴⎠⎛21(e x-1x )d x =()e x -ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0) =e 2-e -ln 2.要点二 求较复杂函数的定积分 例2 求下列定积分:(1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x2d x ;(3)⎠⎛41(2x +1x)d x . 解 (1)∵x (1-x )=x -x , 又∵⎝⎛⎭⎫23x 32-12x 2′=x -x . ∴⎠⎛41x (1-x )d x =⎝⎛⎭⎫23x 32-12x 2⎪⎪⎪41 =⎝⎛⎭⎫23×432-12×42-⎝⎛⎭⎫23-12=-176. (2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π20=π2+1.(3)∵⎝⎛⎭⎫2xln 2+2x ′=2x +1x,∴⎠⎛41(2x+1x)d x =⎝⎛⎭⎫2x ln 2+2x ⎪⎪⎪41 =⎝⎛⎭⎫24ln 2+24-⎝⎛⎭⎫2ln 2+2=14ln 2+2. 规律方法 求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差. (2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算下列定积分: (1)∫π30(sin x -sin 2x )d x ;(2)⎠⎛0ln 2e x (1+e x )d x .解 (1)sin x -sin 2x 的一个原函数是-cos x + 12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝⎛⎭⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14. (2)∵e x (1+e x )=e x +e 2x , ∴⎝⎛⎭⎫e x +12e 2x ′=e x +e 2x , ∴⎠⎛0ln 2e x (1+e x )d x =⎠⎛0ln 2()e x+e2xd x=⎝⎛⎭⎫e x +12e 2x ⎪⎪⎪ln 2=e ln 2+12e 2ln 2-e 0-12e 0=2+12×4-1-12=52.要点三 定积分的简单应用例3 已知f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x , ∴⎠⎛10(2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.规律方法 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪演练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4. 要点四 求分段函数的定积分 例4 计算下列定积分:(1)若f (x )=⎩⎪⎨⎪⎧x 2 (x ≤0)cos x -1 (x >0),求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝⎛⎭⎫13x 3′=x 2,(sin x -x )′=cos x -1 ∴原式=13x 3⎪⎪⎪0-1+(sin x -x )⎪⎪⎪⎪π20=⎝⎛⎭⎫0+13+⎝⎛⎭⎫sin π2-π2-(sin 0-0) =43-π2.(2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 (x ≥2或x ≤-2),4-x 2(-2<x <2), 又∵⎝⎛⎭⎫13x 3-4x ′=x 2-4,⎝⎛⎭⎫4x -13x 3′=4-x 2, ∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x=⎝⎛⎭⎫4x -13x 3⎪⎪⎪20+⎝⎛⎭⎫13x 3-4x ⎪⎪⎪32 =⎝⎛⎭⎫8-83-0+(9-12)-⎝⎛⎭⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x=∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.1.∫π2-π2(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2答案 D解析 ∵(x +sin x )′=1+cos x , ∴⎪⎪∫π2-π2(1+cos x )d x =(x +sin x )π2-π2=π2+sin π2-⎣⎡⎦⎤-π2+sin ⎝⎛⎭⎫-π2=π+2. 2.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2答案 D解析 ⎠⎛1a ⎝⎛⎭⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2|a 1+ ln x ⎪⎪a1=a 2-1+ln a =3+ln 2,解得a =2.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x =________. 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪⎪20-x 2320=83-43=43. 4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =∫π20f (x )d x +错误!f (x )d x=∫π20(4x -2π)d x +错误!cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x .所以∫π20(4x -2π)d x +错误!cos x d x =(2x 2-2πx )错误!+sin x ⎪⎪⎪ππ2=-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础达标1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ba ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =li m n→∞∑i =1n b -ans ′(ξi ); ④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3.⎠⎛01(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ⎠⎛01(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32 B .43C .23D .-23答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+1=13+1=43,故选B. 5.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案33解析 由已知得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33. 6.(2013·湖南)若⎠⎛0T x 2d x =9,则常数T 的值为________.答案 3解析 ⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.解 ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x=⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3,①又f (t )=⎪⎪⎣⎡⎦⎤x 44+a2x 2+(3a -b )x t 0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0,②由①②得a =-3,b =-9. 二、能力提升8.∫π20sin 2x2d x 等于( )A.π4B .π2-1C .2D .π-24答案 D解析 ∫π20sin 2x 2d x =∫π201-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 9.(2013·江西)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D . S 3<S 2<S 1答案 B解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x |21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a =________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式.解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛a 1b x d x =13a +12b =176. 由⎩⎨⎧12a +b =513a +12b =176,得⎩⎪⎨⎪⎧a =4b =3.即f (x )=4x +3.12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x =x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 三、探究与创新13.求定积分⎠⎛3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛3-4(x +a )d x = ⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时,原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛3-a(x +a )d x =⎝⎛⎭⎫-x 22-ax ⎪⎪-a -4+ ⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252. (3)当-a ≥3即a ≤-3时,原式=⎠⎛3-4[-(x +a )]d x = ⎪⎪⎝⎛⎭⎫-x 22-ax 3-4= -7a +72. 综上,得⎠⎛3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
人教A版高中数学选修2
另外,我发现有些同学在向量坐标运算方面还存在困难,尤其是在向量减法和数乘运算的坐标表示上。针对这个问题,我计划在下一节课中增加一些针对性的练习,帮助同学们巩固这部分知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平面向量》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过力的合成与分解的情况?”(如两个人拉扯物体)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面向量的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平面向量的基本概念。平面向量是有大小和方向的量,它是描述物体运动状态和力的作用效果的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平面向量在力的合成与分解中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调向量加法、减法、数乘这两个重点。对于难点部分,如向量加法的平行四边形法则,我会通过举例和比较来帮助大家理解。
5.向量的投影:向量在另一个向量上的投影,投影向量的计算。
二、核心素养目标
本节课旨在培养学生的以下核心素养:
1.逻辑推理:通过向量的概念及运算的学习,使学生能够运用逻辑推理进行向量问题的分析,提高解决问题的能力。
2.数学建模:培养学生运用向量知识解决实际问题的能力,学会建立向量模型,并运用模型进行问题的求解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平面向量相关的实际问题。
高中数学人教(A版)选修2-2导数及其应用1.1 变化率与导数
f ( x0 x ) f ( x0 ) y lim lim f ( x0 ) x 0 x x 0 x
称它为函数y f ( x )在x x0处的导数. ' ' 记作f ( x ( x0 ) y lim lim f ( x0 ) x 0 x x 0 x
2 1
0.62>0.16
所以气球半径增加得越来越慢
P3 思考?
• 当空气容量从V1增加到V2时,气球的平均膨胀
率是多少?
r (V2 ) r (V1 ) V2 V1
气球的平均膨胀率即气球半径的平均变化率 气球半径的平均变化率可以刻画气球半径 变化快慢
• 问题2 高台跳水 • 运动员相对于水面的高度h(单位:米)
瞬时速度
当t 2,t 0时,平均速度v就趋近 于t 2时刻的瞬时速度.表示为:
为方便表示,我们用:
h(2 t ) h(2) lim 13.1, t t 0 表示t 2时刻的瞬时速度.
在t0时刻的瞬时速度呢?
当t t 0时,t趋近于0时,平均速度 v就趋近 于t 0时刻的瞬时速度 .表示为:
函数
微积分(牛顿,莱布尼兹)
• 一、已知物体运动的路程作为时间的函
数,求物体在任意时刻的速度与加速度等; • 二、求曲线的切线; • 三、求已知函数的最大值与最小值; • 四、求长度、面积、体积和重心等。
•
导数是微积分的核心概念之一它是研究 函数增减、变化快慢、最大(小)值等 问题最一般、最有效的工具。
h(t0 t ) h(t0 ) lim t t 0
气球体积为V0时的瞬时膨胀率如何表示?
r (V0 V ) r (V0 ) r lim lim V 0 V V 0 V
人教A版高中数学选修2-2课件轨迹方程的求法
y
N
1.从双曲线x2 y2 1上一点Q
P
引直线x y 2的垂线,垂足为N . Q
求线段QN的中点P的轨迹方程.
O
x
22
(三)代入法(也称“相关点法”、“转移法”)
---如果轨迹点P(x,y)依赖于另一动点Q(x0,y0),而 Q(x0,y0)又在某已知曲线上,则可先列出关于x,y,x0 ,y0 的方程组,利用x,y表示出x0 ,y0 ,把x0 ,y0代入已知曲线 方程便得动点P的轨迹方程.学.科.网 zxxk.
上述五个步骤可简记为: 建系设点;写出关系式;列方程;化简;证明.
2.求轨迹方程的主要方法: (1)直接法(也称“直译法”、“列式法”) (2)定义法 (3)代入法(也称“相关点法”、“转移 法”)
3.轨迹问题还应区别是“求轨迹方程”,还是 “求轨迹”.
主要题型
(一).直接法(也称“直译法”、“列式法”) ---直接将题中所给的几何条件“翻译”成方程式
(2)因为动圆P过点N ,所以 | PN | 是该圆的半径, 又因为动圆 P与圆M 外切,
所以 | PM || PN | 2 2, 即 | PM | | PN | 2 2. 故点P的轨迹是以M、N为焦点, 实轴长为2 2的双曲线的左支. 因为实半轴长a 2,半焦距c 2. 所以虚半轴长b c2 a2 2. 从而动圆P的圆心的轨迹方程为 x2 y2 1( x 2).
1 4
, (2a
1 )2 2
4c2
1 4
,
又e 3 得c2 3 a2 4a2 2a 3a2 , a 0 a 2
2
4
b2 a2 c2 1 a2 1, 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课下能力提升(六)[学业水平达标练]题组1 求函数的极值1.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .-1和2C .-1D .-3 2.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值 D .极小值-27,无极大值3.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增;②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减;③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.其中正确的结论为________. 题组2 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3 D .-1,-35.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <126.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.题组3 含参数的函数的极值问题7.设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.8.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.[能力提升综合练]1.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在⎝⎛⎭⎪⎫-∞,-13内 B .二个零点,分别在⎝⎛⎭⎪⎫-∞,-13,(0,+∞)内C .三个零点,分别在⎝ ⎛⎭⎪⎫-∞,-13,⎝ ⎛⎭⎪⎫-13,1,(1,+∞)内D .三个零点,分别在⎝⎛⎭⎪⎫-∞,-13,(0,1),(1,+∞)内 2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )·f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)3.若函数y =x 3-2ax +a 在(0,1)内有极小值没有极大值,则实数a 的取值范围是( ) A .(0,3) B .(-∞,3)C .(0,+∞) D.⎝ ⎛⎭⎪⎫0,324.设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点5.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________. 6.已知函数f (x )=ax 3+bx 2+cx 的极大值为5,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则a =________,b =________,c =________.7.已知函数f (x )=e x(ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.答案题组1 求函数的极值1.解析:选C f ′(x )=-x 2+x +2=-(x +1)(x -2),则在区间(-∞,-1)和(2,+∞)上,f ′(x )<0,在区间(-1,2)上,f ′(x )>0,故当x =-1时,f (x )取极小值.2. 解析:选C 由y ′=3x 2-6x -9=0,得x =-1或x =3.当x <-1或x >3时,y ′>0;当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5;3∉(-2,2),故无极小值. 3.解析:由图象知,当x ∈(-∞,-2)时,f ′(x )<0, 所以f (x )在(-∞,-2)上为减函数,同理,f (x )在(2,4)上为减函数,在(-2,2)上是增函数,在(4,+∞)上为增函数, 所以可排除①和②,可选择③.由于函数在x =2的左侧递增,右侧递减, 所以当x =2时,函数有极大值;而在x =-12的左右两侧,函数的导数都是正数,故函数在x =-12的左右两侧均为增函数,所以x =-12不是函数的极值点.排除④和⑤.答案:③题组2 已知函数的极值求参数 4.解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3. 5.解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.解析:f ′(x )=3x 2+6ax +3(a +2), ∵函数f (x )既有极大值又有极小值, ∴方程f ′(x )=0有两个不相等的实根, ∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1. 答案:(-∞,-1)∪(2,+∞) 题组3 含参数的函数的极值问题7. 解:(1)因为f (x )=a ln x +12x +32x +1,故f ′(x )=a x -12x 2+32.由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(因x 2=-13不在定义域内,舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数; 当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数. 故f (x )在x =1处取得极小值,且f (1)=3.8. 解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax.(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1), 即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a ,又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.[能力提升综合练]1. 解析:选A 利用导数法易得函数在⎝ ⎛⎭⎪⎫-∞,-13内递减,在⎝ ⎛⎭⎪⎫-13,1内递增,在(1,+∞)内递减,而f ⎝ ⎛⎭⎪⎫-13=-5927<0,f (1)=-1<0,故函数图象与x 轴仅有一个交点,且交点横坐标在⎝⎛⎭⎪⎫-∞,-13内.2.解析:选D 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.3.解析:选D f ′(x )=3x 2-2a , ∵f (x )在(0,1)内有极小值没有极大值,∴⎩⎪⎨⎪⎧f ′(0)<0,f ′(1)>0⇒⎩⎪⎨⎪⎧-2a <0,3-2a >0.即0<a <32.4. 解析:选D 取函数f (x )=x 3-x ,则x =-33为f (x )的极大值点,但f (3)>f ⎝ ⎛⎭⎪⎫-33,排除A ;取函数f (x )=-(x -1)2,则x =1是f (x )的极大值点,但-1不是f (-x )的极小值点,排除B ;-f (x )=(x -1)2,-1不是-f (x )的极小值点,排除C.故选D.5.解析:设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.答案:-2或2 6. 解析:由题图得依题意,得⎩⎪⎨⎪⎧f (1)=5,f ′(1)=0,f ′(2)=0.即⎩⎪⎨⎪⎧a +b +c =5,3a +2b +c =0,12a +4b +c =0.解得a =2,b =-9,c =12. 答案:2 -9 127. 解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8,从而a =4,b =4. (2)由(1)知,f (x )=4e x(x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x-12.令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2). 8.解:f ′(x )=3x 2-6x ,函数f (x )的定义域为R , 由f ′(x )=0得x =0或x =2.当x 变化时,f ′(x )与f (x )的变化情况如下表:因此,函数在x =0处有极大值,极大值为f (0)=-a ; 在x =2处有极小值,极小值为f (2)=-4-a .函数y =f (x )恰有一个零点即y =f (x )的图象与x 轴只有一个交点(如图),所以⎩⎪⎨⎪⎧f (0)>0,f (2)>0或⎩⎪⎨⎪⎧f (0)<0,f (2)<0, 即⎩⎪⎨⎪⎧-a >0,-4-a >0或⎩⎪⎨⎪⎧-a <0,-4-a <0,解得a <-4或a >0,所以当a >0或a <-4时,函数f (x )恰有一个零点.。