实验一__电路元件伏安特性的测试(含数据处理)

合集下载

电路原理实验 实验1 电路元件伏安特性的测绘.

电路原理实验 实验1 电路元件伏安特性的测绘.

暨南大学本科实验报告专用纸(附页)暨南大学本科实验报告专用纸课程名称电路原理成绩评定实验项目名称电路元件伏安特性的测绘指导教师李伟华实验项目编号 08063034901 实验项目类型验证型实验地点暨南大学珠海学院电路原理实验室学生姓名学号学院系专业实验时间年月日午~月日午温度℃湿度一、实验目的1. 学会识别常用电路元件的方法2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法3. 掌握实验台上直流电工仪表和设备的使用方法。

二、实验要求1. 根据各实验结果数据,分别在附页纸上绘制出光滑的伏安特性曲线。

(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺)2. 根据实验结果,总结、归纳被测各元件的特性3. 必要的误差分析4. 完成后面的思考题,心得体会及其他。

三、原理说明任何一个电器二端元件的特性可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

1. 线性电阻器的伏安特性曲线是一条通过坐标原点的直线,如图1中a所示,该直线的斜率等于该电阻器的电阻值。

2. 一般的白炽灯在工作时灯丝处于高温状态,其灯丝电阻随着温度的升高而增大,通过白炽灯的电流越大,其温度越高,阻值也越大,一般灯泡的“冷电阻”与“热电阻”的阻值可相差几倍至十几倍,所以它的伏安特性如图1中b曲线所示。

3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1中 c所示。

图1《电路原理》课程实验报告第1页(共6) U(V)暨南大学本科实验报告专用纸(附页)正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

电学元件的伏安特性测量实验报告

电学元件的伏安特性测量实验报告

电学元件的伏安特性测量实验报告电学元件的伏安特性测量实验报告引言:电学元件的伏安特性是电子工程领域中一个重要的实验内容。

通过测量电流与电压之间的关系,可以了解元件的性能和特点。

本实验报告将介绍伏安特性测量实验的目的、原理、实验过程和结果分析。

一、实验目的本实验的主要目的是通过测量电阻、二极管和电容的伏安特性曲线,掌握这些电学元件的基本特性,并加深对电路中电流和电压之间关系的理解。

二、实验原理1. 电阻的伏安特性测量电阻是一个线性元件,其伏安特性曲线为一条直线,斜率为电阻值。

实验中,通过改变电阻上的电压,测量通过电阻的电流,然后根据欧姆定律计算电阻值。

2. 二极管的伏安特性测量二极管是一个非线性元件,其伏安特性曲线为一条指数曲线。

实验中,通过改变二极管的电压,测量通过二极管的电流。

由于二极管的正向电压与正向电流之间存在指数关系,因此需要在实验中选择适当的电压范围,以保证测量数据的准确性。

3. 电容的伏安特性测量电容是一个存储电荷的元件,其伏安特性曲线为一条斜率逐渐变小的曲线。

实验中,通过改变电容器两端的电压,测量电容器充电和放电的电流。

根据电容器的充放电过程,可以得到电容器的伏安特性曲线。

三、实验过程1. 电阻的伏安特性测量a. 搭建电路:将电阻与电压源和电流表连接,保证电路的稳定性。

b. 调节电压源的电压,并记录电流表的读数。

c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。

d. 根据欧姆定律,计算电阻的值。

2. 二极管的伏安特性测量a. 搭建电路:将二极管与电压源和电流表连接,保证电路的稳定性。

b. 调节电压源的电压,并记录电流表的读数。

c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。

d. 根据测量数据,绘制二极管的伏安特性曲线。

3. 电容的伏安特性测量a. 搭建电路:将电容器与电压源和电流表连接,保证电路的稳定性。

b. 调节电压源的电压,并记录电流表的读数。

c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。

大学物理实验电子元件伏安特性的测量实验报告

大学物理实验电子元件伏安特性的测量实验报告

大学物理实验电子元件伏安特性的测量实验报告
一、实验背景
伏安特性是电子元件特有的量化特性,可以在一定条件下揭示元件特性。

它指电子元
件在一定电压驱动器的作用下,随温度、频率和导通阻抗(或输入电阻)变化而产生不同
的电流。

实验室中,我们使用了特定的示波器和电源来测量NPN 型三极管伏安特性进行实验。

二、实验仪器和装备
实验背景实验室中的仪器和设备有:台式示波器,电压电源,波形分析仪,测量系统,以及电路板等。

三、实验设计
用示波器观察NPN三极管的伏安特性的变化,改变示波器的电压、频率和输入电阻来
测量NPN 类型三极管的伏安特性。

用电源给NPN 三极管供电,并使用测量系统记录电流。

四、实验结果与分析
(1)当电源电压改变时,NPN三极管伏安特性的测量变化如下图所示:
![image](figure_1.png)
可以从图中看出,随着电源电压的增大,NPN 三极管的伏安特性越来越陡峭。

五、结论
本次实验中,我们通过测量NPN 三极管伏安特性,发现电源电压、频率和输入电阻对其特性有影响。

实验证明,熟练掌握伏安特性的测量技术,可以帮助我们更好地理解电子
元件的性能。

实验一-电路元件伏安特性的测绘

实验一-电路元件伏安特性的测绘
0.145
0.489
2.14
(2)反向特性实验
将稳压二极管的方向倒转,重复实验内容2中的反向测量。 为反向施压,数据记入表3.2.5。
表3.2.5 测定稳压管的反向特性
U(V)
0
1
2
3
4
5
8
10
12
18
20
UZ—(V)
0
1.00
1.87
2.44
2.73
2.93
3.30
3.45
3.58
3.79
3.85
一、实验目的
1. 学会识别常用电路元件的方法。
2. 掌握线性电阻元件伏安特性的逐点测试法。
3.掌握常用直流电工仪表和设备的使用方法。
二、实验仪器
1.电路实验箱一台
2.万用表一块,IN4007二极管一个,2CW51稳压管一个,不同阻值线性电阻器若干
三、实验原理
任何一个电器二端元件的特性可用该元件上的端电压 与通过该元件的电流 之间的函数关系 来表示,即用 平面上
表3.2.2测定二极管的正向特性
UD+(V)
0
0.2
0.4
0.45
0.5
0.55
0.60
0.65
0.70
0.75
I(mA)
0
0
0.02
0.07
0.22
0.54
1.38
3.50
9.30
24.8
表3.2.3测定二极管的反向特性
UD-(V)
0
-5
-10
-15
-20
-25
-30
I(mA)
0
0
0
0
0

《电路原理》实验报告

《电路原理》实验报告

《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。

2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。

3、学会常用直流电工仪表和设备的使用方法。

二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。

线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。

三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。

应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。

2、学会用电流表测量各支路电流。

二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。

即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。

2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。

这一定律实质上是电压与路径无关性质的反映。

基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备四、实验内容及实验数据实验线路如图4-1。

把开关K1接通U1,K2接通U2,K3接通R4。

就可以连接出基尔霍夫定律的验证单元电路,如图4-2。

图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。

图4-2中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。

2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。

实验一 电路元件伏安特性的测试(含数据处理)

实验一      电路元件伏安特性的测试(含数据处理)

实验一电路元件伏安特性的测试(含数据处理)实验一--电路元件伏安特性的测试(含数据处理)实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌控线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理表明电路元件的特性一般可用该元件上的端电压u与通过该元件的电流i之间的函数关系i=f(u)来表示,即用i-u平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档就可以在某一特定的u和i之下测到对应的电阻值,因而无法测到非线性电阻的伏安特性。

通常就是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式r=u/i求测电阻值。

1.线性电阻器的伏安特性符合欧姆定律u=ri,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。

オオオオオオオオオオオオネ1-1元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。

通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得u/i不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。

3.半导体二极管也就是一种非线性电阻元件,其伏安特性例如图1-1(c)右图。

二极管的电阻值随其电压或电流的大小、方向的发生改变而发生改变。

它的正向压降不大(通常锗管及约为0.2~0.3v,硅管约为0.5~0.7v),正向电流随其正向压降的增高而急剧下降,而逆向电压从零一直减少至十几至几十伏时,其逆向电流减少不大,粗略地可以视作零。

电路元件伏安特性的测量

电路元件伏安特性的测量

实验一:电路元件伏安特性的测量一、实验目的1. 掌握线性、非线性电阻元件及电源的概念。

2.学习线性电阻和非线性电阻伏安特性的测试方法。

3.学习直流电压表、直流电流表及直流稳压电源等设备的使用方法。

二、实验仪器电路分析实验箱、数字万用表、直流电流表、直流电压表、二极管、稳压二极管、电阻三、实验原理1、数字万用表的构成及使用方法数字万用表一般由二部分构成,一部分是被测量电路转换为直流电压信号,我们称为转换器,另一部分是直流数字电压表。

直流数字电压表构成了万用表的核心部分,主要由模-数转换器和显示器组成。

可用于测量交直流电压和电流、电阻、电容、二极管正向压降及电路通断,具有数据保持和睡眠功能。

2、整体结构1)交直流电压测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于V量程档。

将测试表笔并联在被测元件两端2)交直流电流测量(1)将红表笔插入mA或A插孔,黑表笔插入COM插孔。

(2)将功能开关置A量程。

(3)表笔串联接入到待测负载回路里。

3)电阻测量(1)将红表笔插入VQ插孔,黑表笔插入COM插孔。

(2)将功能开关置于Q量程。

(3)将测试表笔并接到待测电阻.上4)二极管和蜂鸣通断测量(1)将红表笔插入VQ插孔,黑色表笔插入”COM”插孔。

(2)将功能开关置于二极管和蜂鸣通断测量档位。

(3)如将红表笔连接到待测-二极管的正极,黑表笔连接到待测二极管的负极,则LCD.上的读数为二极管正向压降的近似值。

将表笔连接到待测线路的两端,若被测线路两端之间的电阻大于700,认为电路断路;被测线路两端之间的电阻≤100,认为电路良.好导通,蜂鸣器连续声响;如被测两端之间的电阻在10~700之间,蜂鸣器可能响,也可能不响。

同时LCD显示被测线路两端的电阻值。

3)线性电阻元件的伏安特性曲线是- -条通过坐标原点的直线。

如图1.1.1所示;非线性电阻元件,如半导体二极管,其伏安特性如图1.1.2所示,电压、电流关系不服从欧姆定律。

伏安特性实验报告

伏安特性实验报告

伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻 (b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只 8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档