生物分离工程:5章
《生物分离工程》课程笔记

《生物分离工程》课程笔记第一章绪论一、生物分离工程的历史及应用1. 历史生物分离工程的历史可以追溯到古代酿酒和面包制作时期,但作为一个独立领域的发展始于20世纪。
早期的生物分离技术主要依靠自然现象,如沉淀、结晶等。
随着科技的发展,尤其是生物技术的崛起,生物分离工程逐渐形成一门独立的学科,并得到了迅速发展。
2. 应用生物分离技术在医药、食品、农业、环境保护等领域有广泛的应用。
例如,在疫苗生产中,需要从细胞培养液中分离出病毒或细菌;在抗生素提取中,需要从发酵液中提取抗生素;在蛋白质纯化中,需要从混合蛋白质中分离出目标蛋白质;在果汁澄清中,需要去除果汁中的悬浮固体等。
二、生物分离过程的特点1. 复杂性生物分离过程涉及生物大分子(如蛋白质、核酸、多糖等)的分离和纯化,这些生物大分子在结构和性质上具有很高的复杂性,因此生物分离过程也具有较高的复杂性。
2. 多样性生物分离过程中,针对不同的生物大分子和混合物,需要采用不同的分离方法和工艺,因此生物分离过程具有很高的多样性。
3. 灵敏度生物大分子在分离过程中容易受到外界因素的影响,如温度、pH值、离子强度等,因此生物分离过程需要严格控制条件,具有很高的灵敏度。
4. 易失活性生物大分子在分离过程中容易发生变性、降解等失活现象,因此生物分离过程需要尽量减少这些失活现象的发生。
5. 高价值生物大分子往往具有很高的经济价值,如药物、生物制品等,因此生物分离过程需要高效、高收率地分离目标物质,以满足市场需求。
第二章过滤一、过滤基本概念及预处理1. 过滤基本概念过滤是一种基于孔径大小实现固体与流体分离的技术。
在生物分离工程中,过滤技术被广泛应用于细胞培养液、发酵液、酶反应液等混合物的初步分离和纯化。
过滤过程中,混合物通过过滤介质(如滤纸、滤膜等),固体颗粒被拦截在过滤介质上,而流体则通过过滤介质流出,从而实现分离。
2. 预处理为了提高过滤效率,通常需要对混合物进行预处理。
生物分离工程练习题二(第4-5章)

《生物分离工程》练习题二(第4~5章)一、选择题(22分)1、以下哪项不是在重力场中,颗粒在静止的流体中降落时受到的力( B )A.重力B. 压力C.浮力D. 阻力2、颗粒与流体的密度差越小,颗粒的沉降速度( A )A.越小B.越大C.不变D.无法确定3、等密度区带离心的密度梯度中最大密度( A )待分离的目标产物的密度。
A.大于B.小于C.等于D.以上均可4、差速区带离心的密度梯度中最大密度( B )待分离的目标产物的密度。
A.大于B.小于C.等于D.以上均可5、以下各物质可用于密度梯度离心介质的是( D )。
A.蔗糖B.聚蔗糖C.氯化铯D.以上均可6、当两种高聚物水溶液相互混合时,二者之间的相互作用不可能产生(D)A. 互不相溶,形成两个水相B. 两种高聚物都分配于一相,另一相几乎全部为溶剂水C. 完全互溶,形成均相的高聚物水溶液D. 形成沉淀7、超临界流体萃取中,如何降低溶质的溶解度达到分离的目的(C)A.降温 B升高压力 C.升温 D.加入夹带剂8、物理萃取即溶质根据(B)的原理进行分离的A.吸附B.相似相溶 C分子筛 D 亲和9、超临界流体萃取法适用于提取( B )A、极性大的成分B、极性小的成分C、离子型化合物D、亲水性成分10、在萃取液用量相同的条件下,下列哪种萃取方式的理论收率最高(C)A.单级萃取B.三级错流萃取C.三级逆流萃取D.二级逆流萃取11、关于萃取下列说法正确的是(C)A. 酸性物质在酸性条件下萃取 B碱性物质在碱性条件下萃取C. 两性电解质在等电点时进行提取D. 两性电解质偏离等电点时进行提取12、液一液萃取时常发生乳化作用,如何避免(D)A.剧烈搅拌 B低温 C.静止 D.加热13、在葡聚糖与聚乙二醇形成的双水相体系中,目标蛋白质存在于(A)A.上相 B下相 C.葡聚糖相 D.以上都有可能14、超临界流体萃取中,如何降低溶质的溶解度达到分离的目的(C)A.降温 B升高压力 C.升温 D.加入夹带剂15、关于反萃取的概念,下列说法正确的是:(A)。
生物分离工程

Chapter 5 沉析1、何谓盐析?其原理是什么?▪在高浓度的中性盐存在下,蛋白质(酶)等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程。
原理:首先需要了解生物大分子在水溶液中的存在状态:▪两性电解质,由于静电力的作用,分子间相互排斥,形成稳定的分散系▪蛋白质周围形成水化膜,保护了蛋白质粒子,避免了相互碰撞2、等电点沉析的工作原理是什么?▪原理:蛋白质是两性电解质,当溶液pH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀。
▪概念:调节体系pH值,使两性电解质的溶解度下降,析出的操作称为等电点沉淀。
3、有机溶剂沉析法的原理是什么?▪概念:在含有溶质的水溶液中加入一定量亲水的有机溶剂,降低溶质的溶解度,使其沉淀析出。
▪原理:(1)降低了溶质的介电常数,使溶质之间的静电引力增加,从而出现聚集现象,导致沉淀。
(2)由于有机溶剂的水合作用,降低了自由水的浓度,降低了亲水溶质表面水化层的厚度,降低了亲水性,导致脱水凝聚。
4、影响盐析的主要因素有哪些?▪溶质种类的影响:Ks和β值▪溶质浓度的影响:•蛋白质浓度大,盐的用量小,但共沉作用明显,分辨率低;•蛋白质浓度小,盐的用量大,分辨率高;▪pH值:影响蛋白质表面净电荷的数量•通常调整体系pH值,使其在pI附近;▪盐析温度:•一般在高盐浓度下,温度升高,其溶解度反而下降Chapter 6 结晶1.饱和溶液和过饱和溶液的概念饱和溶液:当溶液中溶质浓度等于该溶质在同等条件下的饱和溶解度时,该溶液称为饱和溶液;过饱和溶液:溶质浓度超过饱和溶解度时,该溶液称之为过饱和溶液;溶质只有在过饱和溶液中才能析出;2.过饱和溶液形成的方法有哪些?热饱和溶液冷却部分溶剂蒸发法真空蒸发冷却法化学反应结晶3.绘制饱和温度曲线和过饱和温度曲线,并标明稳定区、亚稳定区和不稳定区。
4.常用的工业起晶方法有哪些?υ自然起晶法:溶剂蒸发进入不稳定区形成晶核、当产生一定量的晶种后,加入稀溶液使溶液浓度降至亚稳定区,新的晶种不再产生,溶质在晶种表面生长。
生物分离工程第5章-初级分离

eg. 从血浆中通过5步沉淀生产纯度高达99%的免 疫球蛋白和96%~99%的白蛋白。
重新溶解的沉淀
血浆
乙醇法沉淀
沉淀物Ⅰ+Ⅱ+
Ⅲ
上清液
乙醇法沉淀 沉淀物Ⅰ+Ⅲ
乙醇法沉淀沉 淀物Ⅱ
废弃沉淀
层厚度(ζ 电位)降低蛋白质溶液的稳定性,实 现蛋白质的沉淀。
蛋白质可以看作是一个表面分布有正、负 电荷的球体,这种正、负电荷是由氨基和 羧基的离子化形成的,换句话说,该球体 是带有均衡电荷分布的胶体颗粒。因此, 蛋白质的沉淀,实际上与胶体颗粒的凝聚 和絮凝现象相似。
蛋白质粒子在水溶液中是带电的,带电的 原因主要是吸附溶液中的离子或自身基团 的电离。因溶液是电中性的,水中应有等 当量的反离子存在。蛋白质表面的电荷与 溶液中反离子的电荷构成双电层。
蛋白质沉淀方法
中性盐盐析法
等电点沉淀法
有机溶剂盐析法
非离子型聚合物沉淀法 聚电解质沉淀法 金属沉淀法
其他沉淀法
一、中性盐盐析法
当中性盐加入蛋白质分散体系时可能出现以下两 种情况:
(1)“盐溶”现象(salting-in) ——低盐浓度下,蛋白质溶解度增大。
(2)“盐析”现象(salting-out) ——高盐浓度下,蛋白质溶解度随之下降。
Ks—盐析常数,与蛋白质和无机盐的种类有 关,与温度、pH值无关。
常数Ks代表图中直线的斜率;β 代表截距, 即当离子强度为零,也就是纯水中的假想
溶解度的对数。从一些实验结果表明,Ks与温度 和pH无关,但和蛋白质与盐的种类有关。
但这种变化不是很大,例如以硫酸铵作为沉淀剂 时,Ks值对不同的蛋白质来说,其变化不会超过 1倍。组成相近的蛋白质,分子量越大,沉淀所需 盐的量越少;蛋白质分子不对称性越大,也越易 沉淀。
生物分离工程复习题二(第4-5章)

《生物分离工程》复习题二(第4~5章)一、选择题1、以下哪项不是在重力场中,颗粒在静止的流体中降落时受到的力()A.重力B. 压力C.浮力D. 阻力2、颗粒与流体的密度差越小,颗粒的沉降速度()A.越小B.越大C.不变D.无法确定3、等密度区带离心的密度梯度中最大密度()待分离的目标产物的密度。
A.大于B.小于C.等于D.以上均可4、差速区带离心的密度梯度中最大密度()待分离的目标产物的密度。
A.大于B.小于C.等于D.以上均可5、以下各物质可用于密度梯度离心介质的是()。
A.蔗糖B.聚蔗糖C.氯化铯D.以上均可6、针对配基的生物学特异性的蛋白质分离方法是()。
A.凝胶过滤B.离子交换层析C.亲和层析D.纸层析7、用于蛋白质分离过程中的脱盐和更换缓冲液的色谱是()A.离子交换色谱 B.亲和色谱 C.凝胶过滤色谱 D.反相色谱8、蛋白质分子量的测定可采用()方法。
A.离子交换层析 B.亲和层析 C.凝胶层析 D.聚酰胺层析9、凝胶色谱分离的依据是()。
A、固定相对各物质的吸附力不同B、各物质分子大小不同C、各物质在流动相和固定相中的分配系数不同D、各物质与专一分子的亲和力不同10、下列哪一项是强酸性阳离子交换树脂的活性交换基团()A 磺酸基团(-SO3 H)B 羧基-COOHC 酚羟基C6H5OHD 氧乙酸基-OCH2COOH11、依离子价或水化半径不同,离子交换树脂对不同离子亲和能力不同。
树脂对下列离子亲和力排列顺序正确的有()。
A、Fe3+﹥Ca2+﹥Na+B、Na+﹥Ca2+﹥Fe3+C、Na+﹥Rb+﹥Cs+D、Rb+﹥Cs+﹥Na+12、如果要将复杂原料中分子量大于5000的物质与5000分子量以下的物质分开选用()。
A、Sephadex G-200B、Sephadex G-150C、Sephadex G-100D、Sephadex G-5013、离子交换法是应用离子交换剂作为吸附剂,通过()将溶液中带相反电荷的物质吸附在离子交换剂上。
生物分离工程-第五章-萃取技术PPT课件

mCl
[R Cl - ] [Cl - ]
则
mAKeC mlCl1[H K 2][K H 1 K ]2 21
43
-化学萃取平衡之分配平衡(2)
二(2-乙基己基)磷酸萃取氨基酸为例,其所对应的离 子交换反应
A2(H2RA ) R(3H H R )
KeH[A[AR]([(HH3R]R[2)H])]
氨基酸的表观分配系数为
6
生物产品萃取根据分子量大小划分
小分子类 化合物相对分子量约小于1000,如氨基酸、 抗生素、维生素、有机酸等,采用有机溶 剂萃取
大分子类 相对分子量大于1000,如酶,抗体,蛋白 质等,有机溶剂不适用,可选用反胶团萃 取、双水相萃取等
7
工业上生产青霉素
大多采用醋酸丁酯为萃取剂,pH=1.8~2.2, 相比VO/VW=1/2~1/2.5,温度5℃,反萃取过 程采用碳酸氢钾或碳酸钾水溶液为反萃取剂。
A
A+
A+
AA+
A AClA
有机相
R+Cl-
RR++CA-l-
R+Cl-
R+Cl-
R+Cl-
42
化学萃取平衡之分配平衡
季胺盐萃取氨基酸为例,其所对应的离子交换反应
R C lA R A -C l
[RA-][Cl- ] KeCl [RCl- ][A- ]
氨基酸和氯离子对应的表观分配系数分别为
[R A- ] mA cA
51
2、双水相形成
当两种高分子聚合物之间存在相互排斥作 用时,即一种分子周围将聚集同种分子而 排斥异种分子,则在达到平衡时,就形成 分别富含不同聚合物的两相 。
重庆大学生物分离工程_第五章 萃取
某些聚合物的溶液与某些无机盐的溶液相混合 时,只要浓度达到一定值,也会形成两相,即 聚合物-盐双水相体系,成相机理尚不清楚,一 种解释为“盐析”作用。
(2) 温度
温度会影响生化物质的稳定性。
影响分配系数K。
(3) 盐析
无机盐类如硫酸铵、氯化钠等一般可降低产 物在水中的溶解度而使其更易于转入有机溶 剂相中,另一方面还能减小有机溶剂在水相 中的溶解度。
(4) 带溶剂
为提高分配系数K,常添加带溶剂。带溶剂是 指能和产物形成复合物,促使产物更易溶于有 机溶剂相中,在一定条件下又要容易分离的物 质。
PEG/盐系统应用得很广泛,主要由于PEG价 格低廉以及该系统选择性。
三步萃取流程示意图
分配在上相中的蛋白质可通过加入适量的盐(有 时也补充适量的PEG),进行第二次双水相萃 取,目的是除去核酸和多糖,它们的亲水性较 强,因而易分配在盐相中,蛋白质就停留在上 相PEG中。
在第三次萃取中,应使蛋白质分配在盐相(如调 节pH),以便和主体PEG分离,色素因其憎水 性而通常分配在上相;盐相中的蛋白质可用超 滤法弃除残余的PEG,主体PEG可循环使用。
再如图中,2.2%的葡聚糖水溶液与等体积的0.72 %甲基纤维素钠的水溶液相混合并静置后,可得 到两个粘稠的液层。
葡聚糖与甲基纤维素钠的双水相体系
上述现象称为聚合物的不相溶性 (incompatibility)。如果多种不相溶的聚合物混 在一起,就可得到多相体系,如硫酸葡聚糖、 葡聚糖、羟丙基葡聚糖和聚乙二醇相混时,可 形成四相体系。
生物分离工程-第5章-萃取技术
单级萃取
假定:两相中的分配很快达到平衡; 两相完全不互溶,完全分离。
X S VS CS VS 1 ★ 萃取因素: E 萃取液溶质总量 = =K K 萃余液溶质总量 XF VF CF VF m
单级萃取
单级萃取:只包括一个混合器和一个分离器
分离因素(β)
分离因素表示有效成分A与杂质B的分离程度。
KA KB
β=1 KA = KB 分离效果不好;
β>1 KA > KB 分离效果好;
β越大,KA 越大于KB,分离效果越好。
弱电解质在有机溶剂-水相的分配平衡
分配系数中CO和CW 必须是同一种分子类型,即不发生缔合或离解。对 于弱电解质,在水中发生解离,则只有两相中的单分子化合物的浓度才 符合分配定律。 例如青霉素在水中部分离解成负离子(青COO-),而在有机溶剂相 中则仅以游离酸(青COOH)的形式存在,则只有两相中的游离酸分子 才符合分配定律。
多级逆流萃取
在多级逆流萃取中,在第一级中连续加入料液,并 逐渐向下一级移动,而在最后一级中连续加入萃取 剂,并逐渐向前一级移动。
料液移动的方向和萃取剂移动的方向相反,故称为 逆流萃取。 在逆流萃取中,只在最后一级中加入萃取剂,故和 错流萃取相比,萃取剂之消耗量较少,因而萃取液 平均浓度较高。
有机溶剂萃取的影响因素
pH的影响
pH对表观分配系数的影响(pH-K)
pH低有利于酸性物质分配在有机相,碱性物质分 配在水相。 对弱酸随pH↓,K↑, 当pH << pK时,K→K0
由萃取机理和K~pH的关系式可得出如下结论
酸性物质 萃取 反萃取 pH<pK pH>pK 碱性物质 pH>pK pH<pK
生物分离工程 第五章 萃取
多级逆流萃取
L1, y0 1 H, x1
y1 2 x2
y2
yn-2 n-1
yn-1 n xn
yn, L
x3
xn-1
xn+1, H
确定要达到一定的回收率所需萃取的级数
E=kL/H (E萃取因子,k分配系数) 1- φn= (En+1-E)/ (En+1-1) 1- φn=n/(n+1) (φ萃余分数)(E=1时,据罗比塔极限法得之)
and Solid phase extraction.利用在两个互不相溶的液相中各种组分
(包括目的产物)溶解度的不同,从而达到分离的目的 (萃取剂、萃 取液、萃余液)
The extraction classifications萃取的分类:
By physical conditions of extract solvents and materials: L-L extraction, L-S extraction and SFE根据萃取剂和原料的物理状态分:液液萃取(有机溶剂萃取、 双水相萃取、液膜萃取和反胶束萃取等),液固萃取,超临界流体萃取等
表面活性剂:稳定油水分界面的重要组成,相当于生物膜类脂双
分子层的亲水端,含量在1%-5%
流动载体:相当于生物膜的蛋白质载体 膜增强剂:
液膜分类(p87-88) 乳状液膜:(W/O)/W型和(O/W)/O型,在生物分离中主要是(W/O)/W
型
支撑液膜: 流动液膜: 液膜萃取机理 单纯迁移:又称物理渗透
By extraction flowsheet: single stage extraction and multistage extraction.根
生物分离工程部分习题和答案
2 生物分离工程在生物技术中的地位?答:生物技术的主要目标产物是生物物质的高效生产,而分离纯化是生物产品工程的重要环节,而且分离工程的质量往往决定整个生物加工过程的成败,因此,生物分离纯化过程在生物技术中极为重要。
3 分离效率评价的主要标准有哪些?各有什么意义?(ppt)答:根据分离目的的不同,评价分离效率主要有3个标准:以浓缩为目的:目标产物浓缩程度(浓缩率m)以纯度为目的:目标产物最终纯度(分离因子a)以收率为目的:产品收得率(%)5 在设计下游分离过程前,必须考虑哪些问题方能确保我们所设计的工艺过程最为经济、可靠?(ppt)答:<1>、目标产物性质及其共存杂质的特性 <2>、充分考虑目标产物商业价值<3>、考虑生物加工过程自身规模 <4>、采用步骤次序相对合理<5>、尽可能采用最少步骤 <6>、产品稳定性与物性<7>、产品规格与型式 <8>、生产过程中废水等排放6 下游加工过程的发展趋势有哪些方面?(ppt)答:成本控制和质量控制第二章发酵液预处理一解释名词凝聚剂:让不稳定的胶体微粒(或者凝结过程中形成的微粒)聚合在一起形成集合体的过程中所投加的试剂的统称。
过滤:利用多孔介质(如滤布、微孔膜、致密膜)截流悬浮液中的固体粒子,进行液固分离的过程。
离心:在离心力作用下,利用固体和液体之间的密度差达到沉降分离目的。
细胞破碎:利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术包含体:指细胞或细菌中高表达的蛋白质(也可以汇同其他细胞成分)聚集而成的不溶性颗粒。
二简答题1 为什么要进行发酵液的预处理?常用处理方法有哪几种?答:提高过滤速度与过滤质量改变发酵液性质(黏度↓、颗粒 、颗粒稳定性↓) 去除部分杂质使产物转入到易处理的相中(通常是液相)方法:加热、调节、pH、凝聚、絮凝2 凝集与絮凝过程有何区别?如何将两者结合使用?常用的絮凝剂有哪些?答:凝集:在中性盐作用下,由于双电层排斥电位降低使胶体体系不稳定的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
较成熟的膜分离过程
• • • • Microfiltration (微滤) Nanofiltration (纳滤) Ultrafiltration (超滤) Reverse Osmosis (反渗透)
• Dialysis (电渗析) • Gas Separation (气体分离) • Pervaporation (渗透汽化) • Electrodialysis (电渗析) • Membrane Electrolyses (膜电解)
第5章 膜分离
一、概述 二、反渗透 三、纳滤 四、超滤 五、微滤 六、渗透汽化 七、气体分离 八、电渗析
名人名言
• If you are tired of membranes, you are tired of life. --Prof. Richard Bowen --
没有从事膜科学技术研究的大学,不是好 的大学。 • --黎念之教授
• 1986 1987 1988 1989 1991? • Atlanta San Antonio Nancy Florida Nevada 1992 1995 Ottawa
• International Conference on Inorganic Membranes
• • 2000(6) France 2002 China 2004
小分子
中分子
大分子
原料
膜
透过侧
各种膜过程的相对适用范围
离
子 含水盐溶液
分
子 炭黑 白蛋白
大分子 颜 细 料
小微粒 人 发 菌
大颗粒
合成 色素 金属 离子 病 内毒素/热精 糖 明
海沙 烟 草 灰 毒 靛 蓝 红 血 球 / 乳 棉 浊 液 谷物-面粉 活性灰 花粉粒 酵 母 菌
胶 胶 乳
原子半径
20.0 10.0
石
反 渗 透 ห้องสมุดไป่ตู้ 滤
压 差 1. 0 ∆p 0 .1 MPa
0.01
0 . 0001 0 . 001 0 . 01 0 .1 微粒或分子的大小 1 d
p
超
滤 微 滤 普 通 过 滤
(µ m )
10
100
1000
工业化的膜过程及其推动力和传质机制
膜科学技术基本概况
各种膜过程开发现状及发展趋势
作为一门分离技术,膜分离有何优点?适用于什么场合? 作为一门分离技术,膜分离有何优点?适用于什么场合?
) (1)化学性质及物理性质 相似的化合物的混合物。 相似的化合物的混合物。 (2) 结构的或取代基位置的 ) 异构物混合物。 异构物混合物。 (3) 含有热敏性组分的混合物。 ) 含有热敏性组分的混合物。
• 1996-
• • • •
凝胶膜、刷膜、闸膜(敏感性智能膜) 分子识别与分子印迹膜,分子自组装膜 双极膜,燃料电池(质子交换膜) 人工肝, 免疫分离膜
膜技术的发展历程
膜分离机理研究
• 1874年 Abbe Nollet • 发现动物膀胱隔开的水渗入酒中。 • 1855年 A.E.Fick
•
用硝化纤维制成第一张合成膜,提 出 溶质的渗透通量与浓度梯度成正比
•
J A = −DAB∆CA
膜分离机理研究
• 1876年 J.W.Gibbs 1 dσ • 单位界面上溶质的吸附量 Γ = − ( ) 与溶液的表面张力成正比。 RT d ln a
膜技术的发展历程
• 1 st Membrane (1960-1975) • CA (Cellulose acetate) • 2 nd Membranes (1976-1985) • CTA (Cellulose Triacetate)、CN (Cellulose Nitrate) • PTFE (Polytetrafluorethylene)、PS (Polysilfone) • PES (Polyether Sulfone)
膜技术的发展历程
• 3 rd Membranes (1986- 95) • Inorganic Membranes (AI、 Zr、Ti、Si)、、 • Pervaporation membranes (PVA、 PVACS) • Functional membranes (Facilitated transport) • • 4 th Membranes (1996) • Functional membranes • Sensitive Polymer membranes • (pH ,Temperature ,Concentration)
• In Environmental Protection • Oily or non-oily wastewater treatment
• Recovery of useful matters from wastewater
重点研究与开发内容
• 高温气体分离膜, 催化反应膜 • 纳滤膜,渗透汽化膜(有机混合物分离) • 亲和膜, 固载活性基团膜
国内膜与膜过程研究单位
• • • • • 大连化物所 天津工业大学 海洋局杭州水处理中心 浙江大学材化学院 湖州欧美水处理设备厂
各类膜技术国际会议举行时间与地 点
• International Congress on Membrane and Membrane Processes (ICOM)
• 1990 1993 1996 • American Gunmen Japan 1999 2002 Canada France 2005 Korea
发展中的膜分离技术
• Bipolar Membrane (双极膜) • Membrane (Bio)Reactor (膜生物反应器) • Catalytic Membrane (催化膜) • • • • • Affinity Membrane (亲和膜) Vapor permeation (蒸汽渗透) Membrane Distillation (膜蒸馏) Membrane-based Absorption (膜基吸收) Membrane-based Extraction (膜基萃取)
各类膜技术国际会议举行时间与地 点
• Advanced Membrane Technology
2002 2004 • • (美国) 伊尔塞(德国) • Organized by Engineering Conference International • Supported by United Engineering Foundation(UEF), Inc.
膜分离过程的推动力与传质
膜的促进传递机理
工业化的膜过程及其推动力和传质机制
工业应用膜过程的基本特征
反渗透、纳滤、超滤、微滤、气体分离等膜 反渗透、 纳滤、 超滤、 微滤、 过程都属于以压力为驱动力的膜分离过程, 过程都属于以压力为驱动力的膜分离过程 , 即压力驱动膜过程, 即压力驱动膜过程 , 压力驱动的膜工艺的分 类及其对应的被分离微粒或分子的大小见下 图。
膜的分离功能
§13.2 膜分离
一、概述
两相之间的一个不连续区间,简单地说, 膜:两相之间的一个不连续区间,简单地说,膜是分隔开 两种流体的一个薄的阻挡层。 两种流体的一个薄的阻挡层。
以区别于相界面
膜过程是近30年发展很快的一门新型的分离、浓缩、 膜过程是近 年发展很快的一门新型的分离、浓缩、提纯 年发展很快的一门新型的分离 及净化技术。 及净化技术。
• Eurom (Progress in Membrane Science and Technology)
• 1994 1997 • The Netherlands The Netherlands 1999 Belgium 2000 Israel
各类膜技术国际会议举行时间与地 点
• International Conference on PVAP Pro. in the Chem.Indust.
• Supported Liquid Membrane (液膜) • Controlled Release (控制释放) • Facilitated Transport (促进传递)
2000年世界膜工业产值及增长速率 年世界膜工业产值及增长速率
(按膜过程统计) 按膜过程统计)
2000年世界膜工业产值及增长速率 年世界膜工业产值及增长速率
}
常规分离方法不能经济、 常规分离方法不能经济、 合理地进行分离。 合理地进行分离。
按膜的 性质分
膜的分 类方法
按膜的 结构分
按膜的 作用分
按膜的 用途分
按膜的来源形态和结构分类, 按膜的来源形态和结构分类,则
液膜
合 成 膜
{带支撑层的液膜
乳状液膜
膜
固膜
生物膜 ( 原 生 质 、 细 胞膜)
{
有机膜
{
无孔膜— 无孔膜 — 不对称膜
多孔膜
无机膜— 无机膜—多孔膜
{ {
{
复合膜 荷电膜 转相膜
不荷电膜
不对称膜
{ 复合膜 {转相膜
对称膜
不对称膜
对称膜
Membrane materials
Polymers Ceramics Glass Metals Liquids
膜的结构形式
非对称膜结构
膜分离过程的推动力与传质
Annual Meetings
• 1. America Institute Chem. Eng. (AIChE) • 2. North America Membrane Society (NAMS) 3.America Chemistry Society (ACS) • -----Polymer Materials: Sci.& Eng. • (Spring and autumn) • 4. Materials Research Society (MRS) • (Spring and autumn)