年高考数学总复习选考部分坐标系与参数方程文新人教A版选修-
高考数学一轮复习 坐标系与参数方程课件 理 新人教A版选修4-4

+y=-2,曲线 C2:xy= =t22,2t的普通方程为 y2=8x, 由xy+ 2=y8=x,-2,解得xy==2-,4, 则 C1 与 C2 交点的直角坐标为(2,-4).
5.(2015·湖北卷)在直角坐标系 xOy 中,以 O 为极点,x 轴的正半
(x0+t2cos α,y0+t2sin α).
(2)|M1M2|=|t1-t2|. (3)若线段 M1M2 的中点 M 所对应的参数为 t, 则 t=t1+2 t2,中点 M 到定点 M0 的距离|MM0|= |t|=t1+2 t2. (4)若 M0 为线段 M1M2 的中点,则 t1+t2=0.
x
2.常用简单曲线的极坐标方程 (1)几个特殊位置的直线的极坐标方程 ①直线过极点:θ=θ0 和 θ=π+θ0; ②直线过点 M(a,0)且垂直于极轴:ρcos θ=a; ③直线过 Mb,π2且平行于极轴:ρsin θ=b.
(2)几个特殊位置的圆的极坐标方程 ①当圆心位于极点,半径为 r:ρ= r ; ②当圆心位于 M(a,0),半径为 a:ρ= 2acos θ ; ③当圆心位于 M a,π2,半径为 a:ρ= 2asin θ .
轴为极轴建立极坐标系.已知直线 l 的极坐标方程为 ρ(sin θ- 3cos θ)=0,曲线 C 的参数方程为xy= =tt- +11tt ,(t 为参数),l
与 C 相交于 A,B 两点,则|AB|=________.
解析 直线 l 的极坐标方程 ρ(sin θ-3cos θ)=0 化为直角
坐标方程为 3x-y=0,曲线 C 的参数方程xy= =tt- +11tt ,两式经 过平方相减,
C 的极坐标方程为 ρ2cos 2θ=4ρ>0,3π 4 <θ<5π 4 ,则直
人教A版高考总复习一轮文科数学精品课件 选修4—4 坐标系与参数方程 第1节 极坐标方程与参数方程

π
θ=4代入 ρ2-2ρcos
+1=0,得 ρ2-3 2ρ+1=0,∴ρ1+ρ2=3 2,ρ1ρ2=1,∴|AB|=|ρ1-ρ2|
= (1 + 2 )2 -41 2 =
(3 2)2 -4 × 1 = 14.
θ-4ρsin θ
考向2参数方程和极坐标方程化为直角坐标方程
例2(2022全国甲,文22)在直角坐标系xOy中,曲线C1的参数方程为
(1)极坐标系:如图所示,在平面内取一个 定点
叫做极点;自极点O引一条 射线
再选定一个 长度
(通常取 弧度
O,
Ox,叫做极轴;
单位、一个 角度
)及其正方向(通常取
单位
逆时针 方
向),这样就建立了一个极坐标系.
|OM|
(2)极坐标:设M是平面内一点,极点O与点M的距离
叫做点M
的极径,记为 ρ ;以极轴Ox为始边,射线OM为终边的角 xOM 叫做点
选修4—4 第1节 极坐标方程与参数方程
内
容
索
引
01
强基础 固本增分
02
研考点 精准突破
课标解读
1.了解在直角坐标系伸缩变换作用下平
面图形的变化情况.
2.能用极坐标表示点的位置,理解在两个
坐标系中表示点的位置的区别,能进行极
坐标和直角坐标的互化.
3.能在极坐标系中给出简单图形的方程,
通过比较这些图形在两个坐标系中的方
程,理解用方程表示平面图形时选择适当
坐标系的意义.
4.了解参数方程及参数的意义.
5.能选择适当的参数写出直线、圆和圆
锥曲线的参数方程.
衍生考点
核心素养
高考数学总复习 第2节 参数方程课件 新人教A版选修44

数的关系 y=g(t)
x=ft ,那么 y=gt 就是曲线的参数方程.
第五页,共70页。
在参数方程与普通(pǔtōng)方程的互化中,x,y的取值范围必 须保持一致.
第六页,共70页。
三、常见曲线的参数方程的一般形式
1.直线的参数方程
经过点 P0(x0,y0),倾斜角为 α 的直线的参数方程为
x= x0+tcos α y= y0+tsin α
第十四页,共70页。
2.若 P(2,-1)为圆xy==15+sin5θcos θ, (θ 为参数且 0≤θ
<2π)的弦的中点,则该弦所在的直线方程为( )
A.x-y-3=0
B.x+2y=0
C.x+y-1=0
D.2x-y-5=0
第十五页,共70页。
解析:由xy= =15+sin5θc,os θ 消去参数 θ,得(x-1)2+y2=25, ∴圆心 C(1,0),∴kCP=-1. ∴弦所在的直线的斜率为 1. ∴弦所在的直线方程为 y-(-1)=1·(x-2), 即 x-y-3=0,故选 A.
第二十页,共70页。
解析:曲线
C1:xy==34++csions
θ θ
(θ 为参数)的直角坐标方
程为(x-3)2+(y-4)2=1,可知曲线 C1 是以(3,4)为圆心,1 为半径的圆;曲线 C2:ρ=1 的直角坐标方程是 x2+y2=1, 故 C2 是以原点为圆心,1 为半径的圆.由题意知|AB|的最小 值即为分别在两个圆上的两点 A,B 间的最短距离.由条件
① ②
①2+②2 得 x2+(y-1)2=1,
即所求普通方程为 x2+(y-1)2=1,
答案(dáàn):x2+(y-1)2=1
第二十六页,共70页。
(新课标)2020年高考数学一轮总复习第十一章选修系列11坐标系与参数方程课件理新人教A版选修4_4

5.直线、圆、椭圆的参数方程
[三基自测]
1.点 P 的直角坐标为(1,- 3),则点 P 的极坐标为
.
答案:2,-π3
2.在极坐标系中,圆心在 2,π且过极点的圆的方程为
.
答案:ρ=-2 2 cos θ
3.参数方程xy==1412+ -+t2t2t2t2,2
(2)极坐标系 在平面内取一个定点 O,叫作极点;自极点 O 引一条射线 Ox,叫作极轴;再选一 个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就 建立了一个极坐标系.
设 M 是平面内任意一点,极点 O 与点 M 的距离|OM|叫作点 M 的极径,记为 ρ;以 极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫作点 M 的极角,记为 θ,有序数对(ρ, θ)叫作点 M 的极坐标,记为 M(ρ,θ).
设 A,B,P 对应的参数分别为 tA,tB,tP,则 tP=tA+2 tB,且 tA,tB 满足 t2-2 2tsin α+1=0.
于是 tA+tB=2 2sin α,tP= 2sin α,又点 P 坐标(x,y)满足xy= =t-Pcos2+α,tPsin α,
故点
P
x= 的参数方程为
(2)由xx2-+yy+2-1=x-0,y=0,
得
x=0, y=1,
故直线
l
与圆 O
公共点的一个极坐标为
1,π2.
考点二|曲线的参数方程 (思维突破)
【例 2】 (2018·高考全国卷Ⅲ)在平面直角坐标系 xOy 中,圆 O 的参数方程为
x=cos θ, y=sin θ
(1)说明 C1 是哪一种曲线,并将 C1 的方程化为极坐标方程; (2)直线 C3 的极坐标方程为 θ=α0,其中 α0 满足 tan α0=2,若曲线 C1 与 C2 的公共 点都在 C3 上,求 a.
2023版高考数学一轮总复习选修4:坐标系与参数方程课件文

过点(a,0),与极轴垂直的
直线.
图形
极坐标方程
(1)θ=α(ρ∈R)或
θ=π+α(ρ∈R),
(2)θ=α和θ=π+α.
ρcosθ =a
.
ρsinθ=a(0<θ<π)
.
考点2
参数方程
1. 参数方程和普通方程的互化
(1)曲线的参数方程和普通方程是曲线方程的不同形式,将参数方程化为普
通方程需消去参数.
形如ρcosθ,ρsin θ,ρ2的形式,进行整体代换)
根据x=ρcosθ,y=ρsinθ,
得C1,C2的直角坐标方程分别为 3x-y-2=0,x2-y2=2.
考向1
极坐标(方程)与直角坐标(方程)的互化
(2)将 3x-y-2=0和x2-y2=2联立,消去y,
得x2-2 3x+3=0,解得x= 3,∴y=1,
(1)将曲线C1,C2的极坐标方程化为直角坐标方程;
(2)设P是曲线C1,C2的公共点,求点P的极坐标以及|PA|-|PB|的值.
考向1
解析
极坐标(方程)与直角坐标(方程)的互化
1
3
(1)曲线C1,C2的极坐标方程可化为 ρsinθ- ρcosθ=-1和
2
2
(ρcosθ)2-(ρsinθ)2=2,(极坐标方程化为直角坐标方程时构造
考点1
坐标系
2. 极坐标系与点的极坐标
(1)极坐标系:如图所示,在平面内取一 定点 O,叫作极点,自
极点O引一条 射线 Ox,叫作极轴;再选定一个长度单位,一
个角度单位(通常取弧度)及其正方向 (通常取逆时针方向),
这样就建立了一个极坐标系.
(2)极坐标:如图所示,设M是平面内一点,极点O与点M的 距离|OM| 叫作点M
人教A版高三理科数学二轮模块三重点专题专题七 选修4系列选讲 第一讲 坐标系与参数方程(选修4-4)

3.几个特殊位置的直线的极坐标方程
高
(1)直线过极点:θ=θ0 和 θ=π+θ0.
考
真 题
(2)直线过点 M(a,0)且垂直于极轴:ρcosθ=A.
体 验
(3)直线过 Mb,π2且平行于极轴:ρsinθ=B.
第9页
与名师对话·系列丛书
大二轮专题辅导与增分攻略•数学 (理)
【例 1】 (2019·全国卷Ⅱ)在极坐标系中,O 为极点,点 M(ρ0,θ0)(ρ0>0)在曲线 C:
体
验
= |
2sin2θ4+π4+1|,所以||OOMN||的最小值为
24+1=4(
2-1).
第22页
与名师对话·系列丛书
角度 2:直线参数方程中参数几何意义的应用
大二轮专题辅导与增分攻略•数学 (理)
核 心
【例 3】 (2018·全国卷Ⅱ)在直角坐标系 xOy 中,曲线 C 的参数方程为yx==42scionsθθ,
(t 为参数).
真
题
体
验
第20页
与名师对话·系列丛书
大二轮专题辅导与增分攻略•数学 (理)
(1)求曲线 C1 和曲线 C2 的普通方程;
核 心
(2)过坐标原点 O 作直线交曲线 C1 于点 M(异于点 O),交曲线 C2 于点 N,求||OOMN||的
考 点
最小值.
突
破
[解题指导] (1)利用 sin2α+cos2α=1 求曲线 C1 的普通方程→利用代换消去参数 t
考 点
当 cosα=0 时,l 的普通方程为 x=1.
突
破
(2)将 l 的参数方程代入 C 的普通方程,整理得关于 t 的方程(1+3cos2α)t2+4(2cosα+
高考数学总复习选考4系列坐标系与参数方程课件理新人教A版
2, 4 . (
3π
) )
������ = -1-������, (t 为参数)所表示的图形是直线. ( ������ = 2 + ������ (5)圆心在极轴上的点(a,0)处,且过极点O的圆的极坐标方程为 ρ=2asin θ.( ) (4)参数方程
(1)× (2)× (3)√ (4)√ (5)×
π ③圆心位于 M ������, 2 ,半径为 a:ρ= 2asin θ
.
;
.
-7知识梳理 考点自测
6.曲线的参数方程 定义:在平面直角坐标系xOy中,如果曲线上任意一点的坐标x,y都 ������ = ������ + ������cos������, 是某个变数t的函数 ������ = ������0 + ������sin������ 并且对于t的每一个允许值,上式 0 所确定的点M(x,y)都在这条曲线上,则称上式为该曲线 参数方程 ,其中变数t称为 参数 的 . (1)过点P0(x0,y0),且倾斜角为α的直线的参数方程为 ������ = ������0 + ������cos������, (t 为参数).t 的几何意义是直线上的点 P 到点 ������ = ������0 + ������sin������ P0(x0,y0)的数量,即|t|=|������0 ������|,t 可正,可负.使用该式时直线上任意两点 P1,P2 对应的参数分别为 t1,t2,则|P1P2|=|t1-t2|,P1P2 的;0)的参数方程为
数).
2 ������ = 2 ������������ , 2 (4)抛物线方程 y =2px(p>0)的参数方程为 (t 为参数). ������ = 2������������
高三数学人教版A版数学(理)高考一轮复习教案:选修4-4 坐标系与参数方程 Word版含答案
选修4-4 坐标系与参数方程1.坐标系与极坐标 (1)理解坐标系的作用.(2)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示图形时选择坐标系的意义.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)掌握直线的参数方程及参数的几何意义,能用直线的参数方程解决简单的相关问题.知识点一 极坐标系 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,点O 叫作极点,自极点O 引一条射线Ox ,Ox 叫作极轴;再选定一个长度单位、一个角度单位及其正方向,这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫作点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫作点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫作点M 的极坐标,记作M (ρ,θ). 2.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0). 易误提醒1.极坐标方程与直角坐标方程的互化易错用互化公式.在解决此类问题时考生要注意两个方面:一是准确应用公式,二是注意方程中的限制条件.2.在极坐标系下,点的极坐标不唯一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标.[自测练习]1.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y=sin x 的方程变为________.解析:由⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y .知⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 中得y ′=3sin 2x ′. 答案:y ′=3sin 2x ′2.点P 的直角坐标为(1,-3),则点P 的极坐标为________.解析:因为点P (1,-3)在第四象限,与原点的距离为2,且OP 与x 轴所成的角为-π3,所以点P 的极坐标为⎝⎛⎭⎫2,-π3. 答案:⎝⎛⎭⎫2,-π3 3.(2015·高考北京卷)在极坐标系中,点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析:点⎝⎛⎫2,π3的直角坐标为(1,3),直线ρ(cos θ+3sin θ)=6的直角坐标方程为x +3y -6=0,所以点(1,3)到直线的距离d =|1+3×3-6|1+3=1.答案:1知识点二 参数方程 参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数⎩⎪⎨⎪⎧ x =f (t ),y =g (t ),并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧x =f (t ),y =g (t )所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )叫作这条曲线的参数方程,变数t 叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫作普通方程.易误提醒1.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致,否则不等价.2.直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义,且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.[自测练习]4.在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t ,(t 为参数)的普通方程为________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0.答案:x -y -1=05.在平面直角坐标系xOy 中,过椭圆⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线截椭圆所得的弦长为________. 解析:椭圆的普通方程为x 24+y 23=1,则右焦点的坐标为(1,0).直线的普通方程为x -2y+2=0,过点(1,0)与直线x -2y +2=0平行的直线方程为x -2y -1=0,由⎩⎪⎨⎪⎧x 24+y 23=1,x -2y -1=0,得4x 2-2x -11=0,所以所求的弦长为1+⎝⎛⎭⎫122×⎝⎛⎭⎫122-4×⎝⎛⎭⎫-114=154.答案:154考点一 曲线的极坐标方程|1.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎫θ-π4=22. (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin ⎝⎛⎭⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝⎛⎭⎫1,π2. 2.(2016·长春模拟)已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2.(1)将圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎫θ-π4=2, 所以ρ2-22ρ⎝⎛⎭⎫cos θcos π4+sin θsin π4=2. 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎫θ+π4=22.直角坐标化为极坐标的关注点(1)根据终边相同的角的意义,角θ的表示方法具有周期性,故点M 的极坐标(ρ,θ)的形式不唯一,即一个点的极坐标有无穷多个.当限定ρ≥0,θ∈[0,2π)时,除极点外,点M 的极坐标是唯一的.(2)当把点的直角坐标化为极坐标时,求极角θ应注意判断点M 所在的象限(即角θ的终边的位置),以便正确地求出角θ∈[0,2π)的值.考点二 曲线的参数方程|1.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t ,(t 为参数)曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ.(θ为参数)(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t (t 为参数)的距离的最小值. 解:(1)曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ.曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|,从而当cos θ=45,sin θ=-35时,d 取最小值855.2.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ.(θ为参数)直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.当sin(θ+α)=1时,|P A |取得最小值,最小值为255.参数方程化为普通方程,主要用“消元法”消参,常用代入法、加减消元法、利用三角恒等式消元等.在参数方程化为普通方程时,要注意保持同解变形.考点三 极坐标方程、参数方程的综合应用|(2015·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos αy =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.[解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧ x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎨⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2016·昆明模拟)在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线,在极坐标系(以坐标原点O 为极点,以x 轴正半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ.(1)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程; (2)若曲线C 与直线l 相交于不同的两点M 、N ,求|PM |+|PN |的取值范围.解:(1)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos αy =2+t sin α(t 为参数).∵ρ=4cos θ,∴ρ2=4ρcos θ,∴C :x 2+y 2=4x .(2)直线l 的参数方程:⎩⎪⎨⎪⎧x =4+t cos αy =2+t sin α(t 为参数),代入x 2+y 2=4x ,得t 2+4(sin α+cos α)t +4=0, ⎩⎪⎨⎪⎧Δ=16(sin α+cos α)2-16>0,t 1+t 2=-4(sin α+cos α),t 1t 2=4,∴sin α·cos α>0,又0≤α<π,∴α∈⎝⎛⎭⎫0,π2,且t 1<0,t 2<0. ∴|PM |+|PN |=|t 1|+|t 2|=|t 1+t 2| =4(sin α+cos α)=42sin ⎝⎛⎭⎫α+π4, 由α∈⎝⎛⎭⎫0,π2,得α+π4∈⎝⎛⎭⎫π4,3π4, ∴22<sin ⎝⎛⎭⎫α+π4≤1, 故|PM |+|PN |的取值范围是(4,4 2 ].33.直线参数方程中参数t 几何意义的应用【典例】 已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θy =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|P A |·|PB |的值.[思维点拨] (1)根据条件写出l 的参数方程及化曲线C 为标准方程. (2)利用t 的几何意义求解|P A |·|PB |的值. [解] (1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎨⎧x =3+12ty =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0, 设t 1,t 2是方程的两个根,则t 1t 2=-3, 所以|P A ||PB |=|t 1||t 2|=|t 1t 2|=3.[方法点评] 过定点M 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t为参数)该参数t 经常用在直线截圆锥曲线的距离问题中,解题时通常过某定点作一直线与圆锥曲线相交于A ,B 两点,所求问题与定点到A ,B 两点的距离有关.解题时主要应用定点在直线AB 上,利用参数t 的几何意义,结合根与系数的关系进行处理,巧妙求出问题的解.[跟踪练习] (2016·大庆模拟)在平面直角坐标系xOy 中,已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π6.在极坐标系(与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4. (1)写出直线l 的参数方程,并把圆C 的极坐标方程化为直角坐标方程; (2)设l 与圆C 相交于A ,B 两点,求|P A |+|PB |的值.解:(1)直线l 的参数方程为⎩⎨⎧x =12+t cos π6,y =1+t sin π6,(t 为参数),即⎩⎨⎧x =12+32t ,y =1+12t ,(t 为参数).由ρ=22cos ⎝⎛⎭⎫θ-π4得:ρ=2cos θ+2sin θ, ∴ρ2=2ρcos θ+2ρsin θ,∴x 2+y 2=2x +2y ,故圆C 的直角坐标方程为(x -1)2+(y -1)2=2. (2)把⎩⎨⎧x =12+32t y =1+12t (t 为参数)代入(x -1)2+(y -1)2=2得t 2-32t -74=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=32,t 1t 2=-74, ∴|P A |+|PB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=312.A 组 考点能力演练1.(1)化圆的直角坐标方程x 2+y 2=r 2(r >0)为极坐标方程; (2)化曲线的极坐标方程ρ=8sin θ为直角坐标方程.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+y 2=r 2,得ρ2cos 2 θ+ρ2sin 2 θ=r 2,ρ2(cos 2 θ+sin 2 θ)=r 2,ρ=r .所以,以极点为圆心、半径为r 的圆的极坐标方程为ρ=r (0≤θ<2π).(2)法一:把ρ=x 2+y 2,sin θ=yρ代入ρ=8sin θ,得x 2+y 2=8·y x 2+y2,即x 2+y 2-8y =0. 法二:方程两边同时乘以ρ,得ρ2=8ρsin θ,即x 2+y 2-8y =0.2.(2016·济宁模拟)已知直线l :ρsin ⎝⎛⎭⎫θ-π4=4和圆C :ρ=2k cos ⎝⎛⎭⎫θ+π4(k ≠0),若直线l 上的点到圆C 上的点的最小距离等于2.求实数k 的值并求圆心C 的直角坐标.解:∵ρ=2k cos θ-2k sin θ, ∴ρ2=2kρcos θ-2kρsin θ,∴圆C 的直角坐标方程为x 2+y 2-2kx +2ky =0,即⎝⎛⎭⎫x -22k 2+⎝⎛⎭⎫y +22k 2=k 2, ∴圆心的直角坐标为⎝⎛⎭⎫22k ,-22k .∵ρsin θ·22-ρcos θ·22=4,∴直线l 的直角坐标方程为x -y +42=0,∴⎪⎪⎪⎪22k +22k +422-|k |=2.即|k +4|=2+|k |,两边平方,得|k |=2k +3,∴⎩⎪⎨⎪⎧ k >0,k =2k +3或⎩⎪⎨⎪⎧k <0,-k =2k +3,解得k =-1,故圆心C 的直角坐标为⎝⎛⎭⎫-22,22. 3.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2 θ,点R ⎝⎛⎭⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值及此时P 点的直角坐标.解:(1)∵x =ρcos θ,y =ρsin θ, ∴曲线C 的直角坐标方程为x 23+y 2=1,点R 的直角坐标为R (2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ, ∴|PQ |+|QR |=4-2sin (θ+60°), 当θ=30°时,|PQ |+|QR |取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝⎛⎭⎫32,12.4.(2016·长春模拟)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,-5),点C 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点P ,且倾斜角为π3,圆C 的半径为4.(1)求直线l 的参数方程和圆C 的极坐标方程. (2)试判断直线l 与圆C 的位置关系.解:(1)直线l 的参数方程为⎩⎨⎧x =1+t cos π3,y =-5+t sin π3,(t 为参数),即⎩⎨⎧x =1+12t ,y =-5+32t ,(t为参数).由题知C 点的直角坐标为(0,4),圆C 的半径为4,∴圆C 方程为x 2+(y -4)2=16,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入得,圆C 的极坐标方程为ρ=8sin θ.(2)由题意得,直线l 的普通方程为3x -y -5-3=0,圆心C 到l 的距离为d =|-4-5-3|2=9+32>4,∴直线l 与圆C 相离.5.倾斜角为α的直线l 过点P (8,2),直线l 和曲线C :⎩⎨⎧x =42cos θ,y =2sin θ,(θ为参数)交于不同的两点M 1,M 2.(1)将曲线C 的参数方程化为普通方程,并写出直线l 的参数方程; (2)求|PM 1|·|PM 2|的取值范围.解:(1)曲线C 的普通方程为x 232+y 24=1,直线l 的参数方程为⎩⎪⎨⎪⎧x =8+t cos α,y =2+t sin α,(t 为参数).(2)将l 的参数方程代入曲线C 的方程得:(8+t cos α)2+8(2+t sin α)2=32, 整理得(8sin 2 α+cos 2 α)t 2+(16cos α+32sin α)t +64=0,由Δ=(16cos α+32sin α)2-4×64(8sin 2 α+cos 2 α)>0,得cos α>sin α,故α∈⎣⎡⎭⎫0,π4, ∴|PM 1||PM 2|=|t 1t 2|=641+7sin 2α∈⎝⎛⎦⎤1289,64. B 组 高考题型专练1.(2015·高考广东卷改编)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,求点A 到直线l 的距离. 解:由2ρsin ⎝⎛⎭⎫θ-π4=2得2ρ⎝⎛⎭⎫22sin θ-22cos θ=2,所以y -x =1,故直线l 的直角坐标方程为x -y +1=0,而点A ⎝⎛⎭⎫22,7π4对应的直角坐标为A (2,-2),所以点A (2,-2)到直线l :x -y +1=0的距离为|2+2+1|2=522.2.(2015·高考全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0, 解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.3.(2015·高考湖南卷)已知直线l :⎩⎨⎧x =5+32t ,y =3+12t ,(t 为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t ,代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义知,|MA |·|MB |=|t 1t 2|=18.4.(2015·高考陕西卷)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t ,(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,P 点的直角坐标为(3,0).。
高考数学一轮复习 坐标系与参数方程教学案 理 新人教A版选修4
选修4—4 坐标系与参数方程考纲要求1.理解坐标系的作用.2.了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.3.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标与直角坐标的互化.4.能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标系与直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.5.了解参数方程,了解参数的含义.6.能选择适当的参数写出直线、圆和椭圆的参数方程.1.极坐标系在平面内取一个定点O ,叫做____;自极点O 引一条射线Ox ,叫做____;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的____,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ,有序数对(ρ,θ)叫做点M 的极坐标,记作________.极坐标系的四要素:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立________关系,约定极点的极坐标是极径______,极角可取任意角.2.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则x =ρcos θ,y =ρsin θ;也可化为关系式ρ2=x 2+y 2,tan θ=yx(x ≠0).3.直线的参数方程(1)过点P 0(x 0,y 0),倾斜角为α的直线l的参数方程是⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),通常称该方程为直线l 的参数方程的标准形式,其中t 表示P 0(x 0,y 0)到l 上一点P (x ,y )的有向线段P 0P →的数量.t >0时,P 0P →的方向向上;t <0时,P 0P →的方向向下;t =0时,P 与P 0重合.(2)直线l 的参数方程的一般形式是⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),该直线倾斜角α的正切为tan α=ba(α=0°或α=90°时例外).当且仅当a 2+b 2=1且b >0时,上式中的t才具有(1)中的t 所具有的几何意义.4.圆的参数方程圆心在M 0(x 0,y 0),半径为r 的圆的参数方程为______________________. 5.椭圆的参数方程椭圆x 2a 2+y 2b2=1的参数方程为__________________.1.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t(t 为参数)与直线4x +ky =1垂直,求常数k 的值.2.已知直线l :⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t (t 为参数),圆C 的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ+π4.(1)求圆心C 到直线l 的距离;(2)若直线l 被圆C 截得的弦长为655,求a 的值.3.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.一、平面直角坐标系下的伸缩变换【例1】 在同一直角坐标系中,将直线x -2y =2变成直线2x ′-y ′=4,求满足图象变换的伸缩变换.方法提炼求满足图象变换的伸缩变换,可先求出变换公式,分清新旧坐标,代入对应的曲线方程,然后比较系数可得变换规则.请做演练巩固提升1二、如何求曲线的极坐标方程【例2】过原点的一动直线交圆x 2+(y -1)2=1于点Q ,在直线OQ 上取一点P ,使P 到直线y =2的距离等于|PQ |.用极坐标法求动直线绕原点一周时P 点的轨迹方程.方法提炼求曲线极坐标方程的基本步骤是:(1)建立适当的极坐标系;(2)在曲线上任取一点P (ρ,θ);(3)根据曲线上的点所满足的条件写出等式;(4)用极坐标ρ,θ表示上述等式,并化简得极坐标方程;(5)证明所得的方程是曲线的极坐标方程.请做演练巩固提升2 三、极坐标方程的应用【例3】 已知极坐标系的极点是直角坐标系的原点,极轴与直角坐标系中x 轴的正半轴重合.曲线C 的极坐标方程为ρ=2cos θ-2sin θ,曲线l 的极坐标方程是ρ(cos θ-2sin θ)=2.(1)求曲线C 和l 的直角坐标方程并画出草图; (2)设曲线C 和l 相交于A ,B 两点,求|AB |. 方法提炼1.极坐标与直角坐标互化公式:x =ρcos θ,y =ρsin θ成立的条件是直角坐标的原点为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位.2.用极坐标法可使几何中的一些问题得出更直接、简单的解法,但解题的关键是选取适当极坐标系,这样可以简化运算过程,转化为直角坐标时也容易一些.特别提醒:极坐标与直角坐标的区别有:多值性:在直角坐标系中,点与直角坐标是“一对一”的关系.在极坐标系中,由于终边相同的角有无数个,即点的极角不唯一,因此点与极坐标是“一对多”的关系.但不同的极坐标可以写出统一的表达式.如果(ρ,θ)是点M 的极坐标,那么(ρ,θ+2k π)或(-ρ,θ+(2k +1)π)(k ∈Z )都可以作为点M 的极坐标.请做演练巩固提升3 四、参数方程及其应用【例4】在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ+π4,求直线l 被曲线C 所截得的弦长. 方法提炼 1.直线的参数方程的应用非常广泛,主要用来解决直线与圆锥曲线的位置关系问题.在解决这类问题时,充分利用直线参数方程中参数t 的几何意义,可以避免通过解方程组找交点等繁琐的运算,使问题得到简化.直线的参数方程有多种形式,只有标准式中的参数才具有明确的几何意义.2.把参数方程化为普通方程,消参数的方法有:代入消去法、加减消去法、恒等式(三角的或代数的)消去法等.普通方程化为参数方程:关键是如何引入参数.若动点坐标x ,y 与旋转角有关时,通常选择角为参数;与运动有关的问题,通常选择时间为参数等.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.提醒:将曲线的参数方程化为普通方程主要消去参数,简称为“消参”.把参数方程化为普通方程后,很容易改变变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.请做演练巩固提升4极坐标与参数方程的综合应用【典例】 (10分)已知曲线C 的极坐标方程是ρ=1,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t 2,y =2+32t (t 为参数).(1)写出直线l 与曲线C 的直角坐标方程;(2)若将曲线C 上任意一点保持纵坐标不变,横坐标缩为原来的12后,得到曲线C ′,设曲线C ′上任一点为M (x ,y ),求x +2y 的最小值.规范解答:(1)直线l 的直角坐标方程为3x -y -3+2=0,曲线C 的普通方程为x 2+y 2=1.(4分)(2)曲线C ′的普通方程为4x 2+y 2=1.令x =12cos θ,y =sin θ,∴x +2y =12cos θ+2sin θ=172sin(θ+φ).(8分)∴x +2y 的最小值为-172.(10分) 答题指导:1.研究含有极坐标方程和参数方程的题目时,可先将它们同时化为直角坐标方程,再借助于直角坐标方程研究它们的性质.2.本题第(2)问还可利用线性规划及直线与椭圆相切等知识来解决.1.设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,求在这一坐标变换下正弦曲线y =sin x 的方程.2.将极坐标系的极轴与直角坐标系的x 轴的非负半轴重合,并取相同的单位长度和角度,求过曲线ρcos θ+ρsin θ=1和曲线⎩⎪⎨⎪⎧y =t +1,x =t (t 为参数)的交点且与极轴平行的直线的极坐标方程.3.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =1+t sin α(t为参数),曲线C 的极坐标方程为ρ=4cos θ.(1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标; (2)若直线l 与曲线C 相交弦长为23,求直线l 的参数方程.4.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =2+32t (t 为参数),曲线C 的极坐标方程为ρ=sin θ1-sin 2θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,M 点坐标为(0,2),直线l 与曲线C 交于A ,B 两点.(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)线段MA ,MB 长度分别记|MA |,|MB |,求|MA |·|MB |的值.参考答案基础梳理自测知识梳理1.极点 极轴 极径 M (ρ,θ) 一一对应 ρ=0 4.⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数) 5.⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)基础自测1.解:将⎩⎪⎨⎪⎧x =1-2t ,y =2+3t化为普通方程y =-32x +72,该直线的斜率为k 1=-32;当k ≠0时,直线4x +ky =1的斜率为k 2=-4k,由k 1·k 2=-1,得k =-6.当k =0时,显然不成立.2.解:(1)把⎩⎪⎨⎪⎧x =a +4t ,y =-1-2t 化为普通方程为x +2y +2-a =0,把ρ=22cos ⎝ ⎛⎭⎪⎫θ+π4化为普通方程为x 2+y 2-2x +2y =0,∴圆心到直线的距离为5|1-a |5.(2)由已知,⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫|a -1|52=(2)2,∴a 2-2a =0,a =0或a =2. 3.解:(1)∵ρ=2,∴ρ2=4,即x 2+y 2=4.∵ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,∴ρ2-22ρ⎝⎛⎭⎪⎫cos θcos π4+sin θsin π4=2.∴x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝⎛⎭⎪⎫θ+π4= 22. 考点探究突破【例1】 解:设伸缩变换为⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0,可将其代入第二个方程,得2λx-μy =4,把x -2y =2化为2x -4y =4,比较系数得λ=1,μ=4.此时,⎩⎪⎨⎪⎧x ′=x ,y ′=4y ,即把直线x -2y =2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x ′-y ′=4.【例2】 解:以O 为极点,Ox 为极轴,建立极坐标系,如图所示,过P 作PR 垂直直线y =2,则|PQ |=|PR |.设P (ρ,θ),Q (ρ0,θ),则有ρ0=2sin θ. ∵|PR |=|PQ |,∴|2-ρsin θ|=|ρ-2sin θ|.∴ρ=±2或sin θ=±1.即为点P 的轨迹的极坐标方程,化为直角坐标方程为x 2+y 2=4或x =0.【例3】 解:(1)由ρcos θ=x ,ρsin θ=y ,得曲线C 直角坐标方程(x -1)2+(y +1)2=2, l 的直角坐标方程x -2y -2=0.(2)设圆C 的圆心C (1,-1)到直线l 的距离为d ,则d =|1-2×(-1)-2|5=55,所以|AB |=2(2)2-⎝⎛⎭⎪⎫552=655. 【例4】 解:将方程⎩⎪⎨⎪⎧x =1+45t ,y =-1-35t (t 为参数)化为普通方程3x +4y +1=0,将方程ρ=2cos ⎝ ⎛⎭⎪⎫θ+π4化为普通方程x 2+y 2-x +y =0,此圆的圆心为⎝ ⎛⎭⎪⎫12,-12,半径为22,则圆心到直线的距离d =110,弦长=2r 2-d 2=212-1100=75. 演练巩固提升1.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,得⎩⎪⎨⎪⎧x =2x ′,y =13y ′.将其代入y =sin x ,得13y ′=sin 2x ′,即y ′=3sin 2x ′.2.解:曲线ρcos θ+ρsin θ=1在直角坐标系下的方程为x +y =1,曲线⎩⎪⎨⎪⎧ y =t +1,x =t 的普通方程为y =x +1,两直线的交点坐标为⎩⎪⎨⎪⎧y =x +1,y =-x +1,即得(0,1),与极轴平行的方程为y =1,则该直线的极坐标方程为ρsin θ=1.3.解:(1)直线l 的方程:y -1=-1(x +1),即y =-x , C :ρ=4cos θ,即x 2+y 2-4x =0,联立方程得2x 2-4x =0,∴A (0,0),B (2,-2);极坐标为A (0,0),B ⎝⎛⎭⎪⎫22,7π4. (2)d =r 2-⎝⎛⎭⎪⎫2322=1, C :(x -2)2+y 2=4,设直线l 的方程为kx -y +k +1=0, ∴|2k +k +1|k 2+1=1. ∴k =0或k =-34.∴l :⎩⎪⎨⎪⎧x =-1+t ,y =1(t 为参数)或⎩⎪⎨⎪⎧x =-1-45t ,y =1+35t (t 为参数).4.解:(1)直线l 的普通方程为3x -y +2=0.∵ρcos 2θ=sin θ,∴ρ2cos 2θ=ρsin θ.∴曲线C 的直角坐标方程为y =x 2. (2)将⎩⎪⎨⎪⎧x =12t ,y =2+32t 代入y =x 2得t 2-23t -8=0,由参数t 的几何意义知|MA |·|MB |=|t 1t 2|=8.。
全国版高考数学一轮复习选修4_4坐标系与参数方程课件理
课标
要求
考题取样
理解 202X全国Ⅲ,T22
2.参数方程 了解 202X全国Ⅰ,T22
情境
载体
课程
学习
课程
学习
对应
考法
考法2
考法1,3,5
预测
热度
核心
素养
直观想象
数学运算
逻辑推理
数学运算
考情解读
从近几年的高考情况来看,坐标系与参数方程是历年高考选做题
之一,一般是两小问,主要考查极坐标(方程)与直角坐标(方程)的互化,
(2)解法一(参数法)
将l的参数方程代入C的普通方程,整理得关于t的方程
(1+3cos2α)t2+4(2cos α+sin α)t-8=0 ③.因为曲线C截直线l所得线段的
中点(1,2)在C内,所以③有两个解,设为t1,t2,则t1+t2=0.又由③得t1+t2=
4(2cos+sin)
,故2cos
(x≠0)即可.在[0,2π)范围内,由tan
θ= (x≠0)求θ时,要根据直角坐标的符
号特征判断出点所在的象限.如果允许θ∈R,再根据终边相同的角的意义,
表示为θ+2kπ(k∈Z)即可.
(2)将点的极坐标(ρ,θ)化为直角坐标(x,y)时,运用公式x=ρcosθ,y=ρsinθ
即可.
考法1 极坐标(方程)与直角坐标(方程)的互化
2.求解以极坐标为背景的三角形面积、距离、线段长等几何问题时,常常
利用极径的几何意义找到突破口,注意极坐标方程的建立过程中数形结
合思想的具体应用.
考法3 参数方程与普通方程的互化
示例3 [202X全国卷Ⅱ,22,10分][理]在直角坐标系xOy中,曲线C的参数方